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ABSTRACT 
 

Purpose: Lung adenocarcinoma (LUAD) is a prevalent malignant tumor worldwide, with high incidence and 
mortality rates. However, there is still a lack of specific and sensitive biomarkers for its early diagnosis and 
targeted treatment. Disulfidptosis is a newly identified mode of cell death that is characteristic of disulfide 
stress. Therefore, exploring the correlation between disulfidptosis-related long non-coding RNAs (DRGs-
lncRNAs) and patient prognosis can provide new molecular targets for LUAD patients. 
Methods: The study analysed the transcriptome data and clinical data of LUAD patients in The Cancer Genome Atlas 
(TCGA) database, gene co-expression, and univariate Cox regression methods were used to screen for DRGs-lncRNAs 
related to prognosis. The risk score model of lncRNA was established by univariate and multivariate Cox regression 
models. TIMER, CIBERSORT, CIBERSORT-ABS, and other methods were used to analyze immune infiltration and 
further evaluate immune function analysis, immune checkpoints, and drug sensitivity. Real-time polymerase chain 
reaction (RT-PCR) was performed to detect the expression of DRGs-lncRNAs in LUAD cell lines. 
Results: A total of 108 lncRNAs significantly associated with disulfidptosis were identified. A prognostic model 
was constructed by screening 10 lncRNAs with independent prognostic significance through single-factor Cox 
regression analysis, LASSO regression analysis, and multiple-factor Cox regression analysis. Survival analysis of 
patients through the prognostic model showed that there were obvious survival differences between the high- 
and low-risk groups. The risk score of the prognostic model can be used as an independent prognostic factor 
independent of other clinical traits, and the risk score increases with stage. Further analysis showed that the 
prognostic model was also different from tumor immune cell infiltration, immune function, and immune 
checkpoint genes in the high- and low-risk groups. Chemotherapy drug susceptibility analysis showed that high-
risk patients were more sensitive to Paclitaxel, 5-Fluorouracil, Gefitinib, Docetaxel, Cytarabine, and Cisplatin. 
Additionally, RT-PCR analysis demonstrated differential expression of DRGs-lncRNAs between LUAD cell lines 
and the human bronchial epithelial cell line. 
Conclusions: The prognostic model of DRGs-lncRNAs constructed in this study has certain accuracy and 
reliability in predicting the survival prognosis of LUAD patients, and provides clues for the interaction between 
disulfidptosis and LUAD immunotherapy. 
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INTRODUCTION 
 

Lung cancer is the second most common form of 

malignant tumour, with the highest mortality rate among 

all malignant tumours [1, 2]. According to 2021 statistics, 

lung cancer accounts for approximately 22% of cancer-

related deaths, with a five-year survival rate of only 

21% [3]. In recent years, medical technologies such  

as surgery, chemotherapy, radiotherapy, and targeted 

therapy have advanced in the treatment of lung cancer 

[4]. However, early-stage lung cancer, especially 

peripheral lung adenocarcinoma (LUAD) with imaging 

features of ground-glass nodules, is difficult to detect 

early due to its lack of obvious symptoms. Therefore, 

most LUAD patients have already reached the inter-

mediate or late stage at the time of diagnosis, losing  

the best opportunity for surgery [5]. For this group of 

people, the primary treatment methods are chemotherapy, 

radiotherapy, molecular targeted therapy, and immuno-

therapy [6]. However, despite the diverse treatments 

available, there has been no significant improvement  

in the overall survival rate of LUAD to date. These 

treatment methods have many shortcomings, including 

high side effects and poor tolerance in relapsed patients 

[7]. Therefore, the development of new early diagnostic 

methods, more sensitive biomarkers, and treatment 

targets is urgently needed for LUAD. 

 

In 2023, Professor Gan Boyi’s team reported a new 

mode of cell death called ‘disulfidptosis’. This form of 

cell death is induced by a shortage of NADPH under 

glucose starvation [8]. The shortage leads to the 

overexpression of the cystine transporter solute carrier 

family 7 member 11 (SLC7A11) in cancer cells, which 

induces abnormal accumulation of disulfide (such as 

Cystine, etc.) in cells, ultimately leading to cell death. 

In this research mechanism, the process of cell 

reduction of cystine to cysteine is blocked due to an 

insufficient supply of NADPH caused by glucose 

starvation. This blockage leads to the production of a 

large number of disulfide bonds between actin 

molecules, inducing disulfide stress. The stress activates 

the Rac/WAVE regulatory complex-7 subunit of actin-

related protein 2/3 (Arp2/3) signal pathway, causing 

disarray of the cell skeleton and ultimately inducing 

disulfidptosis. Currently, research on disulfidptosis is 

focused on cancer cell lines that overexpress SLC7A11 

and are under glucose starvation [9, 10]. However,  

the role and mechanism of disulfidptosis in LUAD are 

still unclear. 

 

Long non-coding RNA (lncRNA) is defined as RNA 

longer than 200 nucleotides. Although lncRNA is  

not involved in protein translation, it plays a very 

important role in gene regulation. LncRNA can affect 

the translation and stability of cytoplasmic mRNA and 

influence signal transduction pathways by regulating 

the function of chromatin and the function of 

membrane-free nucleosomes, thereby affecting gene 

expression in various biological physiological, and 

pathological environments [11, 12]. In particular, 

abnormal lncRNA expression may be associated with 

multiple biological events, such as ferroptosis [13]. 

