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INTRODUCTION 
 

Liver cancer ranks as the sixth most common cancer 

globally and stands third in cancer-related mortality, as 

reported by the World Health Organization [1]. Among 

primary liver malignancies, hepatocellular carcinoma 

(HCC) stands as the prevailing histological subtype, 
accounting for approximately 70-85% of all instances  

[2]. Despite the fact that HCC is a major health concern, 

there are very few effective interventions available, and 
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ABSTRACT 
 

In all mammals, the basement membrane serves as a pivotal extracellular matrix. Hepatocellular carcinoma 
(HCC) is a challenge among numerous cancer types shaped by basement membrane-related genes (BMGs). Our 
research established an innovative prognostic model that is highly accurate in its prediction of HCC prognoses 
and immunotherapy efficacy to summarize the crucial role of BMGs in HCC. We obtained HCC transcriptome 
analysis data and corresponding clinical data from The Cancer Genome Atlas (TCGA). To augment our dataset, 
we incorporated 222 differentially expressed BMGs identified from relevant literature. A weighted gene 
coexpression network analysis (WGCNA) of 10158 genes demonstrated four modules that were connected to 
HCC. Additionally, 66 genes that are found at the intersection of BMGs and HCC-related genes were designated 
as hub HCC-related BMGs. MMP1, ITGA2, P3H1, and CTSA comprise the novel model that was engineered using 
univariate and multivariate Cox regression analysis. Furthermore, the International Cancer Genome Consortium 
(ICGC) and Gene Expression Omnibus (GEO) datasets encouraged the BMs model’s validity. The overall survival 
(OS) of individuals with HCC may be precisely predicted in the TCGA and ICGC databases utilizing the BMs 
model. A nomogram based on the model was created in the TCGA database at similar time, and displayed a 
favorable discriminating ability for HCC. Particularly, when compared to the patients at an elevated risk, the 
patients with a low-risk profile presented different tumor microenvironment (TME) and hallmark pathways. 
Moreover, we discovered that a lower risk score of HCC patients would display a greater response to 
immunotherapy. Finally, quantitative real-time PCR (qRT-PCR) experiments were used to verify the expression 
patterns of BMs model. In summary, BMs model demonstrated efficacy in prognosticating the survival 
probability of HCC patients and their immunotherapeutic responsiveness. 
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surgical resection remains the best treatment for HCC 

[3]. Over the past ten years, there have been only modest 

advancements in systemic therapies for liver cancer [4]. 

As a result, comprehending the biological mechanisms 

that drive HCC malignancy becomes imperative in order 

to devise more potent therapeutic approaches. 

 
Basement membranes (BMs), an ancient extracellular 

matrix that appeared with the emergence of multicellular 

animals [5], are predominately composed of collagen, 

laminin, and non-collagenous glycoproteins [6]. Nidogen 

and heparan sulfate proteoglycans act as network-

bridging proteins between type IV collagen molecules 

and laminin [7], and assist in the building of BMs along 

tissues by providing scaffolding structure [8]. Moreover, 

the BMs also incorporate “matricellular proteins” that 

serve specialized roles tailored to specific tissues, though 

they do not participate in the constitution or structural 

cohesion [9]. Functions of BMs including blood 

filtration, muscle homeostasis, controlling angiogenesis 

and tumor growth, mechanical stress resistant and storing 

growth factors and cytokines [7]. Studies have shown 

that germline variants in approximately 30 basement 

membrane-related genes (BMGs) can lead to genetic 

disorders [10]. Furthermore, emerging evidence suggests 

that disruptions in the synthesis and degradation of BMs 

proteins may be associated with fibrosis, diabetes, and 

cancer [11–13]. Additionally, collagen XIX, a lesser-

known member of the FACIT family, has demonstrated 

the ability to suppress angiogenesis, thus inhibiting the 

new blood vessel formation and potentially impeding 

tumor cell invasion [14]. Additionally, the interaction 

between integrin α3β1 and laminins is crucial to  

tumor cell proliferation initiation and maintenance  

[15]. Studies have indicated that CD8+ T cells infiltrate 

tumor lesions by secreting granzyme B, which promotes 

the remodeling of the BMs of tumor blood vessels, 

facilitating their migration [16] that means BMs may  

be related to the immune microenvironment in HCC. 

However, BMs are not well understood in HCC in  

terms of their role and status. Thus, it is quite crucial  

to explicate whether BMGs are effective at predicting  

HCC prognosis and immunotherapy response for HCC 

patients. 

 
In the present study, an extensive investigation of 

characteristics and biomarkers associated with BMGs 

was carried out, as they will provide a means to explore 

HCC immune infiltration and monitor the response  

to immunotherapy. First, we constructed coexpression 

networks of tumor samples and identified the inter-

secting genes of BMGs by weighted gene co-expression 

network analysis (WGCNA). Then a model based on 

BMGs was established and its prognostic value was 

assessed in predicting HCC patients’ outcome and 

response to immunotherapy and chemotherapy. In 

conclusion, our research provides novel insights that 

could lead to improved prognosis and treatment 

outcomes for HCC patients in the coming years. 

 

RESULTS 
 

Identification and enrichment analysis of catheter 

holder modules associated with HCC 

 

In the TCGA-LIHC cohort, the brown module (R2 = -

0.81, P = 8e−101), yellow module (R2 = 0.5, P = 1e−27), 

turquoise module (R2 = -0.49, P = 9e−27) and 

greenyellow module (R2 = 0.32, P = 8e−12) were 

extremely correlated with tumor samples among the 11 

modules (Figure 1A–1H). These four modules were 

identified as hub modules. Subsequently, there are 10158 

genes that related to tumor were identified from the 

emergence of the above modules. Then, there are 66 

common genes between hub module genes and BMGs 

for further study (Figure 1I).  

 

In this part, 66 pivotal genes that could determine HCC 

progression and metastasis by BMs were explored for 

future research. 

 

GO and KEGG enrichment analysis of BMGs in 

HCC 

 

The “clusterProfiler” R package was employed for GO 

enrichment analysis to elucidate the relevant biological 

processes and molecular structures, and the correlated 

pathways were acquired applying KEGG enrichment 

analysis. As illustrated by GO enrichment analysis, the 

intersection of genes was closely related to the extra-

cellular matrix and collagen-containing extracellular 

matrix in the Cellular Component (CC). The enriched 

Biological Processes (BP) primarily encompassed 

extracellular structure organization and extracellular 

matrix organization. In terms of Molecular Function 

(MF), changes were observed in extracellular structural 

constituent and cell adhesion molecule binding (Figure 

2A–2C). KEGG enrichment analysis revealed significant 

gene intersections associated with extracellular matrix 

(ECM)-receptor interaction, Focal adhesion, Human 

papillomavirus infection, and PI3K-AKT signaling 

pathway (Figure 2D–2F). 

