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INTRODUCTION 
 

ASD is a diverse neurodevelopmental illness described 

by the existence of repetitive and limited interests,  
and challenges in social communication [1–3]. Earlier 

research suggested that the symptoms associated with 

ASD were explained by the essential hypothesis of 

abnormal neuronal connectivity [1, 4, 5]. However, 

studies investigating ASD individuals regarding 

alterations in functional connectivity via the rs-fMRI 

data have yielded inconsistent findings. Some studies 
have reported increased hyperconnectivity, while 

others have observed decreased hyperconnectivity in 

participants with ASD [6, 7]. 
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ABSTRACT 
 

Objective: A neurodevelopmental illness termed as the autism spectrum disorder (ASD) is described by social 
interaction impairments. Previous studies employing resting-state functional imaging (rs-fMRI) identified both 
hyperconnectivity and hypoconnectivity patterns in ASD people. However, specific patterns of connectivity 
within and between networks linked to ASD remain largely unexplored. 
Methods: We utilized a meticulously selected subset of high-quality data, comprising 45 individuals diagnosed 
with ASD and 47 HCs, obtained from the ABIDE dataset. The pre-processed rs-fMRI time series signals were 
partitioned into ninety regions of interest. We focused on eight intrinsic connectivity networks and further 
performed intra- and inter-network analysis. Finally, support vector machine was used to discriminate ASD 
from HC. 
Results: Through different sparsities, ASD exhibited significantly decreased intra-network connectivity within 
default mode network and dorsal attention network, increased connectivity between limbic network and 
subcortical network, and decreased connectivity between default mode network and limbic network. Using the 
classifier trained on altered intra- and inter-network connectivity, multivariate pattern analyses classified the 
ASD from HC with 71.74% accuracy, 70.21% specificity and 75.56% sensitivity in 10% sparsity of functional 
connectivity. 
Conclusions: ASD showed characteristic reorganization of the brain networks and this provided new insight into 
the underlying process of the functional connectome dysfunction in ASD. 
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Utilizing neuroimaging techniques can contribute  

to deepening our comprehension of the biological 

components associated with ASD, complementing 

behavioral analysis in this domain. Moreover, it  

holds the capability to identify neural biomarkers for 

early detection, prognosis, and treatment purposes.  

In humans, intrinsic functional connectivity serves as  

an in vivo technique of connectivity [8]. The brain 

functions as a complex network linked by functional 

connectivity that allows information to be segregated 

and integrated efficiently at low wiring costs [9]. 

Numerous investigations have identified disparities in 

functional connectivity among typically developing 

controls. Preliminary studies primarily aimed at the 

connectivity of DMN (default mode network), salience 

network and executive control network [10, 11]. The 

anterior-posterior hypoconnectivity, specifically between 

parietal and frontal DMN regions, best describe the 

DMN connectivity [12–14]. This has been concluded  

in several studies through independent component 

analysis, voxel-wise whole brain analyses, and seed-

based analysis. Additional research revealed decreases 

in brain areas linked to social behavior, language, and 

communication that are connected to the limbic system 

[15, 16]. However, Anderson et al. discovered that 

individuals with ASD exhibited increased connectivity 

within the DMN, as well as heightened synchronization 

between the DMN and networks associated with 

attention [17]. Another study explored the three large-

scale networks (DMN, executive control network and 

salience network) simultaneously using resting-state 

functional MRI in children and adolescents with ASD. 

They found that the DMN and executive control network 

had age-related over-connectivity in young children with 

ASD but not in adolescents with ASD. This may reflect 

delayed network segregation in ASD [18] Crucially, 

several neuroimaging works on ASD have independently 

targeted the higher-order cortico-cortical functional 

connectivity. Limited research works have studied the 

atypical of intra- and inter-network connectivity patterns 

when considering the entire network as a whole. 

