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INTRODUCTION 
 

Chrysanthemum indicum L. possesses a diverse range  

of pharmacological attributes, exhibiting properties  

such as broad-spectrum antibacterial, antiviral, anti-

inflammatory, cardioprotective, and antioxidant effects 

[1, 2]. The key active constituents of Chrysanthemum 

indicum L. are the total flavonoids of Chrysanthemum 
indicum L. (TFC) [3]. Previous investigations have 

indicated that TFC exerts inhibitory effects on various 

pathogens including Staphylococcus aureus, Escherichia 
coli, and diphtheria in vitro. Furthermore, TFC has 

displayed anti-inflammatory properties in certain 

contexts [2]. 

 

Acute pancreatitis (AP) is a common and severe 

abdominal condition characterized by its rapid onset 

and potentially life-threatening consequences [4]. Apart 

from the localized pathological damage observed, it 

often triggers a robust systemic inflammatory cascade 

response, which can ultimately result in multiple organ 

failure and, in some instances, fatalities [5]. Clinical 

studies have reported a high mortality rate of up to 20% 

associated with AP, underscoring the vital clinical 
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ABSTRACT 
 

Background: Acute pancreatitis (AP) is a prevalent acute abdominal condition, and AP induced colonic barrier 
dysfunction is commonly observed. Total flavonoids of Chrysanthemum indicum L (TFC) have exhibited 
noteworthy anti-inflammatory and anti-apoptotic properties. 
Methods: We established AP models, both in animals and cell cultures, employing Cerulein. 16S rRNA gene 
sequencing was performed to investigate the gut microorganisms changes. 
Results: In vivo, TFC demonstrated a remarkable capacity to ameliorate AP, as indicated by the inhibition of 
serum amylase, myeloperoxidase (MPO) levels, and the reduction in pancreatic tissue water content. 
Furthermore, TFC effectively curtailed the heightened inflammatory response. The dysfunction of colonic 
barrier induced by AP was suppressed by TFC. At the in vitro level, TFC treatment resulted in attenuation of 
increased cell apoptosis, and regulation of apoptosis related proteins expression in AR42J cells. The increase of 
Bacteroides sartorial, Lactobacillus reuteri, Muribaculum intestinale, and Parabacteroides merdae by AP, and 
decrease of of Helicobacter rodentium, Pasteurellaceae bacterium, Streptococcus hyointestinalis by AP were 
both reversed by TFC treatment. 
Conclusions: TFC can effectively suppress AP progression and AP induced colonic barrier dysfunction by 
mitigating elevated serum amylase, MPO levels, water content in pancreatic tissue, as well as curtailing 
inflammation, apoptosis. The findings presented herein shed light on the potential mechanisms by which TFC 
inhibit the development of AP progression and AP induced colonic barrier dysfunction. 
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importance of controlling or mitigating severe acute 

pancreatitis [6]. 

 

Damage to the intestinal barrier function in AP can 

lead to the translocation of bacteria or endotoxins 

through various mechanisms, causing alterations in 

the intestinal flora and initiating enterogenous 

endotoxemia [7]. Secondary infections in pancreatic 

tissue can trigger systemic inflammatory response 

syndrome (SIRS), which may subsequently give rise 

to multiple organ dysfunction syndrome (MODS) [6]. 

Preserving the integrity of the intestinal barrier 

function is crucial as it plays a significant role in 

maintaining the body’s internal environment, reducing 

inflammatory reactions, and preventing the 

translocation of pathogenic bacteria and toxins from 

the intestines into the bloodstream [8]. Research has 

provided evidence that TFC can enhance the immune 

function in immunosuppressed mice and exert 

antibacterial effects [9]. Furthermore, TFC has been 

shown to inhibit the production of inflammatory 

mediators. However, the specific mechanisms 

underlying its anti-inflammatory effects in the context 

of AP warrant further investigation. 

In this study, we employed Cerulein to induce AP 

model, both in vivo and in vitro, to investigate the 

impact of TFC on alleviating AP. Notably, TFC 

treatment was found to effectively mitigate the 

inflammatory response and apoptosis associated with 

AP in the experimental models. This research offers 

valuable insights into the potential mechanism 

underlying the inhibitory effects of TFC on AP. 