LINC00336 reduces ferroptosis in lung cancer through 

competitive endogenous RNA activity [14]. LncRNA 

P53RRA induces tumor suppression by isolation of 

nuclear p53 and promotes ferroptosis and apoptosis 

[15]. As a newly discovered mode of cell death, 

disulfidptosis has different causes than programmed 

cell death such as apoptosis [16], ferroptosis [17], and 

pyroptosis [18]. Therefore, identifying disulfidptosis-

related lncRNAs associated with LUAD prognosis is 

critical to developing accurate prognostic assessment 

and treatment. 

 

In this study, we established and validated a highly 

predictive disulfidptosis-related prognostic model for 

LUAD. By constructing risk scores, we analyzed  

the clinical value in predicting clinical prognosis, 

immune induction, tumor mutation compliance, and 

immunotherapy response. Our study may provide a 

promising tool for predicting the prognosis of LUAD 

patients and offer new theoretical references for 

elucidating the molecular mechanisms of LUAD. 

 

METHODS 
 

Data refinement and preprocessing 

 

RNA-seq data and patient clinical information data, 

including patients with overall survival (OS) time and 

status (59 normal samples and 541 tumor samples), 

were extracted from The Cancer Genome Atlas (TCGA) 

database (https://portal.gdc.cancer.gov/). Copy number 

variation (CNV) data and somatic mutations were 

downloaded from TCGA. The prognostic value of  

16 disulfidptosis-related genes (DRGs) was assessed 

using the Kaplan-Meier (K-M) method. The 16 DRGs 

were obtained from previous studies (GYS1, NDUFS1, 

OXSM, LRPPRC, NDUFA11, NUBPL, NCKAP1, 

RPN1, SLC3A2, SLC7A11, ACTB, FLNB, MYH9, 

PRDX1, TLN1, FLNA) [8]. 

 

Detection of the differentially expressed genes 

(DEGs) and disulfidptosis-related lncRNAs (DRGs-

lncRNAs) 

 

After extracting mRNA and lncRNA expression  

data from the TCGA database, Pearson correlation 

coefficients were utilized to perform correlation 

analysis between the expression levels of lncRNAs 

and DRGs. By determining the relationship between 

https://portal.gdc.cancer.gov/
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lncRNAs and DRGs (correlation coefficient >0.40,  

P < 0.001), DRGs-lncRNAs were identified. In 

addition, we found differentially expressed DRGs-

lncRNAs in 59 normal tissues and 541 LUAD tissues 

using the R package “limma” package [19], with a 

defined criterion of P < 0.05 and |log2 (fold change)| 

>1. Meanwhile, differential expression analysis was 

also performed on DRGs, with a significantly 

differential expression threshold set at P < 0.05 and 

|log2 (fold change)| >1. We used the R software 

package “ggplot2” to visualize differentially expressed 

DRGs-lncRNAs and genes. 

 

Construction of the disulfidptosis gene signature 

 

We determined the prognostic variables of LAUD  

and established its prognostic features by the least 

absolute shrinkage and selection operator (LASSO)  

Cox regression analysis. Patients were divided into the 

high group and the low group according to the median 

value of the DRGs scores. The two groups’ overall 

survival (OS) and progression-free survival (PFS)  

were determined using Kaplan-Meier curves with log-

rank tests. Time-dependent ROC analysis was used to 

estimate the performance of the model. 

 

The predictive power of DRGs-lncRNAs models 

 

To thoroughly examine the predictive performance  

of the DRGs-lncRNAs model, the Receiver Operating 

Characteristic (ROC) analysis was performed on the 

training group, the test group, and the entire cohort using 

the “timeROC” package. Independence was determined 

by univariate and multivariate Cox regression analyses 

of the entire cohort using a DRGs-lncRNAs model and 

corresponding clinicopathological data. 

 

Correlation enrichment analysis 

 

We employed the R package “clusterProfiler” [20] to 

perform Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) analyses. The “limma” 

package was used to identify the DEGs between 

molecular clusters based on DRG [19]. DEGs with an 

adjusted P-value < 0.01 and |logFC [fold change] | >1 

were considered significant. The “GSVA” package was 

used to identify DRG-related differences in biological 

function in the MsigDB database. 

 

Tumor mutational burden, drug sensitivity analysis, 

and immune cell infiltration 

 

Download tumor mutational burden (TMB) data (MAF 
format) from the TCGA database and analyze it in high-

risk and low-risk groups across the cohort using the 

“maftools” package [21], and calculate TMB (mutations 

per million bases) for each patient and visualize the 

mutation data using a waterfall plot. 

 

We assessed tumor-infiltrating immune cells by EPIC 

algorithms, CIBERSORT-ABS, MCP-counter, XCELL, 

QUANTISEQ, CIBERSORT, and TIMER. We also 

compared immune checkpoints and drug sensitivity from 

the high-risk and low-risk groups. Furthermore, we 

quantified the differences in TME scores and immune-

related gene expression between the two risk groups. 