 
The difficulty in synthesizing current literature on ASD 

functional connectivity arises from the potential for 

varying analysis approaches to yield conflicting findings. 

The study herein was focused to explore characteristics 

and scope of functional disparities within and between 

networks, utilizing the commonly employed Yeo-network 

atlas in individuals with ASD. This approach was 

employed to investigate the similarities and differences in 

large-scale brain networks between typically developing 

individuals and ASD diagnosed individuals of similar 

age. The study findings can improve the insight to 

neurophysiological basis of ASD, as well as facilitating 

the development of more precise diagnostic markers and 

targeted therapeutic strategies. 

MATERIALS AND METHODS 
 

Participants 

 

In this investigation, we utilized the identical dataset 

sourced from New York University Langone Medical 

Center as per the earlier research [4, 19]. This dataset  

was also available in a previously described Autism 

Brain Imaging Data Exchange initiative (ABIDE I  

and II; http://fcon_1000.projects.nitrc.org/indi/abide). 

All individuals involved in the study were given written 

consent before participating. The sample consisted of  

92 children aged 7 to 15, with 45 diagnosed for ASD 

and 47 serving as HCs. Diagnosis for those with ASD 

was determined by a clinical team employing ADOS 

(Autism Diagnostic Observation Schedule) [20]. The 

subjects enrolled in research met requirements for ASD 

according to ADI-R (Autism Diagnostic Interview-

Revised), following guidelines defined in Diagnostic 

and Statistical Manual of Mental Disorders, 4th Edition 

(DSM-IV) [21]. The domains under investigation 

encompass repetitive or restricted behaviors, language 

and communication skills, and reciprocal social inter-

actions. The Wechsler Intelligence Scale for Children-

III (WISC III), Wechsler Adult Intelligence Scale- 

III (WAIS III), and/or Wechsler Abbreviated Scale  

of Intelligence (WASI) were employed to assess Full-

scale Intelligence Quotient (FIQ). Participants with any 

other neuropsychological or neurological disorders were 

excluded from all groups. The control group had people 

with no mental disorders’ history who were carefully 

matched in terms of age and gender to the ASD group. 

 

Acquisition of fMRI data 

 

The rs-fMRI data were attained by employing 3  

T scanners manufactured by Siemens. Throughout  

the 6-minute rs-fMRI scan, participants were instructed 

to maintain a state of relaxation while fixating their 

gaze on a centrally positioned white cross displayed  

on a screen having black background. Gradient-echo 

EPI (echoplanar imaging) sequence included flip angle 

= 90°, echo time = 15 ms, repetition time = 2000  

ms, 180 volumes, 33 slices and voxel size = 3.0 × 3.0 × 

4.0 mm3. 

 

Preprocessing of neuroimaging data 

 

DPABI v4.11 and SPM122 were utilized to preprocess 

the rs-fMRI data. The Wellcome Trust Centre for 

Neuroimaging at University College London provided 

this software package. The first ten time points were 

excluded to ensure signal equilibrium. Subsequent 

preprocessing steps involved correcting for head 

functional images to Montreal Neurological Institute 

space using SPM12 template. The images were then 
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resampled to isotropic voxels measuring 3mm × 3mm × 

3mm and further smoothed using a Gaussian kernel. To 

mitigate the effects of gradual signal drift and unwanted 

noise at different frequencies, we employed temporal 

bandpass filtering and linear detrending techniques 

(0.01 - 0.1 Hz). Furthermore, we conducted regression 

analysis to eliminate confounding factors such as 

Friston-24 head motion parameters, cerebrospinal fluid 

signals, and white matter signals from BOLD (blood 

oxygen level-dependent) time series data across all 

voxels. 

 

Inter- and intra-network connectivity analysis 

 

From AAL atlas, which provides abbreviations for 

nodes as listed in Supplementary Table 1, rs-fMRI  

time series signals were divided into 90 ROIs (regions 

of interest) after undergoing preprocessing. We focused 

on eight intrinsic connectivity networks including sub-

cortical network (SN) and seven function networks [22]. 

