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INTRODUCTION 
 

Osteoarthritis (OA) is a joint disease that is  

increasingly impacting society and the economy due  

to the accelerating aging of the population [1]. OA is 

caused by multiple risk factors, among which aging and 

obesity are the most prominent [2]. An epidemiological 

study in Europe showed that the incidence of OA 

gradually increases with age [3]. Data from the National 

Health Interview Survey in the United States also 

indicate that the incidence of symptomatic knee 

osteoarthritis (OA) peaks between the ages of 55 and 

64, and the prevalence rate is positively correlated with 

age [4]. With the progression of OA, knee joint 

replacement surgery has been increasingly performed  
in late-stage OA to alleviate pain symptoms and 

disability status. However, even after joint replacement, 

over 60% of patients still experience long-term pain, 

which directly affects postoperative functional exercise 

and quality of life [5]. Understanding the role of aging 

in the occurrence and development of OA is of great 

significance for disease treatment and the development 

of new therapies. OA pathophysiology involves various 

joint tissue and cell types, with chondrocytes being a key 

focus in aging research. Chondrocytes are resident cells 

in articular cartilage, a highly differentiated avascular 

and a neural tissue whose structure and mechanical 

properties are primarily determined by extracellular 

matrix (ECM) components, including type II collagen 

and aggrecan produced by chondrocytes [6]. OA 

characteristics mainly include chondrocyte dysfunction 

and ECM degradation [7]. Chondrocytes control cartilage 

homeostasis, the senescence of which contributes to an 

imbalance between ECM synthesis and degradation,  
as well as reducing chondrocytes’ ability to maintain 

and restore articular cartilage [8]. Typical features of 

chondrocyte aging include enlarged cell size, decreased 

telomere length, overexpression of p21, p16, and p53 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

The protective effects of orexin-A in alleviating cell senescence 
against interleukin-1β (IL-1β) in chondrocytes 
 

Lin Shen1, Xiantie Zeng1, Haiying Zhang2 
 
1Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China 
2Department of Orthopedics, Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing 
100078, China 
 
Correspondence to: Haiying Zhang; email: B00432@bucm.edu.cn 
Keywords: osteoarthritis, orexin-A, cell senescence, IL-1β, SIRT3 
Received: September 22, 2023 Accepted: March 3, 2024 Published: May 31, 2024 

 
Copyright: © 2024 Shen et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Osteoarthritis (OA) is one of the most important causes of global disability, and dysfunction of chondrocytes is 
an important risk factor. The treatment of OA is still a challenge. Orexin-A is a hypothalamic peptide, and its 
effects in OA are unknown. In this study, we found that exposure to interleukin-1β (IL-1β) reduced the 
expression of orexin-2R, the receptor of orexin-A in TC-28a2 chondrocytes. Importantly, the senescence-
associated β-galactosidase (SA-β-gal) staining assay demonstrated that orexin-A treatment ameliorates IL-1β- 
induced cellular senescence. Importantly, the presence of IL-1β significantly reduced the telomerase activity of 
TC-28a2 chondrocytes, which was rescued by orexin-A. We also found that orexin-A prevented IL-1β-induced 
increase in the levels of Acetyl-p53 and the expression of p21. It is shown that orexin-A mitigates IL-1β-induced 
reduction of sirtuin 3 (SIRT3). Silencing of SIRT3 abolished the protective effects of orexin-A against IL-1β- 
induced cellular senescence. These results imply that orexin-A might serve as a promising therapeutic agent 
for OA.  
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proteins, elevated levels of reactive oxygen species,  

and increased activity of senescence-associated β-

galactosidase (SA-β-gal) [9]. A study by Martin et al. 

[10] has shown that SA-β-gal activity increases with age, 

while chondrocyte mitotic activity and telomere mean 

length decrease, leading to replicative senescence of 

chondrocytes in vivo. Regulating chondrocyte senescence 

may become an important treatment approach for OA. 

IL-1β is one of the central pro-inflammatory cytokines 

which has been involved in the progression of OA. 

Excessive production of IL-1β induces the expression of 

inflammatory mediators in human OA chondrocytes. 

