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INTRODUCTION 
 

Prostate cancer (PCa) is the most common  

cancer in older men [1]. Serum prostate-specific  

antigen screening (PSA) is a common method for  

early diagnosis of PCa. However, the sensitivity and 

specificity of the PSA test remain low [2]. Therefore, 
from the perspective of bioinformatics, it is necessary to 

design and develop an association analysis method for 

PCa-related transcriptomic data to identify significant 

biomarkers related to diagnosis. 

Li and colleagues analyzed the metabolic phenomenon  

in PCa, established the prognostic features based on  

PCa tyrosine metabolism-related genes, and provided  

a reference for its treatment and prevention [3]. From  

a bioinformatics perspective, Wo et al. explained the 

effects of ferritinopathies on the ferroptosis potential 

index (FPI), high and low FPI groups, gene mutations, 
and various cell signaling pathways [4]. The critical  

role of autophagy in PCa progress and treatment resis- 

tance has been preliminarily revealed. Wen and others  

have chosen six autophagy-related genes to establish 
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ABSTRACT 
 

Background: Prostate cancer (PCa) is a malignant tumor of the male reproductive system, and its incidence has 
increased significantly in recent years. This study aimed to further identify candidate biomarkers with 
prognostic and diagnostic significance by integrating gene expression and DNA methylation data from PCa 
patients through association analysis.  
Material and methods: To this end, this paper proposes a sparse partial least squares regression algorithm 
based on hypergraph regularization (HR-SPLS) by integrating and clustering two kinds of data. Next, module 2, 
with the most significant weight, was selected for further analysis according to the weight of each module 
related to DNA methylation and mRNAs. Based on the DNA methylation sites in module 2, this paper uses 
multiple machine learning methods to construct a PCa diagnosis-related model of 10-DNA methylation sites.  
Results: The results of Receiver Operating Characteristic (ROC) analysis showed that the DNA methylation-
related diagnostic model we constructed could diagnose PCa patients with high accuracy. Subsequently, based 
on the mRNAs in module 2, we constructed a prognostic model for 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, 
MARCKSL1, LMOD1, and MYLK) using multivariate Cox regression analysis. The prognostic model could predict 
the disease free survival of PCa patients with moderate to high accuracy (area under the curve (AUC) =0.761). In 
addition, Gene Set EnrichmentAnalysis (GSEA) and immune analysis indicated that the prognosis of patients in 
the risk group might be related to immune cell infiltration. 
Conclusions: Our findings may provide new methods and insights for identifying disease-related biomarkers by 
integrating DNA methylation and gene expression data. 
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characteristics, predict the prognosis of PCA patients, and 

obtain high accuracy [5]. The abnormal expression  

of N6-METHYLADENOSINE (M6A) is significantly 

related to cancer progress and immune cell infiltration. 

The role of these regulatory factors in PCa is still being 

determined. Liang and others checked the expression 

spectrum and methylation level of 21 M6A, built a 

diagnostic model and found the potential biomarkers of 

PCa [6]. Coking disease is closely related to the tumor 

microenvironment (TME) and immune infiltration. Wang 

and colleagues discussed the relationship between PCa, 

coking disease, TME, and tumor immunohism [7]. Li et 

al. proposed a stable feature selection method (StabML-

RFE) to screen robust biomarkers. StabML-RFE takes 

some popular ML-RFE methods and integrates them into 

an aggregation-like framework. The algorithm integrates 

best feature subsets by aggregating area under the curve 

(AUC) values and stability indices. This method can 

screen and obtain robust biomarkers [8]. 

 

The above analysis was performed only on the 

transcriptome data of PCa. However, DNA methylation 

data also plays a vital role in PCa. They may carry 

complementary information to transcriptome data.  

Wei et al. developed a deep learning approach to  

identify differentially expressed genes (DEGs) of PCa, 

enrichment pathway analysis, copy number analysis, and 

immune cell infiltration analysis [9]. Qiu et al. proposed 

a JONMF algorithm to integrate Long non-coding  

RNA and Messenger RNA expression profiles of 

ovarian cancer samples to identify lncRNA-mRNA co-

expression modules. The model adopts orthogonal non-

negative matrix decomposition, effectively preventing 

multicollinearity and producing highly interpretable 

results [10]. In addition, sparse partial least squares 

regression (SPLS) is another commonly used association 

analysis algorithm, which studies the association 

between data types by maximizing the covariance 

between their corresponding latent variables [11]. The 

SPLS algorithm adds the l1 norm of the weight vector to 

the objective function, which is more conducive to 

analyzing high-dimensional data. However, this method 

does not consider the network structure inside the two 

data. Chen et al. proposed a Sparse Network Regularized 

Partial Least Squares Regression (SNPLS) algorithm 

that incorporates Laplacian regularization constraints on 

the data to predict the relationship between genes and 

drug responses. To a certain extent, the interpretability 

of the results is improved [12]. A hypergraph is an 

extension of a simple graph. In this paper, we add 

hypergraph regularization to the SPLS algorithm and 

propose a sparse partial least squares regression (HR-

SPLS) algorithm based on hypergraph regularization. 
Hypergraph regularization can identify the high-order 

associations within PCa patient genes, and methylation 

data enable the algorithm to deeply identify genes and 

methylation sites with potential relationships. The  

results show that the HR-SPLS algorithm can  

identify biomarkers closely related to the diagnosis  

and prognosis of PCa, and provide a reference for the 

early prevention and diagnosis of PCa. 