 

Taken together, this part offered new ideas and clew to 

construct future exploration from CC, BP and MF by 

utilizing the GO enrichment analysis and the KEGG 

enrichment analysis. 

 

Multi-omics landscape of BMs in HCC 

 

We have shown Cox regression analysis of all 66 

common genes (Supplementary Table 1) and identified 
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Figure 1. WGCNA analysis results of 10158 genes of HCC. (A) Clustering dendrogram of HCC samples. (B) The scale–free fit index for 

soft–thresholding powers. (C) A dendrogram of the differentially expressed genes clustering based on different metrics. (D) A heatmap 
showing the correlation between the gene module and associated traits. (E–H) Scatter plots of module eigengenes in brown, yellow, 
turquoise and greenyellow modules. (I) Venn diagram showed the intersection of genes of HCC and BMGs. 
 

 
 

Figure 2. GO and KEGG enrichment analysis to 66 genes of intersection. Barplot (A), bubble plot (B) and chord diagram (C) of GO 

analyses of genes of intersection. Barplot (D), bubble plot (E) and chord diagram (F) of KEGG analyses of genes of intersection. 
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20 BMGs that related to prognostic by univariate Cox 

regression analysis (Figure 3A). Next, in TME of HCC, 

the relationship between BMGs and immune cell 

infiltration was investigated. As illustrated in Figure 3B, 

a significant positive correlation observed among the 

BMGs. Moreover, notable positive associations were 

observed between BMGs and the infiltration of immune 

cells in HCC individuals (Figure 3C). CNV is a DNA 

fragment in the human genome with a copy size of  

1kB to 1MB. It is associated with tumorigenesis and 

tumor progression, including activation of oncogenes, 

inactivation of oncogenes, genomic heterogeneity and 

molecular phenotype [17, 18]. We analyzed BMGs  

for gene amplification and deletion frequencies. We 

displayed a waterfall plot illustrating a relatively low 

mutation rate of the 20 genes in the TCGA cohort 

(Figure 3D). ADAM17, ITGAV, ADAM9 and MEP1A 

had widespread CNV amplification, while PHF13, P3H1, 

ROBO3, LOXL2 presented prevalent CNV deletions 

(Figure 3E), and the locations of CNV alterations on 

chromosomes showed as Figure 3F. 

In a word, 20 genes correlated with BMs were  

screened from 66 intersection of genes, which  

revealed a noteworthy and statistically significant 

positive correlation with immune cell infiltration and 

involved in ADAM17, ITGAV, ADAM9 and MEP1A 

that conducted widespread amplification and PHF13, 

P3H1, ROBO3, LOXL2 that implemented prevalent 

CNV deletions. 

 

BMs model development and validation in HCC 

 

We applied multivariate Cox regression analysis to 

identify 4 genes (MMP1, ITGA2, P3H1, CTSA)  

to establish a risk model. The excellent formula,  

Risk score = (0.238*MMP1) + (0.212*ITGA2) + 

(0.400*P3H1) + (0.240*CTSA), was utilized to 

evaluate the risk score. The midpoint risk score serves 

for a criterion that can categorized into high- and low-

risk profiles. The ICGC queue serves as an external 

validation set. Both the TCGA cohort (Figure 4A) and 

the ICGC cohort (Figure 4G) demonstrated that patients 

 

 
 

Figure 3. Multi-omics landscape by prognostic genes. (A) Univariate Cox regression analysis of genes. (B) Significant positive 
correlation between genes related to prognostic. (C) The correlation between genes related to prognostic and the infiltration level of 23 
immune cells. (D) The mutation frequency of 20 BMGs in TCGA-LIHC cohort. Each column of the figure represents an individual patient.  
(E) The CNV variation frequency of BMGs (red and green plots separately represent CNV gain and CNV loss). (F) Locations of CNV alterations 
in BMGs on 23 chromosomes. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
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with lower risk scores experienced more favorable 

outcomes, as depicted by the Kaplan-Meier curve.  

The four core risk genes MMP1, ITGA2, P3H1,  

and CTSA were utilized for PCA and t-SNE analysis 

which indicate that the BMs model shows bright 

differentiation (Figure 4B, 4C, 4H, 4I). The patients at 

an elevated risk were characterized by higher mortality 

and decreased survival from risk curves. The number of 

patients in the high-risk profile presented that increased 

number of deaths and the increased risk score were 

 

 
 

Figure 4. Identification of a prognostic risk model for HCC patients. (A) Kaplan–Meier curve of HCC patients in the TCGA cohort.  
(B, C) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the TCGA cohort.  
(D) Scatter plots showing the risk score distribution and patient survival status in TCGA cohort. (E) ROC curves to predict the sensitivity and 
specificity of 1-, 2-, 3-year survival according to the risk score in the TCGA cohort. (F) Clinical ROC analysis in the TCGA cohort. (G) Kaplan–
Meier curve of HCC patients in the ICGC cohort. (H, I) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the 
two risk categories in the ICGC cohort. (J) Scatter plots showing the risk score distribution and patient survival status in the ICGC cohort. (K) 
ROC curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the ICGC cohort. (L) Clinical ROC 
analysis in the ICGC cohort. 
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positive correlation (Figure 4D, 4J). In the TCGA 

cohort, we recognized that the area under curves 

(AUCs) in prognosticating 1-year, 2-year, and 3-year 

OS respectively were 0.757, 0.702, and 0.694  

(Figure 4E). It is no difference with the results for the 

TCGA cohort, that AUC values for the 1-year, 2-year, 

and 3-year OS in the ICGC cohort were 0.744, 0.629, 

and 0.685, respectively (Figure 4K). In addition, in the 

TCGA-LIHC cohort, AUC values were significantly 

higher in BMs models than for age, sex, pathologic 

stage, and tumor stage (Figure 4F). Meanwhile, 

compared with the predictive power of age and gender, 

the BMs model exposed greater predictive power  

in the ICGC cohort (Figure 4L). The prognostic  

value of MMP1, ITGA2, P3H1, and CTSA in HCC  

are demonstrated using databases from TCGA-LIHC, 

ICGC, and GSE54236 HCC datasets (Supplementary 

Figures 1–3), which demonstrated that the four genes’ 

predictive value for HCC prognosis to a certain extent, 

though not as significant as the risk model overall. 