 

Cell lines and culture 

 

Human LUAD cell lines (A549 and PC9) and the 

human bronchial epithelial (HBE) cell line were 

obtained from the Institute of Biochemistry and  

Cell Biology of the Chinese Academy of Sciences 

(Shanghai, China). They were maintained in Roswell 

Park Memorial Institute (RPMI) 1640 supplemented 

with 10% heat-inactivated fetal bovine serum (FBS), 

100 U/mL of penicillin, and 100 μg/mL streptomycin 

sulfate. Cultures were incubated in a humidified 

atmosphere containing 5% CO2 at 37°C. 

 

RNA preparation and quantitative real-time PCR 

 

Total RNA was extracted from tissues or cultured cells 

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 

For qRT-PCR, 1 µg RNA was reverse transcribed  

into cDNA with a Reverse Transcription Kit (Takara, 

Dalian, China). Real-time PCR was performed with 

SYBR Premix ExTaq II Kit (Takara, Dalian China). 

Data were normalized to GAPDH levels. The sequence 

of primers used in the detection is shown in 

Supplementary Table 1. The qRT-PCR assays and data 

collection were performed on ABI 7500, and relative 

expression was assessed by the 2−ΔΔCt method, and 

converted to fold changes using the 2−ΔΔCt method.  

 

Statistical analysis 

 

R version 4.3.0 was used for statistical analysis. The 

log-rank test was used for survival analysis. The 

Student’s t-test was utilized to test normally distributed 

groups, while the Wilcoxon test was used to test non-

normally distributed variables. Spearman analysis was 

used for correlation analysis. For the analysis of clinical 

features, Chi-square tests or Fisher’s exact tests were 

utilized. A P-value less than 0.05 was considered 

statistically significant. 

 

Data availability statement 

 
The original contributions presented in the study were 

included in the article/Supplementary Material. Further 

inquiries can be directed to the corresponding author. 
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RESULTS 
 

Expression of DRG-lncRNAs in LUAD 
 

The flowchart of this study is shown in Figure 1.  

We analyzed the expression levels of 16 DRGs  

in the lung tissues of 541 LUAD patients and 59 

healthy individuals downloaded from the TCGA-

LUAD dataset. Subsequently, co-expression analysis 

was performed to identify DRG-lncRNAs (Figure 2), 

and a total of 108 lncRNAs significantly associated 

with disulfidptosis were identified (Supplementary 

Table 2). 

Construction of the disulfidptosis-related prognostic 

signature 

 

Patients in the entire cohort (n = 541) were randomly 

divided into the training group (n = 406) and the test 

group (n = 135) in a 3:1 ratio. Through univariate Cox 

regression analysis, 10 DRG-lncRNAs significantly 

correlated with the survival prognosis of LUAD patients 

were obtained (P < 0.05, Figure 3A). LASSO regression 

was applied to the 7 DRG-lncRNAs (Figure 3B, 3C). 

 

Multivariate Cox regression analysis was performed on 

10 DRG-lncRNAs with prognostic significance, and a

 

 
 

Figure 1. The flowchart of this study. 
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Figure 2. Expression of DRG-lncRNAs in LUAD. DRG-lncRNAs, disulfidptosis-related long non-coding RNAs. Abbreviation: LUAD; lung 

adenocarcinoma. 

 

 
 

Figure 3. Construction of the disulfidptosis-related prognostic signature. (A) 10 DRG-lncRNAs significantly correlated with the 

survival prognosis of LUAD patients. (B) LASSO regression based on optimal parameter (lambda) construction model. (C) LASSO regression 
coefficient curve. (D) Multivariate Cox regression analysis of DRG-lncRNA with prognostic significance. (E, F) The Kaplan-Meier curve shows 
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different OS and PFS between the low-risk and high-risk groups. (G) A heatmap shows the differential expression of DRG-lncRNAs in the 
high-risk and low-risk groups. (H) The risk curve of the training group is reordered by disulfidptosis related signature and the scatter plot of 
the sample survival overview. The green and red dots represent survival and death, respectively. (I) The risk curve of the test group is 
reordered by disulfidptosis related signature and the scatter plot of the sample survival overview. The green and red dots represent survival 
and death, respectively. Abbreviations: DRG-lncRNAs: disulfidptosis-related long non-coding RNAs; LUAD: lung adenocarcinoma; LASSO: 
least absolute shrinkage and selection operator; OS: overall survival; PFS: progression-free survival. 

 

prognostic model consisting of 5 DRG-lncRNAs  

was further screened out, including AL365181.2, 

AL606489.1, SNHG12, GSEC, and AC090559.1 

(Figure 3D). All of these lncRNAs were identified as 

risk factors for prognosis in LUAD patients (Hazard 

Ratio >1). The risk score formula was used to 

calculate the risk score for LUAD patients, and they 

were divided into high-risk and low-risk groups 

according to the median risk score. 