The 8 canonical neural networks included SN, salience/ 

ventral attention network (SVAN), dorsal attention 

network (DAN), somatomotor network (SMN), DMN, 

frontoparietal network (FPN), visual network (VN),  

and limbic network (LN). Each of the eight networks 

comprised multiple regions of interest (ROIs). This 

procedure relied on matching the voxels’ label from 

Yeo-7 network atlas to AAL atlas. In terms of  

subject-level analysis, Pearson’s correlation coefficient 

was calculated to assess the functional connectivity 

between 2 cortical ROIs through average fMRI time 

series data from these ROIs. Subsequently, Fisher’s  

r-to-z transformation occurred for each correlation 

coefficient. A matrix representing subject-level z-scores 

for functional connectivity was then constructed, 

encompassing 90 ROIs from eight distinct functional 

networks. Note that the negative correlations took only 

a very small portion and had the ambiguous biological 

explanation, here we only focused on the positive 

connections. To facilitate further statistical analyses,  

we computed the mean z-scores for both intra-network 

connectivity (e.g., DMN, FPN, LN, VN) and inter-

network connectivity (DMN, FPN, DMN, LN, FPN, 

VN). The GRETNA toolbox3 was applied for intra-  

and inter-network analysis. Considering the potential 

impact of sparsity threshold on outcomes, we conducted 

network analysis using sparsity thresholds of 10%, 20%, 

and 30% consecutively. The flow diagram of network 

analysis was described in Figure 1. 

 
Statistical analysis 

 
Statistical Package for Social Sciences (SPSS, V224) 

was utilized to compare the neuroimaging and 

demographic properties of HC and ASD groups. A  

two-sample t-test evaluated age disparities between 

groups, while gender variances were analyzed using a 

chi-square (χ2) test. Additionally, group distinctions in 

intra- and inter-network connectivity were examined 

utilizing a two-sample t-test (uncorrected p-value). 

 

Support vector machine (SVM) 

 

Disease classification is made by SVM analysis. There 

are 3 stages in SVM protocol: feature selection, 

classifier training, and prediction [23]. SVM initiates by 

selecting relevant features to construct a reproducing 

kernel hilbert space (RKHS) for classification purposes. 

In this study, we specifically identified statistically 

significant features linked to inter- and intra-network 

connectivity to be utilized in our SVM model. 

Subsequently, the SVM algorithm proceeds to train a 

classifier by constructing an optimal hyperplane that 

effectively discriminates between different classes 

classifier which is utilized for predicting the class label 

of any newly introduced sample. The SVM analysis  

was performed using the LIBSVM toolkit5 in this study. 

We utilized leave-one-out cross-validation (LOOCV) to 

mitigate the issue of a small sample size for assessing 

mean accuracy rate in distinguishing individuals 

diagnosed with ASD from HC [24, 25]. The classifier 

can be assessed through area under the receiver operating 

characteristic (ROC) curve, specificity, and sensitivity 

based on cross-validation results. It is worth noting that 

specificity reflects the accuracy in correctly predicting 

healthy control subjects, while sensitivity represents  

the accuracy in correctly identifying individuals with 

ASD. 

 

RESULTS 
 

Clinical and demographic characteristics 

 

No statistically significant difference was found in FIQ 

(p = 0.05), gender (p = 0.21), and age (p = 0.78) as 

shown in Table 1. In ASD group, the mean score of 

ADI-R was 32.2 ± 14.3 and the mean score of ADOS 

was 13.7 ± 5.0. 