Furthermore, we utilized GSE54236 HCC datasets to 

validate our risk model and the results have significant 

statistical significance (Supplementary Figure 4). 

Interestingly, the risk model was verified to have 

significantly predicted value not only for HCC 

prognosis, but also for the tumor doubling time, a 

critical event for tumor progression. 

 

Broadly speaking, a new model of risk score about HCC 

was created to efficiently estimate individual prognosis 

by multivariate Cox regression analysis, which was 

validated by ICGC queue and was compared with other 

effective predictive clinicopathological indicators. 

 

BMs model independence prognostic value, 

construction of nomograms and clinical correlation 

analysis 

 

As depicted in Figure 5A, 5B, the TCGA-LIHC cohort 

revealed that BMs acted as an independent predictor  

of survival. This conclusion was drawn from the  

results obtained using both univariate and multi- 

variate Cox regression models, indicating that BMs 

significantly influenced survival outcomes irrespective 

of other variables. Subsequently, nomograms of clinical 

adaptation were constructed by BMs models and  

other clinicopathological features, providing a visual 

method for prognosticating survival rates for the 1- 

year, 3-year, and 5-year time points for HCC (Figure 

5C). Regarding predicting both short- and long-term 

survival, the nomogram has remarkable accuracy. The 

calibration plots of the column line plots revealed that 

the predictions of the column line plots and the actual 
observed probabilities were excellently coincident 

(Figure 5D). In addition, the net clinical benefit of BMs 

was higher than other clinicopathologic features in the 

TCGA-LIHC cohort, as indicated by decision curve 

analysis (Figure 5E). Significantly, compared with  

other models, AUC value of the BMs possessed 

superior advantage (Figure 5F). Moreover, in the 

TCGA-LIHC cohort, we found out risk scores were 

extremely related with T status, pathologic grade, and 

tumor stage (Figure 6, P < 0.05). 

 

Collectively, the nomogram suffering BMs exhibited 

remarkable forecast of survival outcomes in the  

short and long run in patients diagnosed with HCC, 

which could boast prognostic value and assist in  

clinical management. And the decision curve analysis 

contributed to clinical decision and received better 

benefit. 

 

Analysis of tumor mutation burden and immune cell 

infiltration in different risk profiles 

 

The waterfall plots depicted variations in mutations of 

the top 20 genes among distinct risk profiles in patients 

with HCC, and higher mutation frequencies belonged to 

the patients at an elevated risk. (Figure 7A, 7B). TP53 

was significantly more frequently mutated regarding the 

patients at an elevated risk than in the patients at a 

decreased risk, in contrast CTNNB1 was greatly more 

frequently mutated regarding the patients with a low-risk 

profile, mainly consisting of frameshift deletions and 

nonsense mutations. Tumor mutation burden (TMB), 

known as a nonsynonymous variant, demonstrates a 

strong association with the penetration of immune cells 

and the elicitation of immune responses [19]. Individuals 

with HCC were divided into a lower TMB profile and a 

higher TMB profile thanks to the optimal threshold. 

Kaplan-Meier curves demonstrated that patients with 

lower TMB had better events (Figure 7C). Given TMB 

may make a big difference in clinical experiments, we 

sought to investigate the combined impact of TMB and 

BMs. TMB and BMs exhibited synergistic effects on 

survival outcomes of HCC patients (Figure 7D). 

 

To investigate the attributes of the tumor immune 

microenvironment in the two risk categories, we 

investigated the expression profiles of 38 immune 

checkpoint inhibitor (ICI) genes, 20 HLA genes,  

and the frequency of infiltrating immune cell 

populations within the tumor. In the high-risk category 

(Figure 7E), we observed a substantial upregulation of 

immune checkpoint genes, indicative of heightened 

immunosuppressive signaling. Additionally, HLA-

associated genes were prominently overexpressed in 

the same high-risk profile (Figure 7F), suggesting  

a potential role in modulating antigen presentation  
and immune recognition. Moreover, leveraging the 

“ssGSEA” algorithm, we quantified the abundance of 

penetration of immune cells, unveiling a significant 
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heterogeneity in the immune cell landscape between  

the two risk profiles, reflecting differential immune  

cell infiltration patterns and potentially distinct immune 

responses. Some immune cells levels were remarkably 

higher in the patients with a high-risk profile, which 

involved in activated CD4 T cells, activated dendritic 

cells, myeloid-derived suppressor cells (MDSCs), 

plasmacytoid dendritic cells, regulatory T cells,  

T follicular helper cells, type 17 T helper cells, and type 

2 T helper cells (Figure 7G), as found by the results of 

ssGSEA. Type I interferon (IFN) responses and type II 

IFN responses had an enrichment in the group of low 

risk, and antigen presenting cell (APC) costimulation, 

Chemokine receptors (CCR), major histocompatibility 

complex (MHC) class I, and para-inflammation showed 

enrichment in the group of high risk (Figure 7H). 

 

 
 

Figure 5. Efficacy estimate of prognostic model and nomogram. (A, B) Univariate Cox regression analysis of the model in the TCGA-
LIHC cohort. (C) The nomogram consists of risk score and other clinicopathological parameters. (D) Calibration curves of the nomogram.  
(E) The decision curve analysis of the model in the TCGA-LIHC cohort. (F) AUC value of the BMs compared with other models in the TCGA 
cohort. *** p < 0.001. 
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Figure 6. Relationship of risk model and clinical characteristics. (A) The heatmap of the model and clinical characteristics in the 

TCGA–LIHC cohort. Boxplot of risk score in HCC patients with different status of survival (B), T status (C), pathological grades (D), and tumor 
stages (E). * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 7. Analysis of tumor mutation and immune cell infiltration. (A, B) The waterfall plot showing the differences in somatic 

genomic mutation between high and low risk categories. (C, D) The Kaplan−Meier curve based on both TMB categories and the model for 
HCC patients. (E, F) Different risk categories expressed different levels of checkpoint genes and HLA genes. (G, H) Immune cell and immune 
function scores of different risk categories. Comparison of IPS between two risk categories. (I) CTLA4− PD1−, (J) CTLA4− PD1+, (K) CTLA4+ 
PD1−, and (L) CTLA4+ PD1+. ns p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001. 
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The BMs Models predicted tumor immune 

microenvironment (TIME), with the patients at an 

elevated risk showing higher expression of 38 ICI  

genes, 20 HLA genes, and increased tumor-infiltrating 

immune cells. The high-risk profile also exhibited 

enrichment in immune processes like APC costimulation, 

CCR signaling, MHC class I pathway activation, and 

para-inflammation, potentially explaining the significant 

difference in prognosis between the subgroups. 