Importantly, long-term exposure to IL-1β causes the 

senescence-associated secretory phenotype (SASP) of 

chondrocytes, which is an important pathological 

characteristic of OA [11].  

 

Orexin, discovered independently in two separate 

laboratories in the United States in 1998 by Sakurai et 

al. and de Lecea et al., is a neuropeptide hormone 

synthesized and secreted by neurons in the lateral 

hypothalamus (LH). Orexin exists in two structurally 

different forms: orexin-A and orexin-B [12]. Initially, 

orexin-A was believed to primarily function in 

promoting feeding and energy metabolism. However, 

later studies revealed its critical role in regulating sleep 

homeostasis, the transition from sleep to wakefulness, 

and the maintenance of wakefulness [13, 14]. In recent 

years, researches have shown that orexin-A participates 

in the process of aging [15]. However, it remains 

unclear whether orexin-A has a regulatory effect  

on chondrocyte senescence and thereby affects the 

progression of OA. Our study aimed to explore the 

inhibitory effect of orexin-A on chondrocyte senescence 

and to clarify its potential therapeutic function for OA. 

 

MATERIALS AND METHODS 
 

Cell culture, treatment, and SIRT3 silencing 
 

TC-28a2 chondrocytes were sourced from American 

Type Culture Collection (ATCC) (USA) and cultured in 

90% Hyclone Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with high glucose and 10% 

fetal bovine serum (FBS), which were cultivated at 

37°C and 5% CO2. To achieve SIRT3-silenced TC-28a2 

chondrocytes, cells were transduced with adenovirus 

containing a shRNA targeting SIRT3 (Ad-SIRT3 

shRNA) for 48 h and were identified using the Western 

blotting assay. Cells were stimulated with IL-1β 

(10 ng/ml) with or without orexin-A (5 and 10 µM). 

 

Real-time PCR assay 

 

Total RNA was extracted from chondrocytes in each 

group after intervention using the TRIzol method 

(Invitrogen, USA). The content and purity of the RNA 

were checked with an ultra-micro spectrophotometer. 

The RNA was reversely transcribed into cDNA using  

a reverse transcription kit (QIAGEN, Germany), and  

the reaction system was prepared according to the 

manufacturer’s instructions, with 400 ng mRNA added 

to each reverse transcription system. The reaction 

procedure was as follows: 42°C for 15 min and 85°C 

for 5 min. Quantitative PCR was conducted using a 

qPCR kit (QIAGEN, Germany). The cDNA was diluted 

fivefold as the detection sample, and the progression 

was: pre-denaturation at 95°C for 10 min, denaturation 

at 95°C for 5 s, and annealing and extension at  

60°C for 40 s (50 cycles). Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was taken as the confidential 

reference item, and the corresponding gene levels were 

analyzed using the 2−ΔΔCt method. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

Commercial kits were obtained to detect the release  

of tumor necrosis factor –α (TNF-α) and CXC- 

motif chemokine ligand 1 (CXCL-1) (Abcam, USA). 

Samples were prepared by collecting and storing  

them in appropriate tubes or vials. Wells were coated  

by adding 100 μL of the antigen solution to each well  

of the microplate and incubating at 4°C overnight.  

After incubation, wells were then blocked with 200 μL 

blocking buffer. After incubation for 1 h, the blocking 

buffer was removed and the primary antibody was 

added for 1 h. After incubation, 100 μL of enzyme 

conjugate solution was added and cultured for 1 h. 

Then, the substrate was added and cultured for 30 min 

in the dark. The absorbance value at a wavelength of 

450 nanometers was determined using a plate reader 

within 30 min for computation. 

 

Western blot assay 

 

Protein was extracted using radioimmunoprecipitation 

assay (RIPA) cell lysis buffer, and protein concentration 

was measured by bicinchoninic acid (BCA) assay. 

Sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE) was utilized to separate proteins, 

which were then moved to polyvinylidene fluoride 

(PVDF) membranes. The membranes were blocked for 

60 min, followed by overnight incubation with primary 

antibodies against Acetyl-p53 (1:500, Beyotime, China), 

p21 (1:1000), SIRT3 (1:800), and β-actin (1:2000, 

Abcam, USA). The membranes were cultured with 

secondary antibodies (1:4000, Abcam, USA) for 1 h. 