 

Altered intra- and inter-network connectivity in ASD 

 

In 10% sparsity (Figure 2 and Table 2), we found 

significant decreases in intra-network connectivity 

within DMN (t = -2.37, p = 0.020) and DAN (t =  

-2.61, p = 0.011) in ASD. In addition, ASD depicted 

reduced inter-network connectivity in DMN-LN (t =  

-2.34, p = 0.021), SMN-SVAN (t = -2.60, p = 0.011), 

SMN-FPN (t = -2.07, p = 0.041), VN-FPN (t = -2.02,  

p = 0.046), and VN-SMN (t = -2.05, p = 0.043), while 

ASD showed significantly increased inter-network 

connectivity in LN-SN (t = 4.21, p < 0.001), SVAN-

DMN (t = 2.18, p = 0.032) and DMN-SN (t = 2.03,  
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p = 0.045). Notably, only the increased inter-network 

connectivity of LN-SN in the ASD group could 

survive multiple comparison corrections (p < 0.05, 

Bonferroni corrected). 

 

In 20% sparsity (Figure 2 and Table 2), significant 

decreases in intra-network connectivity within DMN  

(t = -2.92, p = 0.004) and DAN (t = -2.65, p = 0.009)  

in ASD were found. We found significantly decreased 

inter-network connectivity in LN-DMN (t = -2.51,  

p = 0.014), VN-FPN (t = -2.00, p = 0.049), and  

VN-SMN (t = -2.00, p = 0.049) in ASD. In addition, 

ASD showed significantly increased inter-network 

connectivity in LN-SN (t = 4.23, p < 0.001) and SMN-

LN (t = 2.41, p = 0.018). Notably, only the increased 

inter-network connectivity of LN-SN in the ASD  

group could survive multiple comparison corrections  

(p < 0.05, Bonferroni corrected). 

 

In 30% sparsity (Figure 2 and Table 2), we found 

significant decreases in intra-network connectivity 

within DMN (t = -2.87, p = 0.005) and DAN  

(t = -2.08, p = 0.040) in ASD. Significantly decreased 

inter-network connectivity in LN-DMN (t = -2.54,  

p = 0.013) were found in ASD. In addition,  

ASD showed significantly increased inter-network 

connectivity in LN-SN (t = 3.53, p = 0.001), LN-FPN 

(t = 2.09, p = 0.040), and SMN-LN (t = 2.02, p = 

0.046). Notably, only the increased inter-network 

connectivity of LN-SN in the ASD group could 

survive multiple comparison corrections (p < 0.05, 

Bonferroni corrected). 

 

Through these sparsities, ASD exhibited increased 

inter-network connectivity in LN-SN, decreased inter-

network connectivity in LN-DMN, and decreased intra-

network connectivity within DAN and DMN. 

 

Discriminative analysis based on changed inter- and 

intra-network connectivity. 

 

Classifier trained on modified inter- and intra- 

network connectivity, along with the LOOCV (Figure 

3), achieved a classification accuracy of 71.74%, 

specificity of 70.21%, and sensitivity of 75.56% in 

functional connectivity sparsity of 10%. In the case of 

20% sparsity, the classification performance yielded 

66.30% accuracy, 85.11% specificity, and 55.56% 

sensitivity. Furthermore, at a sparsity level of 30%, the 

classification performance resulted in an accuracy rate 

of 69.57%, specificity rate of 70.21%, and sensitivity 

rate of 73.33%. 

 

 
 

Figure 1. The fMRI data preprocessing and network analysis depicted via flow diagram. Abbreviations: AAL, automated 
anatomical labeling; fMRI, functional magnetic resonance imaging; ASD, autism spectrum disorder; HC, healthy  
controls. 
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Table 1. Clinical and demographic data in ASD and HC. 