 

According to the median risk score, there was a 

significant difference in the OS among LUAD patients 

(P < 0.05), confirming that the OS of the low-risk  

group was significantly higher than that of the high- 

risk group (Figure 3E). Compared with the low-risk 

group, the PFS of LUAD patients in the high-risk group 

was significantly reduced (Figure 3F). A heatmap was 

drawn based on the differential expression of DRG-

lncRNAs in the high-risk and low-risk groups (Figure 

3G). Scatter plots and risk curves were used to display 

the survival status and risk score of LUAD patients 

(Figure 3H, 3I). The mortality rate and hazard ratio 

were higher in the high-risk group than in the low-risk 

group. 

 

Clinical features and evaluation of the prognostic 

ability 

 

The forest plot results obtained by univariate and 

multivariate Cox regression analysis showed that both 

Stage and risk scores were independent prognostic 

factors in LUAD patients (P < 0.05, Figure 4A, 4B).  

To evaluate the accuracy of the risk score and clinical 

characteristics in predicting the prognosis of LUAD 

patients, the ROC curve results showed that the AUC of 

the risk score for 1 year and 3 years were 0.700 and 

0.630, respectively (Figure 4C). The K-M curve results 

showed that LUAD patients with the same pathological 

grading had shorter survival times and worse prognoses 

with higher risk scores (P < 0.05, Figure 4D, 4E). This 

indicated that the model had certain reliability and 

accuracy in predicting the prognosis of LUAD patients. 

 

 
 

Figure 4. Clinical features and evaluation of the prognostic ability. (A, B) The univariate and multivariate Cox regression analysis of 

risk scores, age, gender, grade, stage. (C) One- three- and five-year AUC in the risk score. (D, E) Clinical prognosis analysis of LUAD patients 
with low- and high scores among stage. Abbreviations: AUC: area under curve; LUAD: lung adenocarcinoma. 
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Functional enrichment analysis of DRG-lncRNAs 

 

To investigate the mechanisms underlying the impact of 

DRG-lncRNAs characteristics on LUAD prognosis, this 

study conducted GO and KEGG enrichment analyses on 

lncRNAs based on high/low-risk scores. GO analysis 

showed that the cilium movement, secretory granule 

lumen, and receptor-ligand activity were the richest 

terms in biological processes (BP), cellular components 

(CC), and molecular functions (MF) (Figure 5A, 5B). 

The KEGG enrichment analysis showed that multiple 

pathways were associated with DRG-lncRNAs features 

(Figure 5C). The GSEA subsequently uncovered that 

the low-risk group was enriched in asthma and the high-

risk group was enriched in steroid hormone biosynthesis 

(Figure 5D, 5E). 

The correlation between DRG-lncRNAs and 

immune cell infiltration 

 

The results of TME scoring showed that there was  

a significant difference in the stromal cell score,  

the immune cell score, and the comprehensive score 

between the high-risk and low-risk groups (Figure 6A). 

The immune response heatmaps based on seven 

algorithms, CIBERSORT, CIBERSORT ABS, XCELL, 

MCPcounter, QUANT ISEQ, EPIC, and TIMER, were 

shown in Figure 6B. To confirm the role of DRG-

lncRNAs in regulating LUAD immune cell infiltration, 

we analyzed the abundance difference of infiltrating 

immune cells in high/low-risk groups (Figure 6C). The 

results of the immune function enrichment analysis 

showed that there was no significant difference in MHC

 

 
 

Figure 5. Functional enrichment analysis of DRG-lncRNAs. (A–C) GO and KEGG enrichment analysis of DRG-lncRNAs. (D) Pathways of 

enrichment of highly and lowly expressed genes in the high-risk group. (E) Pathways of enrichment of highly and lowly expressed genes in 
the low-risk group. Abbreviations: DRG-lncRNAs: disulfidptosis-related long non-coding RNAs; GO: Gene Ontology; KEGG: Kyoto 
Encyclopedia of Genes and Genomes. 
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class I, NK cells, and Th2 cells among the 22 types  

of immune cells, while the rest were significantly 

significant in both high-risk and low-risk groups 

(Figure 6D). 

 

TMB analysis and survival analysis of TMB 

 

We analyzed the mutation data of the TCGA dataset 

and displayed the mutation information of each gene in 

the sample through a waterfall plot. We compared the 

top 20 mutated genes in the high-risk group (Figure 

7A) and the low-risk group (Figure 7B), among which 

TP53 (44% vs. 48%), TTN (49% vs. 37%), MUC16 

(41% vs. 39%), and CSMD3 (42% vs. 34%) were  

the most common mutated genes. Compared with  

the low-risk group, the frequency of mutations was 

higher in the high-risk group (93.92% vs. 85.84%).  

In addition, there was a significant increase in TMB 

levels in the high-risk group compared to the low-risk 

group (P = 0.0026, Figure 7C). The Kaplan-Meier 

survival analysis demonstrated a significant increase in 

OS among LUAD patients in the high TMB group 

compared to the low TMB group (P = 0.0026, Figure 

7D). In the high TMB and low-risk group, the OS of 

LUAD patients significantly increased (Figure 7E). 