Finally, enhanced chemiluminescence ECL developing 

solution was added evenly onto the membranes for 
exposure and development using Image Lab software for 

band analysis. Briefly, the background was subtracted, 

target bands were selected and the integrated optical 
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density of the band was calculated to index protein 

concentration. 

 

Senescence-associated β-galactosidase (SA-β-gal) 

staining 

 

The culture medium was aspirated, and 1.5 mL fixative 

was added for 6 min. For staining, the mixture was 

prepared according to the instructions: 1 mL staining 

solution (10×), 125 μL staining solution B, 125 μL 

staining solution C, 250 μL X-gal solution, and 8.5 mL 

ultra-pure water. Then, the fixative was aspirated,  

and 1 mL Phosphate buffer saline (PBS) was added to  

each well slowly to wash cells. Subsequently, 1 mL  

SA-β-gal staining mixture was added and cultured  

at 37°C overnight. Cells were observed and counted 

under an optical microscope (KEYENCE, Japan), and 

the percentage of senescent cells, that were positively 

stained with β-galactosidase, was calculated. 

 

Determination of telomerase activity 

 

1 μl of cell lysate was added to the PCR tube containing 

the reaction mixture, and 1 μl of primer and Tag 

enzyme were added to the tube. Then, one drop of 

paraffin oil was added. After centrifugation for a few 

seconds, the tube was incubated at 30°C for 30 min. 

Then, PCR amplification was performed: 35 cycles 

were conducted at 94°C for 40 s, 50°C for 40 s, and 

72°C for 60 s. Finally, the tube was incubated at 72°C 

for 5 min. The PCR products were electrophoresed  

on a 12.5% polyacrylamide gel and the expression of 

telomerase activity was determined by the detection of 

the 6 bp telomere DNA fragment product synthesized 

by telomerase [16]. 

 

Statistical analysis 

 

Statistical analysis was performed using SPSS 17.0 

software. Data were expressed as (x ± s). Multiple 

comparisons were made using the one-way or two-way 

analysis of variance (ANOVA) followed by Tukey’s post-

hoc test. P < 0.05 was considered statistically significant. 

 

Data availability 

 

The data are available upon reasonable request from the 

corresponding author. 

 

RESULTS 
 

Orexin-2R was downregulated in IL-1β-cultured 

TC-28a2 chondrocytes 

 

To predict the potential role of orexin-A, TC-28a2 

chondrocytes were cultured with IL-1β (5, 10 ng/ml) for 

24 h, followed by determining the change of orexin-2R 

level. The orexin-2R level was sharply repressed by  

5 and 10 ng/ml IL-1β (Figure 1A, 1B), implying the 

possible protective role of orexin-2R/orexin-A in IL-1β-

cultured TC-28a2 chondrocytes. 

 

Treatment with orexin-A inhibited IL-1β-triggered 

release of pro-inflammatory cytokines 

 

TC-28a2 chondrocytes were stimulated with IL-1β 

(10 ng/ml) with or without orexin-A (5 and 10 µM) for 

12 h. The TNF-α and CXCL-1 mRNA levels were 

markedly elevated by IL-1β, but remarkably reduced by 

5 and 10 µM orexin-A (Figure 2A). The TNF-α content 

released by chondrocytes was increased from 43.5 to 

89.5 pg/ml by IL-1β, then largely repressed to 71.2 and 

58.7 pg/ml by 5 and 10 µM orexin-A, respectively. 

Moreover, the CXCL-1 content in the control, IL-1β, 

5 µM orexin-A, and 10 µM orexin-A groups was 13.9, 

33.6, 25.2, and 18.1 pg/ml, respectively (Figure 2B). 