Items HC (n = 47) ASD (n = 45) p-value 

Age (years) 11.0 ± 2.3 11.1 ± 2.3 0.78b 

Gender (male/female) 36/11 36/9 0.21a 

FIQ (mean ± SD) 113.3 ± 14.1 106.8 ± 17.4 0.05 

ADI-R (mean ± SD) -- 32.2 ± 14.3# -- 

ADOS (mean ± SD) -- 13.7 ± 5.0 -- 

Values given as mean ± standard deviation (SD). 
The p-value was attained by χ2 test, b the p-value was attained 
by two-sample t-tests. 
Abbreviations: ADOS, Autism Diagnostic Observation Schedule; 
ADI-R, Autism Diagnostic Interview-Revised; FIQ, Full-scale 
Intelligence Quotient; HC, healthy controls; ASD, autism spectrum 
disorders; #Two patients had no ADI-R score. 

 

DISCUSSION 
 

The rs-fMRI imaging data was utilized in this  

research for creating a functional brain network and 

investigated the modified connectivity patterns within 

and between networks in ASD diagnosed individuals. 

Furthermore, machine learning methodologies were 

used to investigate diagnostic value of this altered 

pattern in ASD. Our results revealed that ASD showed 

characteristic reorganization of the brain networks 

referring to increased inter-network connectivity in 

LN-SN, decreased inter-network connectivity in LN-

DMN, and decreased intra-network connectivity within 

DAN and DMN. This altered pattern could serve as a 

potential biomarker for ASD. 
 

Earlier works utilizing rs-fMRI in human brains  

have identified several prominent networks that exhibit 

intrinsic connectivity and are associated with visual, 

motor, auditory, memory, and executive processes. 

Regarding ASD, three fundamental neurocognitive 

networks have received considerable attention: the 

salience network, Frontoparietal Network (FPN),  

and Default Mode Network (DMN) [26]. The DMN 

primarily encompasses regions such as inferior parietal 

cortex, precuneus, medial prefrontal cortex, and posterior 

cingulate cortex (PCC). Extensive work has been 

conducted to investigate DMN connectivity in relation 

to elucidating the hypothesis of Theory of Mind (ToM) 

regarding ASD pathogenesis [27]. ToM hypothesis 

relates to the ability of a person to recognize subjective 

mental states of others, including intentions and 

perspective, and if scenario is hypothetical or real [28]. 

ToM hypothesis pertains to an individual’s capacity  

to comprehend subjective cognitive states of others, 

encompassing intentions and perspectives, regardless of 

 

 
 

Figure 2. Altered inter- and intra-network connectivity in ASD. Abbreviations: DAN, dorsal attention network; SVAN, salience/ventral 

attention network; DMN, default mode network; FPN, frontoparietal network; SMN, somatomotor network; VN, visual network; LN, limbic 
network; SN, subcortical network; ASD, autism spectrum disorder; HC, healthy controls. 
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Table 2. The significant difference of intra- and inter-network analysis. 