 

MATERIALS AND METHODS 
 

Data source 

 

We downloaded gene expression data of prostate cancer 

patients (TCGA-PRAD) from the TGCA database 

(https://portal.gdc.cancer.gov/), which included 499 

prostate cancer tissue samples and 52 normal tissue 

samples. The methylation data and corresponding 

clinical information of prostate cancer patients in the 

TCGA-PRAD cohort were downloaded from the UCSC 

Xena database (https://xenabrowser.net/datapages/). In 

addition, we downloaded the GSE116918 dataset  

from the Gene Expression Omnibus (GEO) database 

for external validation of the prognostic model. A  

total of 248 patients with prostate cancer who  

received radical radiotherapy were included in the 

GSE116918 dataset. We divided the training set  

and test set by the ratio of about 7:3 on the samples of 

The Cancer Genome Atlas (TCGA) dataset. Finally, 

428 training set samples and 123 test set samples were 

obtained. 

 

This paper uses transcriptome and methylation data 

from the same batch of prostate cancer samples for 

association analysis. The weight vectors of the two data 

are obtained through the proposed HR-SPLS algorithm. 

Then the modules are divided according to the set 

number of modules. Modules with smaller objective 

function values were selected for various bioinformatic 

analyses. Finally, the disease samples of the test set  

and the independent test set GSE116918 data set were 

used to verify the prognostic-related genes and the 

model. 

 

Partial least squares regression (PLS) 

 
The partial least squares algorithm can simultaneously 

model multiple independent and dependent variables, 

especially when multicollinearity exists in both. The 

objective function is as follows. 
 

 
,

max cov ( , )
g d

Xg Yd  

 

  s.t. 1, 1T Tg g d d= =   (1) 

 

Among them, n pX R  represents the expression 

matrix of the first data. n qY R  represents the 

9600

https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/


www.aging-us.com 3 AGING 

expression matrix of the second data. n represents the 

total number of samples. p and q represent the first  

and second data characteristics, respectively. cov (·)  

represents the difference between the co -party. g and d 

represent the two right vectors. Further, this article 

introduces two potential variables: u and v. Among 

them, u = Xg, v = Yd. Formula (1) The covariance 

between the two potential variables u and v through 

maximizing the two potential variables u and v. 

 

Sparse partial least squares regression (SPLS) 

 

PLS does not meet the needs for high-dimensional 

biological chip data analysis. Therefore, SPLS is 

proposed to solve the feature selection of high-

dimensional data. SPLS adds model punishment items 

to the model of the suitable vector and, based on PLS, 

helps the algorithm selection of more representative  

and essential features. The target function of the SPLS 

algorithm is shown below. 

 

 
1 1 2 1

,
max cov ( , )

g d
Xg Yd g d − −  

  s.t.   1, 1T Tg g d d= =   (2) 

 

Among them, λ1 and λ2 control the constraint strength 

of the l1 norm of the weight vectors g and d, 

respectively. It can be used to select variables with 

better biological interpretability. 

 

Hypergraph learning 

 

The simple graph can represent the pair relationship 

between the objects. The vertex can be expressed  

as an object, and the edge represents the relationship 

between the apex. However, the complex relationship 

may not be represented in a simple graph, which  

may cause information loss. Hypergraph can connect  

to two or more vertices through the hyper edge.  

As an extension of a simple graph, each side of the 

hyper edge can be connected to multiple vertices, called 

a hypergraph. G (V, E, w) represents hypergraph. 

Among them, 1 2{ , , , } N
NV v v v=    represents the 

vertex in the hypergraph. 1 2{ , , , } M
ME e e e=    

represents the hyper edge in the hypergraph. 

1 2( ( ), ( ), , ( ))T M
Mw w e w e w e=    is the weight of  

E. Next, this paper introduces the associated matrix  

H to characterize the relationship between V and E.  

The element at row i and column j in H can be 

expressed as: 

 

  
1,  if 

0,  if 

i

ij
i

v e
H

v e


= 


  (3) 

 

Further, define the degree matrix Dv and De of the edge 

and vertex and the diagonal matrix W, as shown below. 

In addition, this article gives a simple hypergraph 

example (Figure 1A, 1B). 
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=  
 
 

D

V
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 (5) 

 

 
 

Figure 1. An example of a hypergraph. The points in (A) represent the distribution of characteristics in the space. Each hyper edge is 
composed of multiple interconnected data points. (B) shows the connection between the super edge and the vertex. 

9601



www.aging-us.com 4 AGING 

 

( )

( )

1

M

0

0

w e

w e

 
 

=  
 
 

W   (6) 

 

Then this paper defines the similarity matrix S of the 

hypergraph G and the Laplacian matrix LH of the 

hypergraph. 

 

 
1 T N N

e
− = S HWD H R   (7) 

 
Similar to the definition of the symmetrical Laplace 

matrix of the simple graph, the symmetry of the 

hypergraph is defined below. 

 

 

1 1

2 2
v vL I
− −

= −D SD    (8) 

 
Sparse partial least squares regression algorithm 

based on hypergraph regularization (HR-SPLS) 

 

Hypergraphs can characterize a high-level relationship 

between complex objects. In this paper, we innovatively 

added the hypergraph to the SPLS algorithm as the 

priority information and proposed the HR-SPLS 

algorithm. Before defining the target function of this 

paper, first of all, the hypergraph definition of this 

article is given. 

 

  1( ) T
Hg g L g =   (9) 

 

  2( )
T

Hd d L d =    (10) 

 
Among them, LH1 and LH2 are hypergraph Laplace 

matrix. 

 

 

1 1

2 2
1 1 1 1H v vL I

− −

= −D DS    (11) 

 

 

1 1

2 2
2 2 2 2H v vL I

− −

= − D DS    (12) 

 
Dv1 and Dv2 represent the degree matrix of X and Y, 

respectively, and S1 and S2 represent the similarity 

matrix of X and Y, respectively. We can get the target 

function of the HR-SPLS algorithm. 

 

 
1 2

,

1 1 2 1

max  cov ( , ) ( ) ( )
g d

Xg Yd g d

g d

 

 

−  − 

− −
 

 s.t. 1, 1T Tg g d d= =   (13) 

 

Among them, β1 and β2 control the strength of the 

hypergraph regularization respectively. λ1 and λ2 control 

the sparseness of the two weight vectors, respectively. 