 

DRG-lncRNAs correlate with chemotherapy drug 

sensitivity 

 

To explore chemotherapeutic drugs that may be 

sensitive to LUAD patients, this study used the  

R software package based on the GDSC2 database  

to determine the IC50 of chemotherapy drugs and 

performed drug sensitivity analysis (Figure 8). The 

results showed that compared with the low-risk group, 

the IC50 values of Paclitaxel, 5-Fluorouracil, Gefitinib, 

Docetaxel, Cytarabine, and Cisplatin were significantly 

reduced in the high-risk group. These results indicate 

that Paclitaxel, 5-Fluorouracil, Gefitinib, Docetaxel, 

Cytarabine, and Cisplatin may be sensitive chemo-

therapeutic drugs for treating LUAD patients with high 

risk. 

 

 
 

Figure 6. The correlation between DRG-lncRNAs and immune cell infiltration. (A) Results of differences in stromal cell score, 

immune cell score, and comprehensive score among LUAD patients under different risk groups. (B) Immune response heatmaps for high-risk 
and low-risk groups based on CIBERSORT, CIBERSORT ABS, XCELL, MCPcounter, QUANTISEQ, EPIC, and TIMER algorithms. (C) Abundances of 
infiltrating immune cells between high-risk and low-risk groups. (D) Differential expression of immune function scores between high-risk and 
low-risk groups. Abbreviations: DRG-lncRNAs: disulfidptosis-related long non-coding RNAs; LUAD: lung adenocarcinoma; TME: tumor 
microenvironment. 
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Exploring the expression pattern of the identified 

DRG-lncRNAs in the risk model 

 

Then, we examined the expression of DRG-lncRNAs 

in a panel of LUAD cell lines (A549 and PC9) and  

the human bronchial epithelial cell line (HBE) by  

RT-PCR. Compared with the HBE, the expression  

of AL365181.2, AL606489.1, SNHG12, and GSEC 

was increased in LUAD cell lines (Figure 9A–9D),  

and AC090559.1 was decreased in LUAD cell lines 

(Figure 9E). 
 

DISCUSSION 
 

With the continuous deepening of tumor research, 

LUAD has made positive progress in detection, 

diagnosis, and treatment. However, this disease 

remains one of the most deadly malignancies due to 

the complexity of its molecular and genetic processes 

[22]. As an emerging biomarker, lncRNAs play an 

important role in the occurrence and development  

of different tumors, including LUAD [23]. In  

addition, many lncRNAs participate in the occurrence, 

development, and drug resistance of malignant tumors 

and have been identified as novel biomarkers and 

therapeutic targets for tumor diagnosis and treatment 

[24–26]. Nevertheless, it is still uncertain whether 

DRG-lncRNAs can predict LUAD patients’ prognosis. 

Therefore, we developed a prediction model for LUAD 

and improved patient survival rates by screening for 

DRG-lncRNAs. 

 

To prevent overfitting, we used LASSO regression  

to reduce the dimensionality of the data. We identified 

10 DRG-lncRNAs (AL365181.3, AL365181.2, 

AL606489.1, SNHG12, LINP1, AC106045.1, GSEC, 

AL590666.2, AC090559.1, and AC012615.1) that are 

closely associated with the OS of LUAD patients. 

 

 
 

Figure 7. Mutation analysis of the DRG-lncRNAs based on the risk score model. (A, B) The waterfall diagram shows the genes that 
most frequently undergo somatic mutations under different risk groups. (C) The difference in tumor mutation burden between high- and 
low-risk score groups. (D) Kaplan-Meier curves of high and low TMB groups. (E) Kaplan-Meier curves of four groups classified by risk score 
and TMB. Abbreviations: DRG-lncRNAs: disulfidptosis-related long non-coding RNAs; TMB: tumor mutational burden; H: high; L: low. 
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Some of these DRG-lncRNAs have been previously 

reported and are closely linked to the occurrence and 

progression of tumors. Chen et al.’s research team 

found that LINP1 can increase pancreatic cancer 

metastasis through adsorbing microRNA-491-3p [27]. 

In addition, studies have shown that SNHG12 is 

upregulated in NSCLC tissues and cells, and facilitated 

immune escape through the HuR/PD-L1/USP8 axis 

[28]. In other LUAD-related prognostic models, 

AL365181.3 and AL365181.2 have been identified as 

indicators that can accurately predict prognosis, and 

their overexpression is considered a protective factor  

for the prognosis of LUAD patients [29, 30]. However, 

their specific mechanisms of action in LUAD are not 

yet fully clear and require further study. Research on the 

remaining DRG-lncRNAs is limited, and although little 

is known about them, their importance should not be 

underestimated. 

 

In addition, we constructed a prognostic model that 

predicts the survival of LUAD patients based on 16 

DRGs, which can be independently used as a prognostic 

indicator for LUAD. This model accurately divides 

patients into two groups: low-risk group and high- 

risk group. In the overall cohort, the low-risk group 

showed a better prognosis. In addition, we evaluated the 

 

 
 

Figure 8. Analysis of chemotherapeutic drugs sensitivity. (A–E) Chemotherapeutic drugs sensitivity analysis of Paclitaxel, 5-

Fluorouracil, Gefitinib, Docetaxel, Cytarabine, and Cisplatin in the low-risk and high-risk groups. 