 

RESULTS 
 

Inhibition of AP was achieved by TFC in vivo 

 

Histological examination using HE staining was 

employed to assess the impact of TFC on pancreatic 

tissue injury. In the sham operation group, pancreatic 

cells exhibited structural integrity with no signs of 

edema or inflammatory cell infiltration in the stroma. 

Conversely, the AP group displayed a substantial 

number of deceased pancreatic cells, accompanied by 

pronounced inflammatory cell infiltration and edema 

within the stromal tissue. Following TFC intervention, a 

marked reduction in both pancreatic cell death and 

inflammatory cell infiltration was observed (Figure 1A).

 

 
 

Figure 1. Inhibition of AP in vivo was achieved by TFC. (A) HE staining was performed to observe pancreatic tissue injury 
(Magnification 200X); (B) The level of MPO was measured with IHC staining (Magnification 200X); (C, D) The levels of lipase content and 
serum amylase were measured; (E) The water content of pancreatic tissue was calculated. * indicates p<0.05. Scale: 200 μm. 
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The significant increase of myeloperoxidase (MPO) in 

AP was inhibited by TFC (Figure 1B). Furthermore, in 

rats subjected to Cerulein treatment, there was a 

substantial elevation in the levels of lipase content 

(Figure 1C), serum amylase (Figure 1D), pancreatic 

tissue water content (Figure 1E) within the pancreatic 

tissue. However, treatment with TFC led to a 

pronounced inhibition of these parameters, indicating a 

potential protective role of TFC against AP-induced 

injury. 

 

The increased inflammatory response in AP were 

decreased after TFC treatment 

 

Elevated levels of inflammatory factors serve as crucial 

markers in AP. In the AP group, there was a significant 

increase in the expression levels of pro-inflammatory 

factors, notably IL-1β, TNF-a, IL-6, and CXCL1 

(Figure 2A–2D). Notably, the alterations in the levels of 

these inflammatory factors observed in AP rats were 

effectively reversed by the administration of TFC. 

 

The dysfunction of colonic barrier induced by AP 

was suppressed by TFC 

 

The dysfunction of colonic barrier induced by AP has 

been widely reported. Therefore, we investigate the 

influence of TFC in intestinal barrier function proteins, 

zonula occludens-1 (ZO-1), Occludin, Claudin-4, using 

IHC staining. We found that the expression of ZO-1, 

Occludin, Claudin-4 were markedly suppressed in the 

group AP (Figure 3A–3D). However, treatment with 

TFC greatly elevated the levels of ZO-1, Occludin, and 

Claudin-4. PAS staining method is mainly used in 

histology to detect sugars and intestinal mucus in 

tissues. We found that the decreased intestinal mucus in 

tissues in the group AP was greatly increased by TFC 

(Figure 3E). 

 

The augmentation of cell apoptosis and the 

upregulation of inflammatory factors in vitro were 

effectively attenuated by TFC 

 

Cerulein was employed to treat AR42J cells to establish 

an in vitro model simulating AP. Following Cerulein 

treatment, a substantial increase in cell apoptosis (Figure 

4A) and the expression of pro-apoptotic genes, namely 

Bax and cleaved caspase-3, was observed, whereas B-

cell lymphoma 2 (Bcl-2) showed a remarkable decrease 

(Figure 4B) compared to the control group. However, 

treatment with TFC significantly counteracted the effects 

of Cerulein, leading to a suppression in the rate of cell 

apoptosis (Figure 4A). Furthermore, the changes in the 

expression levels of cell apoptosis-related proteins 

instigated by Cerulein were also effectively reversed by 

TFC (Figure 4B). 

 

 
 

Figure 2. The increased inflammatory response in AP were decreased after TFC treatment. (A–D) The concentrations of IL-1β, 

TNF-a, IL-10, and CXCL1 in the serum were detected with ELISA method. * indicates p<0.05. 
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TFC regulates the gut microorganisms of AP rats 

 

PCoA analysis is used to study the similarity or 

difference in the composition of sample communities. 

The data indicates that there is little difference within 

the group, and there are certain differences between the 

groups (Figure 5A). The number of bacterial species, 

genera, etc. in the sample sequencing results was 

obtained in inter group core OTUs Venn diagram 

(Figure 5B). The top 10 difference gut microorganisms 

were observed among different groups (Figure 5C, 5D). 