Further, we can rewrite it: 

 

 

1
,

2

1

1 11

2

2 2

2 21

1 1 2 1

1

s.t.  1, 1.

ij

i j

ij

i j

T T

g d

ji

H Hi j n

ji

H Hi j n

T T

min g X Yd
p

gg
s

l l

dd
s

l l

g d

g g d d





 

  

  

− +

 
 −
 
 

 
 + −
 
 

+ +

= =



  (14) 

 

Here, 1ij
s  and 2ij

s  represent the i – th row and j – th 

column of the X and Y similarity matrices S1 and S2. 

1iHl  and 2 jHl  represent the i – th row and j – th 

column of 1iHl  and 2 jHl , respectively. Similar to 

literature [13], this paper uses the coordinate descent 

algorithm to find the local maximum of this problem by 

alternately updating the variables g and d. 

 

The objective of HR-SPLS is to discover a low-

dimensional representation containing the most relevant 

information from both X and Y. Specifically, the 

algorithm achieves integration by identifying latent 

variables, denoted as g and d, between X and Y. These 

latent variables are obtained by projecting X and Y onto 

a new coordinate system, aiming to maximize their 

covariance in this new coordinate space 
1

( )
T T

g X Yd
p

− . 

This ensures the preservation of the most relevant 

information between X and Y in the latent variables. The 

introduction of regularization terms (l1 norm and 

hypergraph regularization) mitigates overfitting caused 

by an excessive number of features, thereby enhancing 

the model’s generalization capability. 

 
In addition, this paper uses the solution of PLS as the 

initial solution of the current algorithm. Specifically, 

any column of X and Y is first randomly selected as the 

initial values of u and v. The following formula is then 

used to iteratively select the objective function value for 

g, d, u and v. 

 

 
2

: ; : ; :
T

T

X v g
g g u Xg

gv v
= = =    (15) 
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2

: ; : ; :
T

T

Y u d
d d v Yd

du u
= = =   (16) 

 

Next, the weight vectors g and d are updated alternately. 

First, fix d, and obtain the partial derivative of g to 

obtain the iterative update rule of g. 
 

( )( )
( )

1

1

1 1

sign
  1,2, , ( 0)

2

g g

j

z z
g j n




 
+

−
 =  

+
  (17) 

 

Among them, the 
1 1

1 1

2
j

i j

ij in
g g i

H H

s g
z t

l l
 == +  , 

( ) ( )
1 1T T

gt X Yd X v
p p

= = . 
jgt  is the j – th element of 

tg. Finally, the iterative update rule of d can be obtained 

by fixing g and taking the partial derivative for d. 
 

( )( )
( )

2

2

2 2

sign
  1,2, , ( 0)

2

d d

j

z z
d j n




 
+

−
 =  

+
  (18) 

 

Among them, 
2 1

2 2

2
j

i j

ij in
d d i

H H

s d
z t

l l
 == +  , 

( ) ( )
1 1T T

dt Y Xg Y u
p p

= =  is the j – th element of td. 

 

Module membership confirmation and correlation 

analysis 
 

After obtaining the final weight vectors g and d, this paper 

uses the Z-score method to confirm whether features of X 

and Y are eligible to enter the module. Specifically, g and 

d are first normalized using the Z-score method to obtain 

g* and d*. Then, the corresponding features whose g* and 

d* are more significant than the artificially set threshold  

T are selected for subsequent analysis. In addition, this 

paper normalizes the l2 norm of u and v and obtains the 

normalized u* and v*. Then normalize (u*+v*), and select 

the sample when (u*+v*)>T. The threshold set in this 

paper is T = 1. After running the algorithm to get the first 

module, this paper subtracts the module signal from the 

input data: 
 

 : ,  
T

T

T

X u
X X up p

u u
= − =    (19) 

 

 : ,  
T

T

T

Y v
Y Y vq q

v v
= − =    (20) 

 

To confirm the correlation of two kinds of data in the 

same module, this paper defines the Pearson correlation 

coefficient (PCC) as follows. 

 ( )
( )cov ,

,
X Y

X Y
PCC X Y

 
=   (21) 

 
Among them, σX and σY points represent the standard 

deviation of X and Y. This paper calculates the Pearson 

correlation coefficient PCC (u, v) between Xg and Yd 

within each module as a measure of module selection. 

In addition, this paper also introduces the module error 

to measure the module’s performance, which is defined 

as follows. 

 

 
( )

( )

2

2

_   p /

p /

T
ij

ij

T
ij

ij

ModuLe Error n X up

n Y vq

=  −

+  −

 (22) 

 
Survival analysis 

 
We obtained the overall survival (OS) and disease-free 

survival (DFS) time of PCa patients from clinical data. 

Kaplan-Meier (KM) analysis was used to screen out the 

methylation sites associated with OS in PCa patients. 

Methylation sites with a p-value less than 0.05 were 

used as the input for constructing a diagnostic model  

for PCa patients. Univariate Cox regression analysis 

was used to screen out candidate features associated 

with DFS in PCa patients. Genes with p-values less  

than 0.03 were reserved for further research. Then,  

we constructed PCa-related prognostic models using 

multivariate Cox regression analysis and calculated  

risk scores for PCa patients. risk score=(βmRNA_1 * 

expression level of mRNA_1)+ (βmRNA_2 * expression 

level of mRNA_2)+…+(βmRNA_n * expression level  

of mRNA_n). Based on the median risk score, we 

divided PCa patients in the TCGA-PRAD cohort and 

GSE116918 into two risk subgroups. KM curves were 

used to compare the differences in DFS of patients in 

the two risk subgroups. We used Receiver Operating 

Characteristic (ROC) curves to assess the accuracy  

of prognostic models for predicting 1-, 3-, and 5-year 

survival in PCa patients. ROC curves are drawn by the 

“timeROC” package. 