 

The role of BMs in immunotherapy 

 

An IPS analysis was conducted to further test the BMs 

model’s ability to prognosticate the ICI efficacy and to 

determine immunotherapy sensitivity in HCC patients 

separately. A significantly higher IPS-CTLA4-neg-

PD1-neg score, in the low-risk profile than in the high-

risk profile, as shown in Figure 7I–7L, demonstrated 

that the immunogenic phenotype is stronger in the 

patients with a low-risk profile and therefore they may 

acquire benefits from immunotherapy. 

 

In addition, the ratio of HCC immune subtypes in the 

different risk groups was compared. It was a statistically 

significant difference that the immunophenotype analysis 

presented by comparing the different groups (Figure 

8A). It was further evaluated whether BMs could  

be utilized as a predictive factor of immunotherapy  

in HCC individuals. The patients with a low-risk  

profile exhibited increased rates of remission than the

 

 
 

Figure 8. Associations of prognostic risk model and HCC immunotherapy. (A) A comparison of immune subtypes between different 

risk categories. (B) A comparison of risk scores between two response categories. (C–J) Stacked bar plot of rates of response, inflammatory 
immune subtypes, tumor-infiltrating immune cells, and PD-L1-expressing tumor tissue samples. (K) Kaplan-Meier curves of different risk 
categories. (L) A comparison of risk scores between the CR/PR category and stable disease (SD)/progressive disease (PD) category. (M, N) 
Stacked bar plot of CR/PR and SD/PD. 
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individuals with a high-risk profile (Figure 8B–8D).  

In the IMvigor210 cohort, 348 patients were split  

into high-risk and low-risk profiles, with metastatic 

uroepithelial carcinoma after the treatment of anti- 

PD-L1 drugs. Between the two profiles, statistically 

remarkable differences were observed in the proportions 

of inflammatory immune subtypes, tumor-infiltrating 

immune cells, and PD-L1-expressing tumor tissue 

samples (Figure 8E–8J). Kaplan-Meier curves presented 

that individuals with low-risk scores had better prognosis 

(Figure 8K). In comparison to the patients at an elevated 

risk, the patients at a decreased risk possessed a higher 

percentage of complete remission (CR)/partial remission 

(PR) (Figure 8L–8N). 

 

Consequently, the response to immunotherapy varied 

between the two risk profiles defined by BMs, with 

patients in the low-risk category potentially exhibiting 

heightened sensitivity to immunotherapy, leading to 

more favorable clinical outcomes. 

Drug sensitivity of BMs in HCC 

 

With the aim of investigating the possible use of  

BMs in HCC personalized treatment and further 

facilitating the clinical value of BMs for dealing with 

HCC, we evaluated several chemotherapeutic agents  

for their IC50 values between different risk profiles.  

The IC50 value demonstrated an inverse relationship 

with the responsiveness of the chemotherapy drugs.  

The drug sensitivity demonstrated that the IC50 values 

of bleomycin, cisplatin, gemcitabine, mitomycin C, and 

paclitaxel in the elevated-risk category exhibited lower 

IC50 values than those in the decreased-risk category, 

implying that high risk individuals is likely to receive 

more beneficial effects from the above chemotherapies, 

while bosutinib, cyclopamine, dasatinib, docetaxel, 

metformin, methotrexate and rapamycin in the low- 

risk profile were lower, indicating that the decreased-

risk category may benefit more from the above 

chemotherapies (Figure 9A–9L).  

 

 
 

Figure 9. Drug sensitivity analyses among high- and low-risk categories. (A) Estimated IC50 of bleomycin in the elevated-risk category 

were lower than in the decreased-risk category. (B) Estimated IC50 of bosutinib in the elevated-risk category were higher than in the 
decreased-risk category. (C) Estimated IC50 of cisplatin in the elevated-risk category were lower than in the decreased-risk category.  
(D, E, F) Estimated IC50 of cyclopamine, dasatinib and docetaxel in the elevated-risk category were higher than in the decreased-risk category. 
(G) Estimated IC50 of gemcitabine in the elevated-risk category were lower than in the decreased-risk category. (H, I) Estimated IC50 of 
metformin and methotrexate in the elevated-risk category were higher than in the decreased-risk category. (J, K) Estimated IC50 of mitomycin 
C and paclitaxel in the elevated-risk category were lower than in the decreased-risk category. (L) Estimated IC50 of rapamycin in the elevated-
risk category were higher than in the decreased-risk category. 
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Based on these results, the risk score has the potential 

to guide patients towards receiving more tailored 

chemotherapies. 

 

The differential expression of BMs model in cell lines 

of HCC 

 

In the preliminary work, a risk model based on  

BMs-related gene was constructed. Now, we further 

verified these results in vitro, 4 genes of the model  

were subjected to qRT-PCR. Compared with LO2 cells, 

the expression levels of 4 genes in five types of HCC 

cells were significantly differential (Figure 10A–10D). 
 

DISCUSSION 
 

Considered as a major global health burden, liver  

cancer is expected to affect more than one million 

people by 2025 [20]. Generally, cancer of the liver 

develops from chronic hepatitis with infiltration by 

various immune cells. Its aggressiveness, heterogeneity 

and usually advanced stage of diagnosis contribute  

to its poor prognosis [21]. Currently, western immune 

checkpoint inhibitors offer great hope for patients with 

HCC. Therefore, new and reliable models and a better 

understanding of the link between models and cancer 

immunity are essential for patients with HCC. 

 

Greater understanding of BMs has helped to make them 

a hot topic of research over the past years. However, no 

studies have investigated the predictive value of BMs in 

cancer. Taking advantage of the genetic characteristics 

of genes associated with BMs, our novel model was 

developed for predicting survival and treatment decisions 

in HCC patients. 