The levels of Bacteroides sartorial, Lactobacillus 

reuteri, Muribaculum intestinale, and Parabacteroides 
merdae were greatly increased in the group AP 

compared with group Sham. Meanwhile, the levels of 

Helicobacter rodentium, Pasteurellaceae bacterium, 
Streptococcus hyointestinalis were greatly decreased in 

the group AP compared with group Sham (Figure 5C, 

5D). However, treatment with TFC significantly 

reversed the influence of AP on gut microorganisms. 

 

 
 

Figure 3. The dysfunction of colonic barrier induced by AP was suppressed by TFC. (A–D) The expression intensity of ZO-1, 

Occludin, Claudin-4, were measured with IHC staining (Magnification 200X); (E) PAS staining method was performed to detect intestinal 
mucus in tissues. * indicates p<0.05. Scale: 200 μm. 
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Figure 4. The augmentation of cell apoptosis and the upregulation of inflammatory factors in vitro were effectively 
attenuated by TFC. (A) Cell apoptosis was assessed using flow cytometry; (B) Proteins associated with apoptosis were quantified through 
Western blot analysis. * indicates p<0.05. 
 

 
 

Figure 5. TFC regulates the gut microorganisms of AP rats. (A) PCoA analysis was performed; (B) core OTUs Venn was performed;  

(C) Clustering heat map was performed to analyze gut microorganisms difference; (D) Top 10 difference gut microorganisms were analyzed. 
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DISCUSSION 
 

AP is a frequently encountered clinical condition 

characterized by acute abdominal symptoms and is 

classified under SIRS [10]. AP is often associated with 

bacterial translocation resulting from the disruption of 

the intestinal mucosal barrier [11]. Studies have 

indicated that damage to the intestinal mucosal barrier 

function, attributed to microcirculatory disorders, 

ischemia-reperfusion injuries, excessive release of 

inflammatory mediators, and increased apoptosis, can 

exacerbate the severity of AP [12]. In this research, we 

demonstrated that TFC remarkably inhibited the 

inflammatory response (Figure 2) and dysfunction of 

intestinal barrier (Figure 3) in the AP rats. 

 

Recent pharmacological investigations have unveiled its 

broad-spectrum antibacterial properties. Additionally, 

studies have reported the significant anti-inflammatory 

and analgesic effects of TFC [13]. However, the  

precise mechanisms through which TFC regulates the 

progression of AP have yet to be fully elucidated. We 

present the novel findings that TFC can ameliorate AP 

by restraining inflammation and apoptosis. In our 

research, we observed that TFC treatment effectively 

mitigated the significantly elevated apoptosis and 

inflammatory response in AR42J cells (Figure 4). 

 

The progression of AP is intricately linked to apoptosis. 

Within the mitochondrial pathway, Bax holds a 

prominent role as an apoptosis-inducing factor,  

driving the process [14]. Conversely, Bcl-2 acts as an  

anti-apoptotic protein with multifaceted functions 

encompassing the regulation of apoptosis and autophagy 

[15]. Furthermore, Bcl-2 can modulate autophagy and 

apoptosis induced by oxidative stress [16]. Bcl-2 

competitively binds to Bax, thereby neutralizing its 

effects and diminishing apoptosis [17]. Our findings 

indicate that TFC effectively curtailed pro-apoptotic 

proteins and augmented the presence of anti-apoptotic 

proteins in pancreatic tissues and AR42J cells. This 

observed inhibition of apoptosis by TFC presents a 

plausible mechanism underlying the suppression of AP. 

 

AP can cause imbalances in various gut microbiota, 

including the decrease in the number and diversity of 

gut microbiota [7]. AP may lead to a decrease in the 

number of beneficial bacteria in the intestine and an 

increase in the number of pathogenic bacteria [18]. This 

imbalance may reduce the diversity of gut microbiota, 

making the gut more susceptible to bacterial infections 

[12]. AP may lead to a decrease in beneficial bacteria in 

the intestine, while also increasing the number of 

susceptible bacteria such as Escherichia coli [19]. This 

may increase the risk of bacterial infection [20]. 

Inflammation and pathophysiological changes in acute 

pancreatitis may lead to damage to the intestinal mucosa 

[21]. This can disrupt the intestinal barrier function and 

increase the risk of pathogen invasion [22]. In this 

research, the changes of gut microorganisms caused by 

AP were greatly influenced by TFC. Muribaculum 

intestinale was reported to induce adaptive immune 

responses during homeostasis, and was greatly 

increased after AP induction [23]. However, TFC 

significantly reduced the level of Muribaculum 
intestinale. Helicobacter rodentium is believed to cause 

gastric ulcers and is even considered a pathogenic factor 

in gastric cancer. However, the levels of Helicobacter 

rodentium were markedly suppressed in the AP 

intestine, which needs to be further explored. 