 
Gene set enrichment analysis (GSEA) 

 
We downloaded the “c2.all.v7.2.symbols.gmt” gene  

set from the GSEA database (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). Based on the 

“c2.all.v7.2.symbols.gmt” gene set, we performed 

GSEA analysis on high- and low-risk subgroups to 

identify pathways enriched between the two risk 

subgroups. The size of the gene set is set from 10 to 

500. Gene sets were considered significant pathways 

when the absolute value of NES was greater than  

1.5, p-value < 0.05, and FDR > 0.25. 
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Analysis of immune infiltration among risk subgroups 

 

To further explore the immune microenvironment 

between the two risk subgroups, we performed a Cell-

type Identification By Estimating Relative Subsets Of 

RNA Transcripts (CIBERSORT) analysis using the 

“e1071” package. CIBERSORT analysis was used to 

calculate the composition and infiltration levels of 22 

immune cells (T cells, B cells, macrophages, dendritic 

cells, Natural Killer (NK) cells, monocytes, mast cells, 

eosinophils, and neutrophils) between the two risk 

subgroups. The Pearson correlation coefficient was used 

to calculate the correlation between prognosis-related 

genes and immune cells. 

 

Data availability 

 

The gene expression data of prostate cancer patients 

(TCGA-PRAD) were downloaded from the TGCA 

database (https://portal.gdc.cancer.gov/). The methylation 

data and corresponding clinical information of  

prostate cancer patients in the TCGA-PRAD cohort 

were downloaded from the UCSC Xena database 

(https://xenabrowser.net/datapages/). In addition, we 

downloaded the GSE116918 dataset from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) for 

external validation of the prognostic model. 

 

RESULTS 
 

Data preprocessing 

 

The Limma package was used for the differential 

expression analysis of gene expression data and 

methylation data on samples from the training set. 

Genes with absolute logFC values greater than 1 and 

FDR values less than 0.05 were considered 

differentially expressed. Methylated sites with FDR 

values less than 0.05 were considered differentially 

expressed. We obtained 1350 differentially expressed 

mRNAs (Figure 2A) and 1469 differentially expressed 

methylation sites (Figure 2B). Differentially expressed 

genes and expression profiles of methylation sites were 

used as input data for the algorithm. 

 

Selection of hyperparameters 

 

This paper selects 20 modules. Each hyperedge’s 

maximum number of vertices when building the 

hypergraph is chosen (Figure 3A). Our algorithm 

incorporates methylated sites and genes with significant 

associations into the same co-expression module. 

Consequently, the correlation between two modalities 

of data within the module can be assessed using  

Pearson Correlation Coefficient (PCC). A higher PCC 

indicates a stronger correlation among members within 

the module, providing additional confirmation of the 

algorithm’s capabilities in association analysis and 

feature selection. When the maximum number of vertices 

is 2, pcc(u, v) is the largest. Further, this paper also uses 

pcc(u, v) to select the four hyperparameters of λ1, λ2,  

β1 and β2 from the range of [0.01 0.05 0.1 0.5 1].  

We present the PCC (Pearson Correlation Coefficient) 

of the algorithm for 625 parameter combinations in 

Figure 3B. 

 

The maximum module correlation can be obtained 

when the number of neighbors is (Figure 3A). The 

largest module correlation can be obtained under the 

157th set of parameter combinations (Figure 3B). The 

parameter value corresponding to the 20th group of 

parameters is λ1 = λ2 = β1 = β2 = 0.5. 

 

 
 

Figure 2. Expressions of the 1350 mRNAs and 1469 DNA methylation sites. (A) Heatmap (blue: low expression level; red: high 
expression level) of the 1350 mRNAs between the normal (N, blue) and the tumor tissues (T, red). (B) Heatmap (blue: low expression level; 
red: high expression level) of the 1469 DNA methylation sites between the normal (N, blue) and the tumor tissues (T, red). 
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Module description and selection 

 

According to the parameter selection results in Section 

3.1, 20 modules are obtained in this paper. To select the 

salient modules among them, we draw heatmaps of the 

weights of u and v corresponding to the 20 modules, 

respectively (Figure 4A, 4B). In addition, a line graph 

of module error for the 20 modules was also plotted 

(Figure 4C). 

 

Among the 20 modules obtained by the proposed 

algorithm, the weights of u and v corresponding to 

module 2 are higher (Figure 4A, 4B). Furthermore, 

module 2 has a minor error (Figure 4C). Therefore, 

module 2 will be analyzed in detail later. 

 

Comparison with other algorithms 

 

To confirm the performance of the HR-SPLS algorithm, 

this paper introduces the SPLS algorithm and SNPLS 

algorithm to compare the performance of the three 

algorithms. The module error and membership correlation 

were used to compare the performance of the 20 modules 

corresponding to the three algorithms (Figure 5A, 5B). 

 

Further, this paper counts the mean value of the module 

error and the mean value of the module correlation in  

the 20 modules of the three algorithms (Table 1). To 

confirm the importance of sparse constraints for feature 

selection in high-dimensional omics data, we compared 

the objective functions of HR-SPLS obtained by adding 

sparse constraints or not. Under the same number of 

iterations, the objective function values without and with 

sparse constraints were 4.3075 and 0.5667, respectively. 

Therefore, sparse constraints can significantly accelerate 

the convergence speed of the algorithm and make the 

performance of the algorithm better. 

The module correlation of HR-SPLS is better than  

the other two algorithms (Table 1). The mean value  

of the module error is between the two different 

algorithms, which further confirms the correlation 

performance of the algorithm on the two kinds  

of data. 