Sparsity Connection HC ASD t value p-value 

10% 

Intra-network     

DAN 0.73 ± 0.25 0.90 ± 0.35 -2.61 0.011  

DMN 22.96 ± 6.39 26.29 ± 7.06 -2.37  0.020  

Inter-network     

VN-SMN 0.27 ± 0.60 1.19 ± 2.94 -2.05  0.043  

VN-FPN 0.14 ± 0.35 0.48 ± 1.07 -2.02  0.046  

SMN-SVAN 12.53 ± 5.55 15.77 ± 6.35 -2.60  0.011  

SMN-FPN 2.62 ± 1.80 3.54 ± 2.38 -2.07  0.041  

SVAN-DMN 3.96 ± 2.78 2.90 ± 1.77 2.18  0.032  

LN-DMN 14.48 ± 5.37 17.20 ± 5.73 -2.34  0.021  

LN-SN 12.04 ± 5.80 7.92 ± 3.32 4.21  <0.001 

DMN-SN 3.32 ± 3.10 2.11 ± 2.62 2.03  0.045  

20% 

Intra-network     

DAN 0.89 ± 0.32 1.10 ± 0.43 -2.65 0.009  

DMN 32.03 ± 6.97 36.71 ± 8.29 -2.92  0.004  

Inter-network     

VN-SMN 1.89 ± 1.99 3.93 ± 6.57 -2.00  0.049  

VN-FPN 0.85 ± 1.18 1.64 ± 2.40 -2.00  0.049  

SMN-LN 11.93 ± 6.53 9.14 ± 4.41 2.41  0.018  

LN-DMN 25.84 ± 7.21 29.72 ± 7.58 -2.51  0.014  

LN-SN 19.47 ± 7.85 13.93 ± 4.29 4.23  <0.001 

30% 

Intra-network     

DAN 1.01 ± 0.31 1.67 ± 0.41 -2.08  0.040  

DMN 36.69 ± 7.46 41.51 ± 8.62 -2.87  0.005  

Inter-network     

SMN-LN 16.39 ± 7.29 13.71 ± 5.30 2.02  0.046  

LN-FPN 9.80 ± 4.73 8.06 ± 3.17 2.09  0.040  

LN-DMN 33.21 ± 7.69 37.46 ± 8.32 -2.54  0.013  

LN-SN 23.39 ± 8.26 18.32 ± 5.22 3.53  0.001  

Abbreviations: DAN, dorsal attention network; SVAN, salience/ventral 
attention network; DMN, default mode network; FPN, frontoparietal network; 
SMN, somatomotor network; VN, visual network; LN, limbic network; SN, 
subcortical network; HC, healthy controls; ASD, autism spectrum disorders. 

 

 
 

Figure 3. Discriminate analysis for the classification between ASD and HC. Abbreviations: HC, healthy controls; ASD, autism 
spectrum disorder. 
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whether situation is hypothetical or actual [20]. 

Additionally, the hypothesis of ToM proposes that ASD 

diagnosed individuals, a deficient or underdeveloped 

ToM, that hinders their capacity to deduce mental 

conditions of others - a fundamental aspect of social 

interaction [29]. 

 

In our study, ASD showed significant decreased intra-

network connectivity within DMN. Previous works 

have investigated the degree of ToM impairment  

in ASD and observed the hypoconnectivity in DMN  

to evaluate the possible neural basis for the theory  

[27, 30, 31]. Assaf et al. investigated role of  

altered functional connectivity within DMN through 

independent component analysis [30]. ASD individuals 

exhibited reduced connectivity between medial 

prefrontal cortex and precuneus, and other core areas 

of DMN, which aligns with our findings. Notably, we 

observed an inverse relation between connectivity of 

these regions, and extreme communication and social 

declines in patients, as assessed by Autism Diagnostic 

Observational Schedule and Social Responsiveness 

Scale [32]. Another study based on PCC-seed analysis 

also demonstrated that weaker connectivity within  

the DMN linked to specific ASD impairments  

[33]. However, Anderson and colleagues proposed 

hyperconnectivity within DMN and enhanced inter-

network synchrony between attentional networks and 

DMN in ASD [28]. Redcay and colleagues examined  

4 discrete networks (FPN, cerebellar network, cingulo-

opercular network, and DMN) in ASD based on  

graph theory. Minimal differences were found in the 

adolescent males between ASD and controls [34]. The 

variations in results can be attributed to heterogeneous 

nature of ASD, fMRI scanning parameters and analysis 

strategy. In addition, the decreased connectivity  

within DAN was also found in our study. DAN 

comprises vital nodes in frontal eye fields and bilateral 

intraparietal sulcus, and regulates the intentional,  

goal-oriented top down “endogenous” attention [35]. 

Studies on attention in individuals with ASD have 

identified varying degrees of attention deficits. Pruett 

and colleagues conducted an attention orienting task, 

which depicted that autism children had increased eye 

movements and slower response times during visual 

orientation in comparison to typically developing 

individuals [36, 37]. Fitzgerald and his team employed 

psychophysical interaction analysis for investigating 

the impact of tasks on brain functional connectivity, 

evaluating the degree of synchronization between 

different regions while performing the task [38]. 