 

Previously, we demonstrated that TFC could significantly 

inhibit AP through restraining serum amylase, MPO, 

water content of pancreatic tissue, inflammation levels, 

apoptosis, and NF-κB signaling pathway activation [2]. 

In this research, we mainly, focused the dysfunction 

alleviation of colonic barrier, and regulation of gut 

microbiota disturbance after AP by TFC. This study 

expands the research mechanism of TFC’s inhibitory 

effect on AP. 

 

CONCLUSIONS 
 

At the in vivo level, our findings demonstrated that 

TFC exhibits significant ameliorative effects on 

pancreatic tissue injury. It effectively suppresses the 

elevation of serum amylase levels, reduces MPO 

expression, mitigates pancreatic tissue edema, curbs 

the inflammatory response. The dysfunction of colonic 

barrier induced by AP was suppressed by TFC. At  

the in vitro level, we have validated the ability of  

TFC to hinder cell apoptosis. This comprehensive 

investigation elucidates the potential mechanistic 

underpinnings of TFC in mitigating the development 

of acute pancreatitis induced colonic barrier 

dysfunction. 

 

MATERIALS AND METHODS 
 

Establishment of acute pancreatitis animal model 

 

The induction of acute pancreatitis was achieved 

through intraperitoneal injection of Cerulein. A total of 

45 Sprague-Dawley rats were randomly allocated into 

three distinct groups, namely the sham group, AP 

group, and AP+TFC group. Prior to induction, all rats 

underwent a 12-hour fasting period, which was 

maintained for an additional 6 hours after the procedure. 

Following laparotomy, the group designated as sham 

underwent no further interventions and the intestinal 

and biliary pancreatic ducts were gently repositioned. In 

the AP group, rats were intraperitoneally administered 
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Cerulein (50 µg/kg, #HY-A0190 MedChemExpress, 

USA) in seven consecutive doses, with a 1-hour interval 

between each administration. Subsequently, in the 

AP+TFC group, rats were subjected to TFC treatment 

(300 mg/kg) via oral gavage, with a frequency of once 

every 12 hours, and this regimen continued for three 

consecutive days after Cerulein induction as described 

previously [2]. Rats in the sham and AP groups received 

equivalent volumes of normal saline. Ultimately, all rats 

from each group were humanely euthanized for the 

collection of tissue and blood samples, with peripheral 

blood samples obtained through the removal of the 

eyeballs. 

 

Cell culture and AP cell model establishment 

 

Rat pancreatic acinar cells, specifically AR42J cells 

(#CRL-1492, ATCC, USA), were employed. These 

cells were cultured within 5 cm × 5 cm cell culture 

bottles, allowing for adherence to the culture surface. 

The culture medium utilized for these cells was RPMI 

1640, supplemented with 10% Fetal Bovine Serum 

(FBS, SH30071.03IR25-40, Hyclone, Cytiva, USA) and 

Antibic Antimycotic double antibody. The culture 

conditions were maintained at a temperature of 37° C 

with a CO2 concentration of 5%. A total of 1 × 106 cells 

were seeded in individual wells of a 6-well cell culture 

plate and were allowed to incubate for a period of 24 

hours. Subsequently, Cerulein was introduced into the 

culture medium at a final concentration of 10 nmol/L. 

After a 4-hour incubation period, TFC (50 mg/L) was 

added to the cell cultures, where it remained for a 

duration of 24 hours. The cells in the control group 

were treated with same amount of PBS. Following this, 

the supernatant from the cell culture, as well as the 

AR42J cells themselves, were meticulously collected 

and reserved for subsequent experimental procedures. 

 

Flow cytometry 

 

Following the cell culture and incubation, a total of 1 × 

105 cells were harvested and subsequently subjected to 

centrifugation at a rate of 800 rpm, accomplished at 

room temperature and lasting for 5 minutes, effectively 

separating the cellular supernatant. These cells were 

then subjected to two cycles of PBS wash. To prepare 

the cells for analysis, 500 μL of a binding buffer was 

introduced. Within this medium, 5 μL of Annexin V–

FITC was suspended in the cellular mixture and allowed 

to remain in the absence of light, at room temperature, 

for a duration of 15 minutes. Following this incubation 

period, 10 μL of propidium iodide (PI, Beyotime, 

#C1062L, China) was subsequently added. The state 
of cell apoptosis was ultimately assessed via the 

utilization of flow cytometry, enabling a comprehensive 

examination of the cellular response. 