 

Additionally, we explored whether elastic net 

regularization could further enhance the performance  

of the algorithm proposed in this paper. Specifically, 

elastic net regularization is a method that combines L1 

(Lasso) and L2 (Ridge) regularization. The objective 

function of applying this regularization to the algorithm 

in this paper is presented below. 

 

 

1
,

2

1

1 1 1

2

2 2

1 2 2

1 1 2 1 1 2 2 2

1

|| || || || || || || ||

s.t. 1, 1.

ij

i j

ij

i j

T T

g d

ji

i j n H H

ji

i j n H H

T T

mim g X Yd
p

gg
s

l l

dd
s

l l

g d g d

g g d d





   

  

  

− +

 
 −
 
 

 
 + −
 
 

+ + + +

= =



  (23) 

 

On the basis of the optimal HR-SPLS algorithm, this 

study fine-tuned the parameters γ₁ and γ₂ within the 

range [0.01, 0.05, 0.1, 0.5, 1]. Under the optimal 

parameters (λ1 = λ2 = β1 = β2 = 0.5), the algorithm 

yielded the minimum module error for module 14. The 

mean of module errors, mean of module correlations, 

and objective function value were found to be 2.1395, 

0.6810, and 28.9895, respectively. 

 

 
 

Figure 3. Hyperparameter selection line chart. (A) corresponding to different number of neighbors of KNN. (B) corresponding to 

different parameter combinations. 

9605



www.aging-us.com 8 AGING 

 
 

Figure 4. Module selection. (A) Weight heatmap of u. (B) Weight heatmap for v. (C) Error line graph for 20 modules. 

 

 
 

Figure 5. Algorithmic performance comparison with other algorithms. (A) Module error of 20 modules corresponding to the three 

algorithms. (B) Membership correlations of 20 modules corresponding to the three algorithms. 
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Table 1. The mean value of module error, module correlation and objective function value 
obtained by three algorithms. 

Algorithm Mean of module errors Mean of module correlations Objective function value 

SPLS 2.1377 0.6794 32.4574 

SNPLS 2.1494 0.4803 28.2866 

HR-SPLS 2.1381 0.6865 25.7287 

 

Diagnostic model construction 

 

First, KM analysis was performed on the 105 

methylation sites in module 2 to screen out the 

methylation sites associated with OS in PCa patients. 

Next, based on the random forest (RF) algorithm, the 

feature weights were assigned to 25 methylation sites 

(Supplementary Figure 2) associated with the prognosis 

of PCa patients (Figure 6A). Further, this paper uses the 

logistic regression (LR) algorithm, the RF algorithm, and 

the K-Nearest Neighbor (KNN) algorithm to construct 

the diagnosis model of prostate cancer. Specifically,  

we used different numbers of Top features, put them 

into three classifiers, and compared the AUC of the 

classifiers (Figure 6B). 

 

Use the characteristics of 10 top LR algorithm 

(cg20210585 cg12567282, cg11709110, cg13428921, 

cg24898914, cg11183227, cg22288195, cg24780796, 

cg24827036, cg11532 655, cg21769117 cg11254726, 

classify cg25653336), on the test set can reach the 

highest AUC for the 0.9378. To further validate the 

effectiveness of the algorithm, this paper introduces  

two non-negative matrix factorization (NMF) based 

algorithms, namely MDJNMF [12] and JDSNMF [14]. 

The ROC curves of the diagnostic models constructed 

by these two algorithms are presented in Supplementary 

Figure 1. The diagnostic model constructed by our 

algorithm achieved the highest AUC. 

 

Construction of mRNAs-related prognostic model 

 

We extracted expression data for 104 mRNAs  

in Module 2 and clinical information from PCa  

patients. First, a univariate Cox regression analysis  

was performed on the expression data of mRNAs in  

the TCGA-PRAD cohort. According to the p-value of 

less than 0.03, we screened and obtained 31 mRNAs 

related to DFA in PCa patients (Supplementary Table 1 

and Supplementary Figure 3). Next, we performed a 

multivariate Cox regression analysis on 31 mRNAs to 

construct a prognostic model. Finally, we obtained a 

prognostic model (Supplementary Table 2) associated 

with 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, 

MARCKSL1, LMOD1 and MYLK), the risk score  

of the prognostic model is equal to expression level  

of MYH11* (-3.648) + expression level of ACTG2*  

(-4.820) + expression level of DDR2* (-2.740) + 

expression level of CDC42EP3* (-3.481) + expression 

level of MARCKSL1 *(0.845) + expression level of 

LMOD1* (7.614) + expression level of MYLK* (3.542). 

 

We divided PCa patients in the TCGA-PRAD cohort 

and GSE116918 into high and low-risk subgroups based 

 

 
 

Figure 6. Construction of the diagnostic model. (A) Feature ranking of methylated sites using random forest algorithm. (B) Line graph of 

ranked features using three classifiers. 
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on the median risk score. The results of the KM analysis 

showed that patients in the high-risk group in the TCGA 

cohort (p=0.003) and the GEO (p=0.041) cohort had 

significantly shorter DFS (Figure 7A, 7B). We further 

assessed the prognostic model’s predictive accuracy 

using the ROC curve’s AUC area. The results showed 

that the constructed 7-mRNAs model could predict the 

1-year (AUC=0.725), 3-year (AUC=0.702), and 5-year 

survival rates (AUC=0.702) of PCa patients in the 

TCGA cohort with high accuracy 0.761) (Figure 7C). In 

the external dataset, the AUCs at 1, 3, and 5 years were 

0.927, 0.664, and 0.685 (Figure 7D). These results 

demonstrate that the risk scoring model, validated in  

the test set, can be used to predict DFS in PCa patients. 

We also created heatmaps of risk factors in the TCGA 

cohort (Figure 7E–7G) and the GEO cohort (Figure 7H–

7J). The results showed that our risk score divided PCa 

patients into two risk subgroups, with high-risk patients 

having a shorter survival time than low-risk patients. 