Analysis conducted by DAN revealed a decrease  

in coherence among brain regions responsible for 
regulating goal-oriented, internally-driven attention  

in individuals with ASD. The outcomes were in 

accordance with our ASD results. 

In this study, we found that ASD also showed 

increased inter-network connectivity in LN-SN in 

comparison to the adolescents developed typically. 

Hyperconnectivity of subcortical regions in ASD 

individuals was initially demonstrated by Di Martino 

and colleagues through conducted on school-age 

children [39]. The increased connectivity was found 

between heteromodal associative and limbic cortex 

and the striatum. Another study examining subcortical 

connectivity also found hyperconnectivity between 

frontal cortex and striatum [40]. The present study has 

observed an elevated level of hyperconnectivity between 

primary sensory regions and the salience network in 

individuals diagnosed with ASD. Furthermore, it was 

found that the extent of this heightened connectivity is 

positively linked to symptom severity, demonstrating 

that impaired sensory connectivity can contribute to 

the manifestation of autistic behaviors [41]. These 

findings provide evidence supporting an emerging 

hypothesis that proposes reduced segregation among 

functional networks of ASD individuals and enhanced 

networks connectivity. The presence of increased 

diffuse connectivity allows for the coexistence of 

reports on both hypo- and hyper-connectivity, as  

it attenuates traditionally strong connections while 

introducing novel connections. 

 

Comprehending and deciphering brain findings related 

to ASD poses intricate difficulties. Various constraints 

are associated with this research. First, only a cross-

sectional design was employed in this study and 

conducted on small sample size of individuals with 

ASD. To strengthen our outcomes, we anticipate 

expanding sample size and conducting a multicenter 

longitudinal follow-up study, which is imperative for 

further investigation. Second, we exclusively focused 

on studying functional networks. The integration of 

structural and functional analyses represents a bio-

logically sound approach that confers methodological 

advantages in the field of neuroimaging research  

on ASD. Employing multimodal imaging analysis 

would enhance our thorough perception of relationship 

between disease symptoms and imaging biomarkers in 

ASD individuals. Third, future investigations aiming to 

utilize connectivity-based measurements for preclinical 

goals, like establishing biologically-grounded ASD 

subgroups or predicting treatment response, must be 

taken into consideration. 

 

CONCLUSIONS 
 

Our research findings have unveiled unique 

reorganization patterns in brain networks of ASD 
people, providing novel insights into the underlying 

mechanism behind functional connectome dysfunction 

observed in ASD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Table 

 

 

 

Supplementary Table 1. Brain regions and their abbreviations in AAL atlas. 