 

In our research, amount to 222 BMGs were first 

acquired from the available literature. Then, we 

obtained the tumor-associated genes of HCC by 

WGCNA. Identification of 66 BMGs intersected  

with tumor-associated genes for further study. When 

employing GO and KEGG enrichment analysis, we

 

 
 

Figure 10. The expression differences of normal liver and HCC cell lines. The expression differences of MMP1 (A), ITGA2 (B), P3H1 
(C), and CTSA (D) in normal liver and HCC cell lines. 
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determined these genes enriched in ECM-receptor 

interactions, adherent spots, and the PI3K-Akt signaling 

pathway. The prognostic significance of these genes 

was evaluated, and subsequently, we recognized 20 

genes associated with prognosis through a univariate 

Cox regression analysis. Utilizing a multivariate Cox 

regression analysis, we constructed a BMs correlation 

model and validated its performance using the ICGC 

cohort. Risk Score = 0.238*MMP1 + 0.212*ITGA2 + 

0.400*P3H1 + 0.240*CTSA is the result of this 

algorithm. According to their median risk score, 

patients with HCC in the TCGA and ICGC cohorts 

were separated into elevated-risk and decreased-risk 

categories. Higher risk scores were corresponding to 

poorer individuals results, as determined by Kaplan-

Meier curves. The ROC curves demonstrated the 

model’s accuracy. The BMs model was a predictor of 

survival in univariate and multivariate Cox regression 

investigations for the TCGA-LIHC cohort. As a  

result, we additionally implemented the risk model to 

determine the connection between tumor mutational 

load and immune cell infiltration. The waterfall plot 

illustrates that the high-risk patient profile manifested  

a greater prevalence of mutations in the top 20 genes. 

The elevated-risk category possessed significantly more 

TP53 mutations than the decreased-risk category, 

whereas the low-risk profile featured significantly  

more CTNNB1 mutations. The expression of immune 

checkpoint genes appeared to be greater in the high-risk 

profile. 20 HLA genes and 38 ICI genes encountered 

high levels of expression in the low-risk individuals. 

More intriguingly, IPS-CTLA4-neg-PD1-neg scores  

in the profile with a lower risk and the profile with  

a higher risk significantly differed, indicating a more 

immunogenic phenotype in those in the low-risk 

category. In contrast, the proportion of immune cells 

between the two categories. However, several limitations 

of our study do exist. First, more thorough research 

should be done to confirm the model’s predictive utility 

in a clinical environment. As our research was only 

based on retrospective data from public databases, 

prospective studies will be required in the future to 

substantiate our discoveries. 

 

MMP1, ITGA2, P3H1 and CTSA were recruited in  

this BMs risk model of HCC. As we know, MMP1  

is identified as a matrix metalloproteinase capable  

of degrading various components of the extracellular 

matrix (ECM), facilitating tumor cell invasion and 

metastasis. It promotes ECM remodeling, assisting 

tumor cells in breaching the basement membrane and 

surrounding tissue, which in turn supports angiogenesis 

and tumor growth [22]. ITGA2, a member of the 
integrin family, plays a role in cell-cell and cell-matrix 

interactions. Wang et al. reported ITGA2 may promote 

HCC progression by activating cell adhesion, migration, 

and survival pathways, such as FAK/PI3K/Akt pathway 

and modulating the interactions between tumor cells 

and their microenvironment [23]. The specific role  

of P3H1 in HCC is not as well elucidated as MMP1  

or ITGA2, which deserved the further explored in the 

future [24]. As reported, CTSA is overexpressed in 

various types of cancer and is linked to poor clinical 

outcomes. The high protein level of CTSA was 

significantly correlated to the poor clinicopathological 

parameters, such as TNM stage, vascular invasion, 

tumor recurrence, and patient death of HCC [25]. 

Overall, further experiments need to be carried out to 

better understand the mechanism of these genes in 

HCC. 

 

In conclusion, we identified a BMs-related model for 

HCC patients in the present investigation. What’s more, 

the same model was validated to forecast HCC patients’ 

OS and demonstrated excellent function of prediction.  

We also investigated disparities in immunotherapy 

response and sensitivity to chemotherapeutic medications 

among BMs risk categories. Our study contributes to  

the advancement of understanding immune infiltration 

characteristics and innovative approaches for personalized 

treatment. 

 

MATERIALS AND METHODS 
 

Data source  

 

In this work, we obtained 222 BMGs from existing 

literature [26]. Additionally, we downloaded clinical  

data, genomic mutation profiles, and RNA-seq expression 

data regarding HCC patients from the Cancer Genome 

Atlas (TCGA) database. Additionally, we leveraged  

the gene expression data from the IMvigor210 dataset  

and the corresponding clinical information of HCC 

patients undergoing immune checkpoint inhibitor therapy. 

Utilizing the “CoreBiologies” R package, we corroborated 

that our risk model had the capability to anticipate the 

response of HCC patients to immunotherapy. 

 

WGCNA 
 

WGCNA can effectively identify gene set modules 

that display a strong association. The parameter setting 

and steps in WGCNA analysis were as followed. 

Initialization and data preparation: utilization of the 

WGCNA and limma packages, specifying samples. 

Data pre-processing: numerical conversion of gene 

expression data, application of avereps function  

for log2 transformation, and filtering genes with a 

standard deviation less than 0.5. Sample clustering: 
hierarchical clustering based on expression data, using 

average linkage method, and detection of outliers 

through sample dendrogram. Network construction: 
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selection of an appropriate soft threshold (power)  

with pickSoftThreshold, construction of adjacency and 

TOM matrices, followed by gene clustering. Module 

identification: dynamic tree cutting for gene module 

identification, calculation of module eigengenes (MEs), 

and module similarity clustering. Gene significance and 

module membership: calculation of gene significance 

for clinical traits and module membership, with 

visualization through Risk Score Triad Diagrams for 

each clinical feature and module.  

 
In this study, we used WGCNA to calculate correlation 

weights of coexpression and identify coexpressed  

genes associated with tumors [27]. Rather than solely 

relying on differential gene expression, WGCNA 

allowed us to pinpoint relevant gene sets and conduct 

rigorous association analyses with phenotypic traits. 

This approach effectively shifted the challenge of 

correcting for multiple hypothesis testing from handling 

correlations between thousands of individual genes  

and phenotypes to examining the associations of a few 

gene sets with the phenotypes. A scale-free network 

was generated by specifying the optimal soft threshold 

power. To continue, we computed gene dendrograms 

and modules utilizing the 50-min cluster size based  

on the topological overlap matrix TOM dissimilarity. 

We identified the most significant module associated 

with HCC and used it for further analysis. We found  

the intersection genes of the module genes that related 

with HCC and BMGs by Venn plot. 

 
Functional and pathway enrichment analysis 

 
To assess the characteristic functional attributes of  

the two risk groups, we conducted an analysis of the 

shared genes between the two groups and subsequently 

annotated them using the “clusterProfiler” R package 

with information from the Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

databases [28].  