 

 
 

Figure 9. Relative DRG-lncRNAs expression levels in LUAD cell lines. (A–E) The mRNA expression level of AL365181.2, AL606489.1, 

SNHG12, GSEC, and AC090559.1 in LUAD cell lines (A549 and PC9) and the human bronchial epithelial cell line (HBE). Abbreviations: DRG-
lncRNAs: disulfidptosis-related long non-coding RNAs; LUAD: lung adenocarcinoma. **P < 0.01, ***P < 0.001. 
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effectiveness of this prognostic model in predicting 

prognosis by constructing ROC curves, and the results 

showed that the AUC values of the risk score for 1 year 

and 3 years were 0.700 and 0.630, respectively. To date, 

several evaluation methods have been used to assess  

the prognosis of patients with LUAD. In a study by Li  

et al., the investigators constructed a prognostic model 

of LUAD based on ferroptosis-related genes. In their 

study, the AUC value predicting 1-year survival was 

0.698, which is lower than our prognostic model [31]. 

Therefore, the 10 DRG-lncRNAs model we studied 

could be a good prognostic model for LUAD. 

 

One of the major challenges in immune therapy  

for LUAD patients is the lack of understanding  

of tumor heterogeneity, complexity, and immune 

evasion mechanisms. Additionally, specific biomarkers 

to evaluate the benefits of tumor immune therapy are 

insufficient. Therefore, the discovery of new immune 

targets and prognostic indicators is of great importance 

[32]. Several clinical-pathological studies have shown  

a correlation between gene mutations and immune 

therapy response [33, 34]. In this study, the high-risk 

group showed a significantly increased frequency of 

mutation events and TMB levels. This finding suggests 

that LUAD patients may benefit from tumor immune 

therapy, such as programmed cell death protein 1 (PD-

1) inhibitors. Because patients with higher TMB levels 

have significantly improved response rates to immune 

checkpoint inhibitors compared with patients with 

lower TMB levels [35, 36]. In addition, studies have 

shown that the effectiveness of immune therapy 

depends on the coordinated responses of innate and 

acquired immune cells [37]. Furthermore, tumor-

infiltrating immune cells may be a valuable prognostic 

tool in cancer treatment. In this study, we used seven 

algorithms such as CIBERSORT, CIBERSORT-ABS, 

XCELL, MCPcounter, QUANTISEQ, EPIC, and 

TIMER to study the potential of the 10 DRG-lncRNAs 

model to reflect the immune microenvironment status 

of LUAD and focused on using the CIBERSORT 

algorithm to detect the relative proportions of 22 

different types of immune cells in tumor tissues in the 

TCGA collection. The results showed a significant 

increase in the number of activated CD4 memory T 

cells, resting NK cells, and resting macrophages in the 

high-risk group, confirming the role of the 10 DRG-

lncRNAs model in regulating tumor immune cell 

infiltration. These findings suggest that the proposed 

model in this study can accurately predict the immune 

therapy efficacy of LUAD patients. 

 

Metabolic reprogramming is one of the important 
features of cancer, which typically leads to increased 

uptake of nutrients crucial in biosynthesis and 

bioenergetics processes by cancer cells, such as glucose 

and amino acids including glutamine [38]. Cancer cells 

primarily achieve this through upregulating transporters 

for glucose and amino acid uptake. Accordingly, some 

cancer cells undergo cell death upon glucose or amino 

acid restriction while normal cells can survive under the 

same conditions. This nutrient dependency provides 

potential metabolic vulnerabilities for targeted therapy 

against cancer [39]. The research by Gan Boyi’s team 

indicates that elevated expression of SLC7A11 promotes 

metabolic vulnerability resulting in disulfidptosis, which 

may be an effective strategy for treating tumors. 

 

With the introduction of the concepts of precision 

medicine and personalized therapy and the deepening 

of the application of machine learning in the  

medical field, researchers have also begun to try to 

apply these concepts and methods to the diagnosis, 

personalized medication and prognosis evaluation  

of cancer patients [40]. Patient clinical information, 

pathological information, imaging results, laboratory 

test results, epidemiological characteristics, genomic 

and proteomic data, and other data can be used as 

predictors for tumor prediction models [41]. The 

synthesis of many different data types for model 

construction is a trend in current research [42]. 

Machine learning methods have greatly accelerated the 

interpretation of medical big data, especially genetic 

and genomic data. Guyon et al. used a support vector 

machine (SVM) approach to construct a predictive 

model by selecting a subset of characteristic genes to 

distinguish between tumors and normal tissues [43]. 

Statnikov et al. systematically and comprehensively 

evaluated several major multi-class diagnostic models 

using gene expression data obtained from gene chips, 

and the results showed that multi-class support vector 

machines were the most effective classifiers [44]. 

 

In this study, we screened DRGs-lncRNAs prognostic 

prediction models associated with prognosis using  

the GEO database and COX proportional hazards 

regression analysis. We used the training set data to 

optimize the prediction model, and the test set data 

was used to verify the prediction effect of the model 

internally. We further performed statistical analysis on 

the function of the prognostic genes in the DRGs-

lncRNAs prediction model and used GO and KEGG of 

the clusterProfiler package to enrich these significantly 

related genes, respectively. Subsequently, we validated 

the predictive model with tumor cell lines. In the 

future, if predictive models are to be applied to clinical 

practice, it is necessary to further validate the model in 

many clinical samples. 