Hematoxylin and eosin (HE) staining 

 

The freshly procured pancreatic tissue from mice was 

subjected to fixation in formalin solution for an extended 

period of 24 hours. The obtained pathological sections 

were allowed to desiccate thoroughly overnight at  

a temperature of 60° C. Subsequently, the sections  

were subjected to a dewaxing process using xylene. A 

progressive hydration protocol was then administered, 

entailing sequential rinsing with 100%, 95%, 75%, and 

50% ethanol solutions. Following this, the sections were 

immersed in PBS for a period of 3 minutes. Hematoxylin 

was applied for a duration of 3 minutes to effectively 

stain the cell nuclei, with subsequent rinsing using  

tap water. A brief 10-second immersion in a 75% 

hydrochloric acid ethanol differentiation solution was 

carried out, followed by another round of tap water 

washing for a span of 3 minutes. The sections were 

further soaked in 95% ethanol for 2 minutes and 

subjected to eosin staining for 30 seconds. Dehydration 

of the slides was then facilitated using a series of ethanol 

solutions at concentrations of 75%, 95%, and 100%. 

Transparency was conferred upon the sections through a 

5-minute immersion in xylene. Upon completion of these 

procedures, the sections were sealed with neutral gum 

and subsequently dried at 60° C overnight. The sections 

were then made ready for microscopic observation. 

 

Immunohistochemistry (IHC) staining 

 

The preparation of slides was executed in accordance 

with the procedures detailed in section 2.4. Subsequently, 

the sections underwent antigen retrieval through a 3-

minute microwave oven treatment. To block endogenous 

peroxidase activity, the sections were exposed to a 5% 

hydrogen peroxide solution. Following a thorough PBS 

wash, the slides were subjected to a 20-minute treatment 

with 5% BSA. Thereafter, the sections were incubated 

with the primary antibody, allowing the process to extend 

overnight at 4° C. Subsequent to a PBS rinse, the slides 

were exposed to the secondary antibody for a duration of 

3 hours. DAB reagents (#P0203, Beyotime, China) were 

then applied to the slides, facilitating the visualization of 

sections. The sections were subsequently observed under 

a fluorescence microscope, with images recorded for 

analysis. The antibodies used in this research were listed 

as below: Rabbit monoclonal to ZO1 (#ab276131, 

Abcam, UK), rabbit monoclonal to Occludin 

(#ab216327, Abcam, UK), rabbit monoclonal to Claudin 

4 (#ab210796, Abcam, UK). 

 

Detection of TNF-a, IL-6, IL-1β, CXCL1, and 

amylase 

 

The levels of TNF-a (SEKR-0009, Solarbio, China), IL-6 

(SEKR-0005, Solarbio, China), IL-1β (SEKR-0002, 

10138



www.aging-us.com 8 AGING 

Solarbio, China), and CXCL1 (SEKR-0014, Solarbio, 

China) in the supernatant of AR42J cell cultures and the 

serum of rats were quantified using ELISA (Enzyme-

Linked Immunosorbent Assay) techniques, following the 

manufacturer’s instructions provided with the kits, which 

were procured from Solarbio (Beijing, China). The level 

of amylase was measured with starch iodine colorimetric 

method (#C016-1-1, Nanjing Jiancheng Bioengineering 

Institute, Nanjing, China). 

 

Western blotting 

 

Protein extraction from pancreatic tissues and cells was 

carried out, and their concentrations were determined 

using the BCA (Bicinchoninic Acid) method. 

Subsequently, SDS-PAGE (Sodium Dodecyl Sulfate-

Polyacrylamide Gel Electrophoresis) was conducted to 

separate proteins by their molecular weight. The 

separated proteins were then transferred to a membrane. 

Blocking was performed using 5% skimmed milk at 

room temperature for 1 hour. A primary antibody (diluted 

at 1:1000) was applied and incubated with the membrane 

overnight at 4° C. The membrane was washed three times 

with TBST (Tris-Buffered Saline with Tween 20). 