 
Prognostic, correlation and mutation analysis 

 
The prognosis-related BMGs were checked out  

using univariate Cox proportional hazard regression. 

The prognosis-related BMGs correlation pheatmap  

is displayed by the R software package. Furthermore, 

we utilized the “ggplot” R package to explore the 

relationship between BMGs and the abundance  

of immune cells within the tissue. We established  

a significance threshold of P<0.05 for statistical 

significance. The R package “maftools” then showed 
the mutation status of prognosis-related BMGs [29].  

In addition, the frequency of copy number variations 

(CNVs) in prognosis-related BMGs was calculated. 

The chromosome positions of these genes were 

visualized through “RCircos” software package.  

 

Construction and validation of BMs model  

 

Using multivariate Cox regression, we developed a 

robust prognostic model for BMGs. External validation 

was performed on the International Cancer Genome 

Consortium (ICGC) cohort. Patients were categorized 

into high- and low-risk profiles based on the median 

BMGs expression score. Kaplan-Meier curves were 

employed for precise comparison of overall survival 

(OS) between the two risk profiles, offering critical 

insights for tailored treatment approaches in HCC 

patients. The classification results were validated by 

using principal component analysis (PCA) and t-

distribution random neighborhood embedding (t-SNE) 

to obtain low-dimensional clustering distributions  

from high-dimensional gene sets. “survivalROC” and 

“timeROC” R packages were used to quantify the 

prognostic model’s forecast value. To better understand 

the prognostic nomogram using the “regplot” package 

in this article, we showed the constructed details. Cox 

proportional hazards model construction: survival data 

were analyzed using the Cox proportional hazards 

model, with risk scores and clinical variables serving  

as covariates. Nomogram generation: utilizing the Cox 

model’s results, nomograms were created via the 

regplot function to visualize the impact of risk scores  

on survival probabilities. Calibration curve generation: 

calibration curves were produced using the calibrate 

function, comparing the predicted survival probabilities 

from nomograms against observed survival rates to 

evaluate the model’s predictive performance. This study 

involved constructing a prognostic nomogram using  

the “regplot” package, incorporating clinical factors  

and gene signatures to estimate 1-, 3-, and 5-year  

OS probabilities. To assess the predictive capacity  

of column line graphs, 3-year and 5-year calibration 

curves were generated. Furthermore, decision curve 

analysis was utilized to assess the clinical applicability 

of the risk score model by computing the net benefit 

across different risk thresholds [30]. Additionally, we 

also compared 1-year receiver operating characteristic 

(ROC) value of the model with other models. 

 

Exploration of immune infiltration 
 

Tumor microenvironment (TME) cells, a crucial 

component of tumor tissue, hold significant 

clinicopathological importance in prognosticating 

outcomes and treatment effectiveness, supported by 

emerging evidence. Further research was completed on 
the expression of human leukocyte antigen (HLA) 

genes and common immunological checkpoints in 

various clusters. To compare the immune infiltration 

10121



www.aging-us.com 15 AGING 

Table 1. Sequences of primers of BMs model and GAPDH. 

Gene Sequences of primers 

GAPDH 
Forward Primer: ACAACTTTGGTATCGTGGAAGG 

Reverse Primer: GCCATCACGCCACAGTTTC 

MMP1 
Forward Primer: AAAATTACACGCCAGATTTGCC 

Reverse Primer: GGTGTGACATTACTCCAGAGTTG 

ITGA2 
Forward Primer: CCTACAATGTTGGTCTCCCAGA 

Reverse Primer: AGTAACCAGTTGCCTTTTGGATT 

P3H1 
Forward primer: CAGCTCGAGCGGGACAG 

Reverse primer: AGGTCCATCTCTTCTGGGCT 

CTSA 
Forward Primer: GTCGCCCAGAGCAATTTTGAG 

Reverse Primer: TCTCCCCGGTCAGGAAAAGTT 

 

and immunological function of each group, a  

Wilcoxon test with two samples was performed. The 

single-sample gene set enrichment analysis (ssGSEA) 

algorithm was applied for immunological inverse fold 

product analysis of 23 immune cell type gene sets, 

enabling exploration of TME infiltration in high- 

risk and low-risk profiles [31]. The 23 different TME 

cell types and the risk category were correlated via 

Spearman correlation analysis. 

 

Estimation of immunotherapeutic response prediction 

 

The liver hepatocellular carcinoma (LIHC) project of The 

Cancer Immunome Atlas is where the immunophenoscore 

(IPS) of HCC samples was developed. CTLA4 and PD-1 

blockers are part of this project’s method for forecasting 

the effectiveness of immunotherapies [31]. Moreover,  

the immune subtypes of HCC in the TCGA database  

have been described in a previous study [32] and we 

analyzed immune subtype proportions between the two 

risk groups based on UCSC-Xena database while using 

the “RColorBrewer” package to provide color schemes 

and create visualizations of immune clustering results. 

Additionally, we confirmed the link between immune 

checkpoint inhibitors and HCC risk markers thanks to the 

IMvigor210 dataset. 

 

Chemotherapeutic drug sensitivity analysis for 

different risk groups 

 

We conducted a pharmacore sensitivity analysis using  

the “prophecy” and “ggplot2” packages and compared 

the sensitivity of various chemotherapeutic agents 

between the groups of high risk and groups of low risk 

utilizing the Wilcoxon signed-rank test in the absence  

of official biomarkers to accurately predict the reaction  

of chemotherapeutic agents in patients with HCC. The 

half-maximal inhibitory concentrations (IC50) of different 

chemotherapeutic drugs were compared between HCC 

high-risk category and low-risk category [33]. 

Cell culture 

 

Human hepatic cell line LO2 and five human HCC cell 

lines (HCCLM3, Hep3B, HepG2, SNU-499 and Huh7 

cells) were flashed frozen in liquid nitrogen with 2 ml 

tubes and stored at −80° C. All cell lines were cultured in 

10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, 

USA) in DMEM medium. All cell lines grew in a humid 

environment of 37° C, 5% CO2, 99% relative humidity 

and did not contain antibiotics. The cells were subcultured 

at a ratio of 1:2 or 1:3 when they reached 80% confluence. 