 

Treatment with orexin-A ameliorated IL-1β-

triggered reduction in telomerase activity 

 

TC-28a2 chondrocytes were cultured with IL-1β (5, 10 

ng/ml) for 14 d, followed by detecting the telomerase 

activity. The telomerase activity was distinctly reduced 

from 30.1 to 24.5 and 20.6 IU/L by 5 and 10 ng/ml  

IL-1β, respectively (Figure 3A). Subsequently, TC-28a2 

chondrocytes were stimulated with 10 ng/ml IL-1β with 

or without orexin-A (5 and 10 µM) for 14 d. The 

telomerase activity was noticeably declined from 30.6 

to 20.3 IU/L by IL-1β, then markedly elevated to 24.5 

and 28.3 IU/L by 5 and 10 µM orexin-A, respectively 

(Figure 3B). 

 
Treatment with orexin-A ameliorated IL-1β-induced 

cellular senescence  

 

Subsequently, the state of cellular senescence was 

checked. The percentage of SA-β-gal positive cells was 

observably increased by IL-1β, but largely reduced by 

5 and 10 µM orexin-A (Figure 4A, 4B), suggesting  

a repressive function of orexin-A on IL-1β- induced 

cellular senescence in chondrocytes. 

 
Treatment with orexin-A repressed IL-1β-triggered 

activation of the p53/p21 axis  

 

p53/p21 signaling is a critical pathway involved in 

cellular senescence [17]. Levels of acetyl-p53 (Figure 

5A) and p21 (Figure 5B, 5C) were sharply increased in 

IL-1β-cultured chondrocytes, but notably repressed by 

5 and 10 µM orexin-A, implying a suppressive role of 

orexin-A against the activated p53/p21 axis in IL-1β-

cultured chondrocytes. 
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Figure 1. Exposure to IL-1β reduced the expression of orexin-2 receptor (orexin-2R) in TC-28a2 chondrocytes in a dose-
dependent manner. Cells were stimulated with IL-1β (5, 10 ng/ml) for 24 hours. (A) mRNA levels of orexin-2R; (B) Protein levels of 
orexin-2R (#, ##P < 0.05, 0.01 vs. vehicle group, n = 6). 

 

 
 

Figure 2. Treatment with orexin-A inhibited IL-1β-induced expression of pro-inflammatory cytokines. Cells were stimulated 

with IL-1β (10 ng/ml) in the presence or absence of orexin-A (5 and 10 µM) for 12 hours. (A) mRNA of TNF-α and CXCL-1; (B) Protein levels 
of TNF-α and CXCL-1 (##P < 0.01 vs. vehicle group; ^, ^^P < 0.05, 0.01 vs. IL-1β group, n = 6). 
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Figure 3. Treatment with orexin-A ameliorated IL-1β-induced reduction in telomerase activity. (A) Cells were stimulated with 

IL-1β (5, 10 ng/ml) for 14 days. Telomerase activity was measured; (B) Cells were stimulated with IL-1β (10 ng/ml) with or without orexin-A 
(5 and 10 µM) for 14 days. Telomerase activity was measured (#, ##P < 0.05, 0.01 vs. vehicle group; ^, ^^P < 0.05, 0.01 vs. IL-1β group, n = 5). 

 

 
 

Figure 4. Treatment with orexin-A ameliorated IL-1β-induced cellular senescence. Cells were stimulated with IL-1β (10 ng/ml) 

with or without orexin-A (5 and 10 µM) for 14 days, cellular senescence was measured using senescence-associated β-galactosidase (SA-β-
gal) staining. (A) Representative images of SA-β-gal staining; (B) Quantification of SA-β-gal staining (##P < 0.01 vs. vehicle group; ^, ^^P < 0.05, 
0.01 vs. IL-1β group, n = 5). 
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Treatment with orexin-A reversed IL-1β-triggered 

reduction of SIRT3 

 

Firstly, TC-28a2 chondrocytes were cultured with  

IL-1β (5, 10 ng/ml) and SIRT3 was found remarkably 

downregulated (Figure 6A, 6B). Then, chondrocytes 

were stimulated with 10 ng/ml IL-1β with or without 

orexin-A (5 and 10 µM). The declined SIRT3 level 

observed in IL-1β-cultured chondrocytes was remarkably 

increased by 5 and 10 µM orexin-A (Figure 6C, 6D). 