Subsequently, an HRP (Horseradish Peroxidase) labeled 

secondary antibody (diluted at 1:2000) was added for a 2-

hour incubation at 37° C. After another round of washing 

with TBST, protein bands were analyzed using ImageJ 

software. All antibodies used in this study were procured 

from Abcam. The antibodies used in this research were 

listed as below: rat monoclonal to Bcl-2 (#ab241548, 

Abcam, UK), rabbit monoclonal to Bax (#ab216985, 

Abcam, UK), rabbit polyclonal to Cleaved Caspase-3 

(#ab2302, Abcam, UK). 

 

Periodic acid-Schiff (PAS) staining 

 

The deparaffinization and hydration process was carried 

out to reach a hydrated state. Oxidation was then 

performed by immersing the samples in a 0.5% Periodic 

Acid solution for 5 minutes. Following this, the samples 

were rinsed in three changes of distilled water. They 

were subsequently placed in Schiff’s reagent for a 

duration of 15 minutes. A thorough washing step in tap 

water for 5 minutes was conducted, followed by 

counterstaining in Mayer’s hematoxylin for a period of 

1 minute. The samples were then rinsed in tap water for 

another 5 minutes, with a final rinse in distilled water. 

The dehydration process was completed before covering 

the samples with coverslips and mounting them using a 

Xylene-based mounting medium. 

 

16S rRNA gene sequencing 

 

The genomic DNA from fecal samples was isolated 

utilizing the CTAB method, followed by an assessment 

of purity and concentration through 1% agarose gel 

electrophoresis. PCR amplification targeting the V3+V4 

variable region was conducted using primers 341F  

(5’⁃ CCTAYGGRGRBGCACAG ⁃ 3’) and 806R  

(5’⁃ GGACTACNNGGGTATCTAAT ⁃ 3’) with the 

T100PCR instrument provided by Bio Rad Company in 

the United States. The resulting PCR products were 

mixed in equal concentrations based on their respective 

concentrations, ensuring thorough mixing. Subsequently, 

the PCR products were purified via agarose gel 

electrophoresis using a 2% TAE concentration, with the 

target bands excised and recovered. The Qiagen gel 

recovery kit from Qiagen Company (USA) was 

employed for PCR product recovery. The library 

construction was carried out using the TruSeq DNA 

PCR ⁃ Free Sample Preparation Kit Library Kit, a 

product of Illumina company ®. Quantification and 

evaluation of the constructed library were performed 

using Qubit, and after successfully passing the quality 

assessment, NovaSeq 6000 PE250 was employed for 

high-throughput sequencing on the Illumina platform. 

The sequencing process was conducted by Shenzhen 

Micro Science Alliance Biotechnology Co., Ltd., China. 

 

Bioinformatics analysis primarily involves the 

utilization of the QIIME2 dada2 software for quality 

control of sequencing results, encompassing tasks such 

as trimming, denoising, and concatenation, eventually 

leading to the acquisition of feature sequence tables post 

removal of chimeras. Subsequently, the representative 

sequences of Amplicon Sequence Variants (ASV) are 

compared with the pre-trained GREENGENES database 

(version 13_8, 99% similarity threshold) to generate a 

taxonomic classification table at the species level.  

To identify variations in gut microbiota abundance 

among groups and samples, various statistical methods 

are applied, including ANCOM, ANOVA, Kruskal 

Wallis, LEfSe, and DESeq2. Feature sequence-level α 

diversity indices, comprising observed Operational 

Taxonomic Units (OTUs), Chao1, and Shannon, are 

employed to assess sample diversity. On the other hand, 

β diversity indices such as Bray Curtis, unweighted 

UniFrac, and weighted UniFrac are utilized to evaluate 

distinctions in microbial community structure among 

samples. Lastly, the Redundancy Analysis method is 

deployed to explore potential correlations between 

microbial communities and pertinent environmental 

factors. 

 

Statistical analysis 

 

Statistical analysis was conducted using SPSS version 

22.0. Data were shown as mean values with standard 
deviations. The comparison of multiple groups was 

performed using ANOVA analysis, while independent 

sample t-tests were utilized to compare two groups. A 
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significance level of p<0.05 was considered indicative 

of a statistically significant difference. 

 

Availability of data and materials 

 

The datasets used in the current study are available from 

the corresponding author on reasonable request. 
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