 

RNA extraction and quantitative real-time PCR 

(qRT-PCR) 

 

TRIzol reagent kit (Invitrogen) was used to extract  

the total RNA from logarithmic growth cells. cDNA  

was synthesized using PrimeScript RT reagent kit 

(Takara Biotechnology, Dalian, China). QRT-PCR 

analysis was conducted using TB Green Premix Ex  

Taq II kit (Takara Biotechnology, Dalian, China) 

according to the instructions, three replicates were set  

in each well. All operations were carried out on ice.  

The 2−ΔΔCt method was used for qRT-PCR analysis.  

The primers were designed using the Primer Bank 

(https://pga.mgh.harvard.edu/primerbank/) and the NCBI 

primer-BLAST tool (https://www.ncbi.nlm.nih.gov/). 

The sequences of primers were shown as Table 1, 

GAPDH was used as reference genes. 

 

Statistical analysis 

 

Spearman’s rank correlation was employed to investigate 

the relationship between TIP scores and immune traits. 

Kaplan-Meier analyses and log-rank tests, facilitated  

by the “survival” package, assessed survival outcomes. 

Additionally, the Pearson Chi-square test explored the 

relationship between the TIPRGPI group and clinico-

pathological variables. For univariate and multivariate 

determination of independent prognostic indicators, the 
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“survival” package was studied. The optimal threshold 

for survival analysis was determined using the 

“survminer” R package. All statistical analyses were 

conducted using R software (version 3.6.1). p < 0.05 was 

accepted as indicative of significant differences if there  

is no other case. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The TCGA database was utilized to individually validate the prognostic value of MMP1, ITGA2, 
P3H1, and CTSA in hepatocellular carcinoma. (A) Kaplan-Meier curve of HCC patients in the MMP1. (B, C) PCA and t-SNE analysis 
showing a remarkable difference in transcriptomes between the two risk categories in the MMP1. (D) Risk Score Triad Diagrams showing the 
risk score distribution and patient survival status in the MMP1. (E) ROC curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival 
according the risk score in the MMP1. (F) Clinical ROC analysis in the MMP1. (G) Kaplan-Meier curve of HCC patients in the ITGA2. (H, I) PCA 
and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the ITGA2. (J) Risk Score Triad 
Diagrams showing the risk score distribution and patient survival status in the ITGA2. (K) ROC curves to predict the sensitivity and specificity 
of 1-, 2-, 3-year survival according the risk score in the ITGA2. (L) Clinical ROC analysis in the ITGA2. (M) Kaplan-Meier curve of HCC patients in 
the P3H1. (N, O) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the P3H1.  
(P) Risk Score Triad Diagrams showing the risk score distribution and patient survival status in the P3H1. (Q) ROC curves to predict the 
sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the P3H1. (R) Clinical ROC analysis in the P3H1. (S) Kaplan-Meier 
curve of HCC patients in the CTSA. (T, U) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk 
categories in the CTSA. (V) Risk Score Triad Diagrams showing the risk score distribution and patient survival status in the CTSA. (W) ROC 
curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the CTSA. (X) Clinical ROC analysis in the 
CTSA. 
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Supplementary Figure 2. The ICGC database was utilized to individually validate the prognostic value of MMP1, ITGA2, P3H1, 
and CTSA in hepatocellular carcinoma. (A) Kaplan-Meier curve of HCC patients in the MMP1. (B, C) PCA and t-SNE analysis showing a 

remarkable difference in transcriptomes between the two risk categories in the MMP1. (D) Risk Score Triad Diagrams showing the risk score 
distribution and patient survival status in the MMP1. (E) ROC curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival 
according the risk score in the MMP1. (F) Clinical ROC analysis in the MMP1. (G) Kaplan-Meier curve of HCC patients in the ITGA2. (H, I) PCA 
and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the ITGA2. (J) Risk Score Triad 
Diagrams showing the risk score distribution and patient survival status in the ITGA2. (K) ROC curves to predict the sensitivity and specificity 
of 1-, 2-, 3-year survival according the risk score in the ITGA2. (L) Clinical ROC analysis in the ITGA2. (M) Kaplan-Meier curve of HCC patients in 
the P3H1. (N, O) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the P3H1.  
(P) Risk Score Triad Diagrams showing the risk score distribution and patient survival status in the P3H1. (Q) ROC curves to predict the 
sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the P3H1. (R) Clinical ROC analysis in the P3H1. (S) Kaplan-Meier 
curve of HCC patients in the CTSA. (T, U) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk 
categories in the CTSA. (V) Risk Score Triad Diagrams showing the risk score distribution and patient survival status in the CTSA. (W) ROC 
curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the CTSA. (X) Clinical ROC analysis in the 
CTSA. 
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Supplementary Figure 3. The GEO database was utilized to individually validate the prognostic value of MMP1, ITGA2, P3H1, 
and CTSA in hepatocellular carcinoma. (A) Kaplan-Meier curve of HCC patients in the MMP1. (B, C) PCA and t-SNE analysis showing a 

remarkable difference in transcriptomes between the two risk categories in the MMP1. (D) Risk Score Triad Diagrams showing the risk score 
distribution and patient survival status in the MMP1. (E) ROC curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival 
according the risk score in the MMP1. (F) Clinical ROC analysis in the MMP1. (G) Kaplan-Meier curve of HCC patients in the ITGA2. (H, I) PCA 
and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the ITGA2. (J) Risk Score Triad 
Diagrams showing the risk score distribution and patient survival status in the ITGA2. (K) ROC curves to predict the sensitivity and specificity 
of 1-, 2-, 3-year survival according the risk score in the ITGA2. (L) Clinical ROC analysis in the ITGA2. (M) Kaplan-Meier curve of HCC patients in 
the P3H1. (N, O) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk categories in the P3H1.  
(P) Risk Score Triad Diagrams showing the risk score distribution and patient survival status in the P3H1. (Q) ROC curves to predict the 
sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the P3H1. (R) Clinical ROC analysis in the P3H1. (S) Kaplan-Meier 
curve of HCC patients in the CTSA. (T, U) PCA and t-SNE analysis showing a remarkable difference in transcriptomes between the two risk 
categories in the CTSA. (V) Risk Score Triad Diagrams showing the risk score distribution and patient survival status in the CTSA. (W) ROC 
curves to predict the sensitivity and specificity of 1-, 2-, 3-year survival according the risk score in the CTSA. (X) Clinical ROC analysis in the 
CTSA. 
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Supplementary Figure 4. The GEO-GSE54236 dataset was used to validate the risk analysis model. (A–F) Using the GEO-

GSE54236 dataset, we demonstrated through Kaplan-Meier curve, PCA and t-SNE analysis, Risk Score Triad Diagrams, ROC curves and Clinical 
ROC analysis that our risk model has good predictive value for the prognosis of hepatocellular carcinoma. (G–K) We further illustrated the 
predictive value of the model using tumor doubling time as the endpoint event. 
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Supplementary Table 
 

 

Supplementary Table 1. Cox regression analysis of all 66 common genes. 