MYH11 and ACTG2 were lowly expressed in the high-

risk group, while MARCKSL1 was highly expressed in 

the high-risk group. 

 

In addition, to explore enriched biological pathways 

between the two risk subgroups, we performed GSEA 

analysis on high and low-risk subgroups. The enrichment 

analysis showed that the high and low-risk groups were 

mainly enriched in immune and inflammation-related 

pathways (Figure 8A–8L), such as KEGG_NATURAL_ 

KILLER_CELL_MEDIATED_CYTOTOXICITY, WP_ 

B_CELL_RECEPTOR_SIGNALING_PATHWAY, 

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_ 

PATHWAY, and REACTOME_PI3K_AKT_ 

SIGNALING_IN_CANCER. 

 

Analysis of the immune microenvironment among 

risk subgroups 

 

We performed an immune infiltration analysis of the 

TCGA-PRAD cohort using the CIBERSORT method to 

further explore the immune microenvironment between 

the two risk groups. First, we calculated the proportion of 

22 types of immune cells in high- and low-risk patients 

(Figure 9A). Next, the correlation of 22 immune cells in 

the TCGA cohort was explored. Dendritic cells activated 

and T cells CD4 memory activated had the strongest 

positive correlation (cor=0.42), and T cells CD4 memory 

resting had a strong negative correlation with T cells 

CD8 (cor=-0.38) (Figure 9B). Subsequently, this paper 

compared the infiltration levels of 22 types of immune 

cells in high and low-risk groups (Figure 9C). The results 

showed that a variety of immune cells were different 

between high and low-risk groups, including T cells  
CD4 memory resting, T cells follicular helper, T cells 

regulatory (Tregs), NK cells activated, Monocytes, 

Macrophages M0, Mast cells activated, Eosinophils, 

Neutrophil, and Dendritic cells resting. Among them, 

the infiltration level of T cells CD4 memory resting, 

Monocytes, Dendritic cells resting, and Mast cells 

activated in the high-risk group was lower in the  

low-risk group. In addition, this paper compared the 

differential expression of 47 immune checkpoints 

between high and low-risk groups, and a total of  

33 immune checkpoints were differentially expressed 

(Figure 9D). Finally, the correlation between seven 

prognosis-related mRNAs and immune cells was 

explored (Figure 10A–10Y and Supplementary Figure 

4). ACTG2 was positively correlated with Mast cells 

resting (R=0.16, p=0.0026) but negatively correlated 

with Macrophages M1 (R=−0.24, p=7.7e−06). 

CDC42EP3 was positively correlated with T cells CD4 

memory resting (R=0.23, p=1.6e−05). DDR2 was 

positively correlated with B cells naive (R=0.21, 

p=0.00012). LMOD1 was negatively correlated with 

Macrophages M1 (R =−0.22, p = 4.4e−05). MARCKSL1 

was positively correlated with Macrophages M0 (R=0.19, 

p=0.00038). MYH11 was negatively correlated with 

Macrophages M1 (R=−0.17, p=0.0021). MYLK was 

positively correlated with T cells CD4 memory resting 

(R=0.23, p=2.4e−05). These results suggest that these 

immune cells play a crucial role in tumor progression. 

In addition, we calculated the correlations of T-stage, 

N-stage, and Gleason score with relation to immune 

features (“gleason_score.cor_immune “folder in the 

Supplementary Material). The outcomes revealed a 

notable correlation between the Gleason score and 

Macrophages M2, Plasma cells, and T cell regulation 

(Tregs). Subsequently, we employed the Wilcoxon 

method to determine differences in distinct immune 

cells (retaining those with higher immune abundance) 

across different T and N stages. The findings indicated 

significant differences in T cell regulation (Tregs) 

during the N-stages and notable variances in Plasma 

cells during the T-stages. These results suggest a pivotal 

role for T cell regulation (Tregs) and Plasma cells in the 

immune microenvironment of Pca. 

 

DISCUSSION 
 

DNA methylation plays an essential role in regulating 

gene expression. It is actively involved in the occurrence 

and development of diseases [15]. Therefore, this paper 

aims to screen important PCa-related biomarkers by 

integrating DNA methylation and gene expression data. 
 

First, this paper proposed the HR-SPLS algorithm to 

integrate the two kinds of data. Compared with the 

original SPLS algorithm and SNPLS algorithm, the 

module correlation of our proposed HR-SPLS algorithm 
is better than the other two algorithms. The mean 

value of the module error is between the two different 

algorithms, which further confirms the correlation 
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Figure 7. Construction of a risk model for PCa patients. (A) KM curves for PCa cancer patients in the high-/low-risk group in TCGA-

PRAD. (B) KM curves for PCa cancer patients in the high-/low-risk group in GSE116918. (C) ROC curves of the risk model of 1-, 3-, and 5-years 
for DFS for the TCGA-PRAD. (D) ROC curves of the risk model of 1-, 3-, and 5-years for DFS for the GSE116918. Distribution of the risk score 
for TCGA-PRAD (E) and GSE116918 (F). Scatter plot of disease free status and risk score for TCGA-PRAD (G) and GSE116918 (H). Heatmap of 
the expression profile of the 7-mRNAs in TCGA-PRAD (I) and GSE116918 (J). 
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performance of the algorithm on the two kinds of  

data. According to the corresponding weights of each 

module, the corresponding u and v of module 2 have 

higher weights and more minor errors. Therefore, we 

selected 105 DNA methylation sites and 104 mRNAs in 

module 2 for further analysis. 