Labels Abbreviations Brain regions 

1 PrecentralL Precental gyrus 

2 PrecentralR Precental gyrus 

3 FrontalSupL Superior frontal gyrus, dorsolateral 

4 FrontalSupR Superior frontal gyrus, dorsolateral 

5 FrontalSupOrbL Superior frontal gyrus, orbital part 

6 FrontalSupOrbR Superior frontal gyrus, orbital part 

7 FrontalMidL Middle frontal gyrus 

8 FrontalMidR Middle frontal gyrus 

9 FrontalMidOrbL Middle frontal gyrus, orbital part 

10 FrontalMidOrbR Middle frontal gyrus, orbital part 

11 FrontalInfOperL Inferior frontal gyrus, opercular part 

12 FrontalInfOperR Inferior frontal gyrus, opercular part 

13 FrontalInfTriL Inferior frontal gyrus, triangular part 

14 FrontalInfTriR Inferior frontal gyrus, triangular part 

15 FrontalInfOrbL Inferior frontal gyrus, orbital part 

16 FrontalInfOrbR Inferior frontal gyrus, orbital part 

17 RolandicOperL Rolandic operculum 

18 RolandicOperR Rolandic operculum 

19 SuppMotorAreaL Supplementary motor area 

20 SuppMotorAreaR Supplementary motor area 

21 OlfactoryL Olfactory cortex 

22 OlfactoryR Olfactory cortex 

23 FrontalSupMedialL Superior frontal gyrus, medial 

24 FrontalSupMedialR Superior frontal gyrus, medial 

25 FrontalMidOrbL Superior frontal gyrus, medial orbital 

26 FrontalMidOrbR Superior frontal gyrus, medial orbital 

27 RectusL Gyrus rectus 

28 RectusR Gyrus rectus 

29 InsulaL Insula 

30 InsulaR Insula 

31 CingulumAntL Anterior cingulate and paracingulate gyri 

32 CingulumAntR Anterior cingulate and paracingulate gyri 

33 CingulumMidL Median cingulate and paracingulate gyri 

34 CingulumMidR Median cingulate and paracingulate gyri 

35 CingulumPostL Posterior cingulate gyrus 

36 CingulumPostR Posterior cingulate gyrus 

37 HippocampusL Hippocampus 

38 HippocampusR Hippocampus 

39 ParaHippocampalL Parahippocampal gyrus 

40 ParaHippocampalR Parahippocampal gyrus 

41 AmygdalaL Amygdala 

42 AmygdalaR Amygdala 

43 CalcarineL Calcarine fissure and surrounding cortex 

44 CalcarineR Calcarine fissure and surrounding cortex 

45 CuneusL Cuneus 

46 CuneusR Cuneus 
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47 LingualL Lingual gyrus 

48 LingualR Lingual gyrus 

49 OccipitalSupL Superior occipital gyrus 

50 OccipitalSupR Superior occipital gyrus 

51 OccipitalMidL Middle occipital gyrus 

52 OccipitalMidR Middle occipital gyrus 

53 OccipitalInfL Inferior occipital gyrus 

54 OccipitalInfR Inferior occipital gyrus 

55 FusiformL Fusiform gyrus 

56 FusiformR Fusiform gyrus 

57 PostcentralL Postcentral gyrus 

58 PostcentralR Postcentral gyrus 

59 ParietalSupL Superior parietal gyrus 

60 ParietalSupR Superior parietal gyrus 

61 ParietalInfL Inferior parietal, but supramarginal and angular gyri 

62 ParietalInfR Inferior parietal, but supramarginal and angular gyri 

63 SupraMarginalL Supramarginal gyrus 

64 SupraMarginalR Supramarginal gyrus 

65 AngularL Angular gyrus 

66 AngularR Angular gyrus 

67 PrecuneusL Precuneus 

68 PrecuneusR Precuneus 

69 ParacentralLobuleL Paracentral lobule 

70 ParacentralLobuleR Paracentral lobule 

71 CaudateL Caudate nucleus 

72 CaudateR Caudate nucleus 

73 PutamenL Lenticular nucleus, putamen 

74 PutamenR Lenticular nucleus, putamen 

75 PallidumL Lenticular nucleus, pallidum 

76 PallidumR Lenticular nucleus, pallidum 

77 ThalamusL Thalamus 

78 ThalamusR Thalamus 

79 HeschlL Heschl gyrus 

80 HeschlR Heschl gyrus 

81 TemporalSupL Superior temporal gyrus 

82 TemporalSupR Superior temporal gyrus 

83 TemporalPoleSupL Temporal pole: superior temporal gyrus 

84 TemporalPoleSupR Temporal pole: superior temporal gyrus 

85 TemporalMidL Middle temporal gyrus 

86 TemporalMidR Middle temporal gyrus 

87 TemporalPoleMidL Temporal pole: middle temporal gyrus 

88 TemporalPoleMidR Temporal pole: middle temporal gyrus 

89 TemporalInfL Inferior temporal gyrus 

90 TemporalInfR Inferior temporal gyrus 

Abbreviations: AAL, Anatomical Automatic Labeling. 
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