Gene HR z P-value Lower Upper 

CTSA 1.208736081 1.953452323 0.050766021 0.999368267 1.461966486 

MEP1A 1.141371898 2.39743743 0.016510201 1.024422359 1.271672565 

CSPG4 1.012235234 0.102779146 0.918138257 0.802723461 1.276429828 

ECM1 1.14633304 2.098923067 0.035823683 1.009082487 1.302251754 

NPNT 1.007033479 0.100735389 0.919760518 0.878658105 1.154164994 

SMOC1 0.798636763 -2.523830863 0.011608377 0.670680112 0.951005803 

SERPINF1 0.911291972 -1.658511915 0.097214185 0.81654932 1.017027433 

LAMC1 1.055998131 0.793713324 0.427362342 0.923060811 1.20808081 

MPZL2 1.183457869 1.813153702 0.069808118 0.986454024 1.419805174 

SEMA3B 0.95708511 -0.6029272 0.546557121 0.829899768 1.103762098 

LAMA4 1.062529559 0.580777097 0.561390693 0.865859198 1.303871422 

LAMB2 0.914523064 -0.89420185 0.371213903 0.751863239 1.11237309 

ADAMTS9 1.15147831 1.203592992 0.228746929 0.9151772 1.448792975 

MATN2 0.895918432 -1.444349248 0.148640759 0.771786861 1.040014903 

COL18A1 0.824274663 -2.053736731 0.040001179 0.685450377 0.991215035 

ADAMTS10 0.914344947 -0.853764883 0.393235276 0.744443173 1.123022836 

GPC5 0.905059229 -0.773022665 0.439508967 0.702802825 1.165522076 

NTN1 0.879202179 -1.181412318 0.237438967 0.710120348 1.088542913 

CTSD 1.105473087 1.028377246 0.303772407 0.913167749 1.338276288 

NTN4 1.033783681 0.374077212 0.708346872 0.868612205 1.230363438 

LOXL2 1.040852407 0.406449874 0.68441208 0.858096209 1.262531779 

COL9A3 1.027544405 0.273398916 0.784546586 0.84567506 1.248526243 

LAMB3 1.030025767 0.465960975 0.641243434 0.909505611 1.166516257 

LAD1 1.036862133 0.807651529 0.419291214 0.949664335 1.132066397 

COL4A5 1.076875164 0.847288172 0.396834518 0.907318578 1.278117903 

LOXL4 1.061932196 1.250305779 0.211187868 0.966468678 1.166825179 

VTN 0.907834236 -1.998720916 0.045638559 0.825709732 0.998126786 

ITGA7 0.836451544 -1.476105543 0.139915561 0.659869621 1.060287007 

SPOCK1 1.073046995 0.665152555 0.505952923 0.871758887 1.320812291 

DAG1 1.017861896 0.152430931 0.878847063 0.810634681 1.278063799 

ITGAV 1.209718378 2.625821436 0.008644015 1.049462999 1.394445115 

SDC1 1.025940946 0.256446377 0.797606181 0.843561124 1.247751698 

ADAMTS16 1.10684722 0.971784005 0.331158015 0.901920945 1.35833498 

FBLN1 1.072513695 1.211194296 0.225820948 0.957645396 1.201160293 

SDC4 1.022396952 0.268471839 0.788336149 0.869746271 1.20183962 

ANG 0.891216004 -2.290837663 0.021972804 0.807588427 0.983503403 

TINAG 1.122051271 2.110226018 0.034838892 1.008233759 1.248717417 

MEGF9 1.060015695 0.542360358 0.587570283 0.858696231 1.308534069 

SPON2 1.074107391 1.027796918 0.304045366 0.937218997 1.230989438 

ADAM9 1.305910556 3.447748995 0.000565279 1.122068525 1.519873647 

EVA1A 0.918881431 -1.289501607 0.197223758 0.808008841 1.04496763 

ADAM10 1.018417794 0.135188957 0.892462478 0.781655637 1.326894802 

ADAMTS17 0.951728773 -0.505998903 0.61285742 0.785751184 1.15276652 

P3H1 1.511152022 3.397823996 0.000679241 1.190907368 1.917513063 

ADAMTS13 1.209832757 1.87216184 0.061184217 0.991106401 1.476829631 
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MMP17 1.067408965 0.542758362 0.587296185 0.843383003 1.350942448 

ITGA5 1.205334624 2.114436612 0.034477993 1.013737267 1.433144073 

ITGB5 1.263085673 2.205451578 0.027422422 1.026338049 1.554444385 

VWA1 1.054276615 0.609218937 0.54237933 0.889417543 1.249693341 

CD151 1.152078406 1.842717162 0.065370317 0.991032904 1.339294234 

TGFBI 0.939343121 -0.787057822 0.431248019 0.803803891 1.097737283 

BCAN 1.063229498 0.491762915 0.622886956 0.832727138 1.357535879 

ROBO3 1.347567377 1.728408144 0.083915076 0.96082445 1.889978795 

COL2A1 1.030761316 0.543729797 0.586627425 0.924118199 1.149711034 

ITGA1 0.888351324 -0.785825061 0.431969983 0.661222345 1.193498798 

GPC3 0.992137493 -0.332147775 0.739777676 0.946984416 1.039443509 

ITGA2 1.168161502 1.547026388 0.121856883 0.959360641 1.422407003 

CTSB 1.377725522 3.074126954 0.002111196 1.123148191 1.690006386 

ACHE 0.939268943 -0.781950065 0.43424392 0.802763817 1.098985938 

ADAM17 1.398506601 2.582043115 0.009821731 1.084162164 1.803992777 

USH2A 0.721946612 -1.907458477 0.056461243 0.51655351 1.009008556 

MMP1 1.449655656 4.648097194 3.35E-06 1.23955064 1.695373673 

ROBO1 1.091411473 1.475357006 0.140116588 0.97167718 1.225899947 

COL9A2 1.097038218 1.039747457 0.298457246 0.921302386 1.306295165 

PHF13 1.378771189 2.223279867 0.026196934 1.038773513 1.83005243 

TENM1 1.030695222 0.214083474 0.830481963 0.781485423 1.359376142 
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