Then, KM analysis was performed on 104 DNA 

methylation sites, and 25 DNA methylation sites  

related to OS of PCa patients were obtained. To  

further screen the key DNA methylation sites in  

PCa, the LR, RF, and KNN algorithms were used to  

construct a DNA methylation site-specific PCa diagnostic 

 

 
 

Figure 8. Functional enrichment analysis based on the risk model of the 7-mRNAs by GSEA. (A–L) give information on top 
pathways enriched in the high- and low-risk groups. 
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Figure 9. Compositions of infiltrated immune cells between low‐risk and high‐risk groups in TCGA-PRAD. (A) Abundance of 22 
immune cell types in TCGA-PRAD. (B) Correlation heatmap of the immune cells. (C) Comparisons between immune cells in low‐risk and high‐
risk groups in TCGA-PRAD. (D) Expression differences of immune checkpoints between high- and low-risk groups. The blue violin reflects the 
low-risk group and the red violin represents the high-risk group. 
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model. The results showed that the top 10 methylation 

sites (CG20210585, CG12567282, CG11709110, 

CG13428921, CG24898914, CG11183227, cg22288195, 

cg24780796, Cg24827036, CG11532655, CG21769117, 

CG11254726, CG25653336) could achieve the 

maximum AUC of 0.9378 on the test set. Subsequently, 

we performed prognostic survival analysis on 105 

mRNAs and constructed a prognostic model related  

to 7-mRNAs (MYH11, ACTG2, DDR2, CDC42EP3, 

MARCKSL1, LMOD1, and MYLK). The results of  

the ROC analysis showed that the prognostic model  

had high prediction accuracy (AUC=0.761). In addition, 

the external data set also verified the prediction accuracy 

of the prognostic model (AUC=0.685). GSEA analysis 

 

 
 

Figure 10. Correlation of immune cells with 7 mRNAs associated with prognosis. Scatter plots of the correlation between 

ACTG2 and immune cells are presented in (A–C). (D–F) present a scatter plot of the correlation between CDC42EP3 and immune cells. 
(G–J) present a scatter plot of the correlation between DDR2 and immune cells. Scatter plots of the correlation between LMOD1 and 
immune cells are presented in (K–M). (N–Q) give a scatter plot of the correlation between MARCKS1 and immune cells. (R–U) produced 
a scatter plot of the correlation between MYH11 and immune cells. (V–Y) present a scatter plot of the correlation between MYLK and 
immune cells. 
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showed that the pathways enriched between the high and 

low-risk groups were mainly related to immunity and 

inflammation. Therefore, this paper further explored the 

immune microenvironment of patients in the two risk 

groups. We found that the infiltration levels of various 

immune cells differed between the high and low-risk 

groups, such as T cells CD4 memory resting, Tregs, NK 

cells activated, and Macrophages M0. CD4+ T cells can 

reduce the drug sensitivity of PCa patients by regulating 

CCL5 signaling [16]. In vivo and in vitro experiments 

have found that Tregs can inhibit anti-tumor responses 

and increase the risk of cancer recurrence [17]. Christine 

Pasero et al. found that NK cells from PCa patients with 

long postoperative survival time showed high activated 

receptor expression and cytotoxicity, suggesting that NK 

cells may become predictive biomarkers for PCa patients 

[18]. The above results indicate these immune cells may 

be essential in developing PCa patients. 

 

MYH11 is a crucial regulator of smooth muscle 

contraction. MYH11 contained a frameshift mutation 

c.5798delC in PCa patients, possibly leading to a 

protein with unregulated motor activity [19]. Chen  

et al. showed that MYH11 and ACTG2 are potential 

biomarkers affecting DFS in PCa patients [20]. This is 

consistent with our results, and we also found that 

MYH11 expression was lower in the high-risk group. 

Abnormal expression of ACTG2 has been found  

in many cancers, such as ACTG2 involved in cell 

migration and distant metastasis in liver cancer [21]. 

Our results found that the expression of ACTG2 was 

lower in the high-risk group of patients. Azemikhah  

et al. found that the expression level of DDR2 in  

PCa tissues was significantly higher than in adjacent 

normal tissues and was significantly correlated with the 

clinical stage [22]. In PCa cells, on the one hand, the 

low expression of DDR2 promotes the proliferation of 

osteocytes. On the other hand, the overexpression  

of DDR2 accelerates the differentiation of osteocytes 

[23]. The above results suggest that DDR2 is associated 

with tumor metastasis in PCa cancer patients. Previous 

experiments showed MicroRNA-141 could hinder 

tumor growth and metastasis in PCa by regulating 

CDC42EP3 [24]. MARCKSL1 is one of the targets of 

miR-21. miR-21 is significantly associated with tumor 

growth and metastasis in various cancers [25]. In PCa, 

MARCKSL1 is strongly induced and up-regulated, and 

the knockdown of MARCKSL1 affects actin stability 

and migration in cancer cells [26]. Luo et al. identified 

LMOD1 as a biomarker associated with PCa prognosis 

[27]. Rebeca Kawahara et al. identified LMOD1 as  

a candidate biomarker of PCa aggressiveness based  

on the Gleason score of PCa tissue biopsies [28]. 
MYLK can promote PCa progression by regulating  

the expression of miR-29a [29]. Peng Qiao et al. used  

a machine learning approach to identify MYLK as a 

robust biomarker associated with postoperative PCa 

recurrence [30]. The above results indicate that the 7-

mRNAs obtained in this paper are critical genes related 

to PCa metastasis and may provide new targets for 

treating PCa patients. The GSE116918 dataset utilized 

in this study comprises transcriptomic and clinical data 

of prostate cancer patients, including Gleason scores 

and T stages. In Supplementary Figure 5, we present 

expression heatmaps of prognostic gene signatures 

selected by our algorithm across different Gleason 

scores and T stages. As depicted in the figures, with 

increasing Gleason scores, MYH11 and ACTG2 exhibit 

a downregulation trend, while MARCKSL1 shows an 

upregulation trend. The expression patterns of these 

three genes may be associated with lethal prostate 

cancer. 