 
This study has some limitations. Firstly, the data source 

of this study was single, and the amount of data 

included was not large, so the analysis results may have 
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some bias. Secondly, in order to ensure the correctness 

of the prognosis model, we needed to further confirm 

the prognosis model in other independent cohorts to 

ensure its accuracy. Thirdly, functional experiments 

should be performed to further elucidate the underlying 

molecular mechanisms for predicting the effects of 

DRG-lncRNAs. 

 

CONCLUSIONS 
 

In conclusion, this study established a novel model of 

DRG-lncRNAs that can independently predict the OS 

of LUAD patients. Through analysis of immune cell 

infiltration and drug sensitivity, it was demonstrated 

that DRG-lncRNAs markers are closely related to 

immune cell infiltration and chemotherapy drug 

sensitivity. The DRG-lncRNAs risk prediction model 

constructed in this study can serve as an important 

method for predicting whether LUAD patients can 

benefit from immunotherapy and chemotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. The sequence of primers of DRG-lncRNAs. 

Gene  Primer (5′–3′) 

AL365181.2 
Forward ATGGTTAGAGAATGGGAGAGGAG 

Reverse AGAGTTGGCTTCGGAGGAAAT 

AC090559.1 
Forward TCAGCGACGGAAAGAGTATGA 

Reverse CCACTGGTTTCTGACTGGATGT 

AC090559.1 
Forward CAAGTACATTGCTCCTCCTGAG 

Reverse ACATCTGCTGGAAGGTGGACA 

GSEC 
Forward TCGAAATGGACCCCAACTA 

Reverse TGCACTTCTCCGACGTCC 

AC090559.1 
Forward TGTGCCATACCATTAAACAGG 

Reverse GCCTCT GATTGAAAATGAGAAC 

GAPDH 
Forward GAACGGGAAGCTCACTGG 

Reverse GCCTGCTTCACCACCTTCT 

 

 

Supplementary Table 2. The expression of DRG-lncRNAs in LUAD. 

Disulfidptosis lncRNA cor p-value Regulation 

LRPPRC LYRM4-AS1 0.4616865 6.47E-30 positive 

SLC7A11 AL365181.3 0.48665534 1.63E-33 positive 

NDUFA11 AC010331.1 0.40766643 4.46E-23 positive 

NDUFA11 AC011498.6 0.42719621 2.08E-25 positive 

NDUFA11 AC092171.4 0.4201018 1.52E-24 positive 

LRPPRC EMSLR 0.40842408 3.64E-23 positive 

NDUFA11 SNHG10 0.41122497 1.72E-23 positive 

SLC7A11 LINC01269 0.43523783 2.05E-26 positive 

NDUFA11 AC027601.1 0.48489064 2.99E-33 positive 

NDUFA11 AL390719.2 0.4646525 2.50E-30 positive 

TLN1 AP001189.3 0.48633963 1.82E-33 positive 

NDUFA11 AC008764.6 0.49134708 3.18E-34 positive 

LRPPRC AC091057.1 0.43879128 7.24E-27 positive 

NDUFA11 AP006621.4 0.40495252 9.14E-23 positive 

NDUFA11 AC008608.2 0.45525499 4.91E-29 positive 

NDUFS1 MIR4713HG 0.40761158 4.52E-23 positive 

RPN1 STK4-AS1 0.42887143 1.29E-25 positive 

NCKAP1 STARD7-AS1 0.40501191 9.00E-23 positive 

NDUFA11 AC087741.1 0.4119552 1.41E-23 positive 

NDUFS1 AC015922.2 0.41801481 2.71E-24 positive 

NCKAP1 AC015922.2 0.40355983 1.32E-22 positive 

NDUFA11 ARRDC1-AS1 0.46392801 3.16E-30 positive 

NDUFA11 AC116407.2 0.4070504 5.25E-23 positive 

NDUFA11 PP7080 0.42846866 1.45E-25 positive 

NDUFA11 AL033527.2 0.43450003 2.55E-26 positive 

NDUFA11 AC084125.2 0.42219904 8.49E-25 positive 

NDUFA11 AC015912.3 0.44201762 2.78E-27 positive 

NCKAP1 AL606834.1 0.41467274 6.76E-24 positive 

LRPPRC RNASEH1-AS1 0.43314533 3.77E-26 positive 

NDUFA11 C9orf163 0.4539165 7.44E-29 positive 
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NDUFA11 AC020558.2 0.40452698 1.02E-22 positive 