 

HR-SPLS is an effective algorithm for integrating 

multi-omics data, demonstrating superior biomarker 

identification performance for datasets with small 

sample sizes and high feature dimensions. To further 

illustrate the effectiveness of our algorithm in scenarios 

with large sample sizes, we examined the algorithm’s 

computational time under conditions where the number 

of features remained constant while the sample size 

increased. Specifically, we randomly generated two types 

of omics data matrices, maintaining other parameters 

constant, with sample sizes set at 500, 1000, 2000,  

and 5000, respectively. The algorithm’s computational 

times were 5 seconds, 20 seconds, 46 seconds, and 113 

seconds, corresponding to the aforementioned sample 

sizes. This further confirms the algorithm’s scalability 

in situations with larger sample sizes. 

 

CONCLUSIONS 
 

PCa is a malignant tumor, and its early diagnosis is 

necessary. This paper proposes an HR-SNPLS model  

to integrate gene expression data and methylation data 

of prostate cancer, and the maximum AUC of the 

constructed diagnostic model is 0.9378. In addition,  

this paper performed prognostic survival analysis of 

mRNAs in the signature module. We constructed a 

prognostic model of 7-mRNAs associated with PCa 

DFS. ROC analysis validated the predictive accuracy  

of the prognostic model in the TCGA and GEO  

cohorts. In future research, we will try to integrate  

more types of data and expand the algorithm’s usage 

scenarios to identify prostate cancer biomarkers more 

comprehensively and systematically. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The diagnostic model was constructed by the methylation markers selected by the MDJNMF 
algorithm and JDSNMF algorithm. (A, B) are the ROC curves of the diagnostic model constructed by the MDJNMF algorithm and JDSNMF 

algorithm, respectively. 
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Supplementary Figure 2. Kaplan–Meier analysis of the effects of 25 DNA methylation sites on overall survival in TCGA-PRAD 
patients. (A–Y) are the KM survival curve of 25 methylation sites, respectively. 
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Supplementary Figure 3. The univariate Cox regression analysis results show the 31 prognosis‐related mRNAs. 
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Supplementary Figure 4. Correlation of immune cells with 7 mRNAs associated with prognosis. (A–R) are scatter plot of 7 mRNAs 

and immune cell correlation, respectively. 
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Supplementary Figure 5. Heat map of prognostic gene expression versus T stage and Gleason score in prostate cancer 
samples from the GEO cohort. 
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Supplementary Tables 

 

 
Supplementary Table 1. 31 mRNAs associated with PCa DFS 
time were obtained from univariate Cox regression analysis. 

Id HR HR.95L HR.95H p-value 

SYNPO2 0.456414 0.256276 0.812851 0.00773 

DES 0.395982 0.175261 0.894675 0.025908 

ZNF185 0.345439 0.135412 0.881221 0.026108 

RAB9B 0.373122 0.175214 0.794572 0.010582 

KCNMB1 0.388679 0.173172 0.872373 0.021965 

FLNA 0.465857 0.22569 0.961598 0.038841 

ATP2B4 0.313308 0.125562 0.781776 0.012859 

MYH11 0.389088 0.190243 0.795769 0.009717 

TLR3 0.379091 0.146876 0.978443 0.044962 

ACTG2 0.348428 0.155309 0.781682 0.010545 

DDR2 0.353383 0.153033 0.816031 0.014847 

FAXDC2 0.415565 0.179273 0.963303 0.040646 

TGFBR3 0.378154 0.14801 0.966157 0.042164 

TNS1 0.389638 0.16841 0.901481 0.027644 

CNN1 0.50642 0.273275 0.938473 0.03064 

CDC42EP3 0.125272 0.042677 0.367722 0.000156 

MEIS1 0.397359 0.167454 0.942909 0.036323 

PRICKLE2 0.31801 0.121757 0.83059 0.01934 

HSPB8 0.451373 0.247129 0.824418 0.009649 

AOC3 0.421767 0.201075 0.884681 0.022363 

ANO6 0.381724 0.157805 0.923377 0.032611 

GPR161 0.345385 0.135231 0.882127 0.026275 

MARCKSL1 3.150843 1.068211 9.293867 0.037569 

LMOD1 0.461383 0.218824 0.972811 0.042114 

SLC24A3 0.354605 0.129147 0.973657 0.044245 

MYLK 0.415042 0.195871 0.879453 0.021719 

CAV2 0.409811 0.168732 0.995336 0.048805 

C3orf70 0.377247 0.180398 0.788897 0.0096 

PTGIS 0.401191 0.204874 0.785624 0.00773 

PDGFC 0.385502 0.184146 0.807034 0.011448 

PLN 0.507888 0.284961 0.905213 0.021579 

HR, hazard ratio; HR.95L, low 95% CI of HR; HR.95H, high 95% CI of 
HR. 
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Supplementary Table 2. 7 mRNAs were obtained from multivariate 
Cox regression analysis. 

Id coef HR HR.95L HR.95H p-value 

MYH11 -3.64818 0.026039 0.000337 2.012673 0.100044 

ACTG2 -4.82026 0.008065 0.000179 0.363691 0.013122 

DDR2 -2.74029 0.064552 0.007127 0.584631 0.014793 

CDC42EP3 -3.48122 0.03077 0.00387 0.244631 0.000998 

MARCKSL1 0.845069 2.328138 0.703578 7.703804 0.166321 

LMOD1 7.614462 2027.304 38.06145 107982.3 0.000174 

MYLK 3.542567 34.5555 2.447259 487.9266 0.008729 

Coef, the coefficient of genes (MYH11, ACTG2, DDR2, CDC42EP3, MARCKSL1, 
LMOD1 and MYLK) correlated with DFS; HR, hazard ratio; HR.95L, low 95% CI of 
HR; HR.95H, high 95% CI of HR. 
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