PRDX1 AL139039.3 0.43287069 4.09E-26 positive 

NCKAP1 AC112220.2 0.42661453 2.45E-25 positive 

FLNB AC112220.2 0.4288204 1.31E-25 positive 

LRPPRC KTN1-AS1 0.47778777 3.34E-32 positive 

NDUFA11 AC114730.3 0.41930062 1.90E-24 positive 

PRDX1 AC145207.8 0.41401517 8.09E-24 positive 

NDUFA11 AC016773.1 0.450647 2.04E-28 positive 

FLNB MANCR 0.40514394 8.69E-23 positive 

NDUFS1 OIP5-AS1 0.45065684 2.04E-28 positive 

NCKAP1 OIP5-AS1 0.45918296 1.43E-29 positive 

NDUFA11 AC087289.2 0.48790871 1.06E-33 positive 

NDUFA11 AC011462.4 0.41035127 2.18E-23 positive 

NDUFA11 CACTIN-AS1 0.43957162 5.75E-27 positive 

NDUFA11 AC133552.5 0.40334438 1.39E-22 positive 

NCKAP1 FGD5-AS1 0.4255597 3.30E-25 positive 

NDUFA11 AC009065.4 0.50823316 7.14E-37 positive 

NDUFA11 AC132872.2 0.46745917 1.01E-30 positive 

SLC7A11 AL365181.2 0.41424494 7.60E-24 positive 

NCKAP1 AL606489.1 0.42363616 5.68E-25 positive 

OXSM GAS5 0.46299476 4.26E-30 positive 

NDUFA11 MHENCR 0.47477316 9.16E-32 positive 

NDUFA11 AP001412.1 0.45967052 1.23E-29 positive 

NUBPL AC011815.1 0.48655792 1.69E-33 positive 

NDUFA11 KMT2E-AS1 0.55066054 3.21E-44 positive 

NDUFA11 AL928654.2 0.41029518 2.21E-23 positive 

NUBPL AL132800.1 0.47590879 6.27E-32 positive 

ACTB AC093673.1 0.51863033 1.41E-38 positive 

NDUFA11 SNHG12 0.49235071 2.23E-34 positive 

TLN1 PTPRN2-AS1 0.41229731 1.29E-23 positive 

NDUFA11 PTOV1-AS2 0.50913148 5.12E-37 positive 

NDUFA11 AL513320.1 0.475216 7.90E-32 positive 

NUBPL AC004943.2 0.41759744 3.04E-24 positive 

SLC7A11 LINP1 0.44014239 4.86E-27 positive 

NDUFA11 SNHG11 0.40738953 4.80E-23 positive 

LRPPRC AC234917.3 0.45836847 1.85E-29 positive 

OXSM ENTPD3-AS1 0.46439818 2.72E-30 positive 

RPN1 AC137695.3 0.49766526 3.38E-35 positive 

TLN1 AC006033.2 0.40671214 5.74E-23 positive 

SLC3A2 AP003119.2 0.41510433 6.01E-24 positive 

PRDX1 AC026785.3 0.46229842 5.32E-30 positive 

TLN1 AL450326.1 0.44880561 3.59E-28 positive 

NDUFA11 AC074212.1 0.43588729 1.70E-26 positive 

NDUFA11 MIR762HG 0.41873006 2.22E-24 positive 

NDUFA11 LMNTD2-AS1 0.41173916 1.50E-23 positive 

NDUFA11 NALT1 0.42555416 3.31E-25 positive 

NCKAP1 NORAD 0.5041224 3.25E-36 positive 

NDUFA11 CAHM 0.44866595 3.74E-28 positive 

LRPPRC AC003086.1 0.42178669 9.52E-25 positive 

PRDX1 AC092115.3 0.42534814 3.51E-25 positive 

PRDX1 AC106045.1 0.41648121 4.13E-24 positive 

PRDX1 GSEC 0.44076205 4.04E-27 positive 

NDUFA11 LINC01023 0.42020526 1.48E-24 positive 

NDUFA11 AC005387.1 0.53310944 4.71E-41 positive 

RPN1 AC104472.4 0.41285638 1.11E-23 positive 

NCKAP1 AC021037.1 0.44649135 7.25E-28 positive 
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NDUFA11 AL355353.1 0.40890105 3.21E-23 positive 

ACTB C10orf55 0.43251269 4.53E-26 positive 

NDUFA11 AP003419.3 0.40444853 1.04E-22 positive 

NDUFA11 LINC01089 0.48277 6.19E-33 positive 

FLNA AL645939.5 0.4022659 1.85E-22 positive 

LRPPRC AC012073.1 0.51295597 1.22E-37 positive 

LRPPRC SNHG16 0.53660407 1.14E-41 positive 

NDUFA11 AC008760.1 0.4164544 4.16E-24 positive 

NDUFA11 LINC01311 0.4642363 2.86E-30 positive 

RPN1 LINC01063 0.44878181 3.61E-28 positive 

TLN1 AL513165.1 0.40699338 5.33E-23 positive 

LRPPRC ALMS1-IT1 0.41196351 1.41E-23 positive 

NUBPL AL139353.2 0.45900853 1.51E-29 positive 

NDUFS1 AL590666.2 0.40146436 2.28E-22 positive 

SLC7A11 AL590666.2 0.44747427 5.38E-28 positive 

GYS1 LINC01960 0.40149113 2.26E-22 positive 

NCKAP1 USP46-DT 0.44039088 4.51E-27 positive 

SLC3A2 AC092718.4 0.42561952 3.25E-25 positive 

TLN1 AC090559.1 0.46384241 3.25E-30 positive 

NDUFA11 AC012615.1 0.52549242 9.77E-40 positive 

NDUFA11 TMEM147-AS1 0.40948932 2.74E-23 positive 

NDUFA11 AL136295.2 0.43484344 2.30E-26 positive 

 

 