 

Silencing of SIRT3 abolished beneficial effects of 

orexin-A in preventing cellular senescence 

 

To confirm the role of SIRT3 in the function of  

orexin-A, TC-28a2 chondrocytes were transduced with 

 

 
 

Figure 5. Treatment with orexin-A prevented IL-1β-induced activation of the p53/p21 axis. Cells were stimulated with IL-1β 

(10 ng/ml) with or without orexin-A (5 and 10 µM). (A) The levels of Acetyl-p53; (B) The mRNA levels of p21; (C) The protein levels of p21  
(##P < 0.01 vs. vehicle group; ^, ^^P < 0.05, 0.01 vs. IL-1β group, n = 5). 
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Ad-SIRT3 shRNA, followed by stimulation with IL-1β 

(10 ng/ml) with or without orexin-A (10 µM). The 

successful knockdown of SIRT3 in chondrocytes was 

confirmed by the Western blotting assay (Figure 7A). 

The telomerase activity was reduced from 30.8 to 20.5 

IU/L by IL-1β, then elevated to 29.1 IU/L by orexin-A. 

Following the knockdown of SIRT3, the telomerase 

activity was reversed to 21.6 IU/L (Figure 7B). 

Furthermore, the increased proportion of SA-β-gal 

positive cells in IL-1β-cultured chondrocytes was 

markedly repressed by orexin-A but notably elevated by 

knocking down SIRT3 (Figure 7C). The upregulated 

acetyl-p53 (Figure 7D) and p21 (Figure 7E) in IL-1β-

cultured chondrocytes were largely downregulated by 

orexin-A, but remarkably elevated by knocking down 

SIRT3. 
 

DISCUSSION 
 

Cellular senescence is an irreversible cell  

cycle arrest that includes DNA damage, loss of  

mitochondrial function, activation of proto-oncogenes 

or tumor suppressor genes, and oxidative stress [18]. 

Characteristics of cellular senescence include increased 

SA-β-gal activity, upregulated senescence-associated 

proteins p53, p16, and p21, and elevated degradation of 

 

 
 

Figure 6. Treatment with orexin-A attenuated IL-1β-induced reduction of SIRT3. (A, B) Cells were stimulated with IL-1β (5, 10 ng/ml). 

mRNA and protein levels of SIRT3 were measured. (C, D) Cells were stimulated with IL-1β (10 ng/ml) with or without orexin-A (5 and 10 µM). 
mRNA and protein levels of SIRT3 were measured (#, ##P < 0.05, 0.01 vs. vehicle group; ^, ^^P < 0.05, 0.01 vs. IL-1β group, n = 5).  
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LaminB1 protein [19, 20]. OA involves multiple tissues 

throughout the joint, among which the degeneration and 

destruction of articular cartilage are most significant. 

Multiple cellular senescence markers, such as p16, p21, 

IL-6, and IL-8, have been identified in chondrocytes, 

chondroblasts, synovial fibroblasts, and infrapatellar  

fat pads of patients with OA [21]. Some studies have 

compared normal cartilage from the hip fracture of 

elderly patients with OA cartilage removed during joint 

arthroplasty and found β-gal staining only in OA 

chondrocytes. A previous study identified evidence  

of chondrocyte senescence in OA cartilage, including 

telomere length reduction and DNA damage, as well as 

increased p16 expression [22]. Senescent chondrocytes 

are found in articular cartilage following total knee 

arthroplasty and accumulate with age, and more 

senescent chondrocytes are observed in OA cartilage 

compared to age-matched healthy cartilage [22]. It has 

been found that senescent cells are only present in the 

diseased areas of OA joints, further confirming the 

relationship between OA and chondrocyte senescence 

[23]. Chondrocytes rarely proliferate under normal 

circumstances [24], suggesting that the presence of 

senescent cells in OA joints may be related to 

senescence processes rather than replicative senescence. 

Senescent cells secrete senescence-associated 

secretory phenotype (SASP) factors, such as matrix 

metalloproteinase (MMP)-1, MMP-3, and MMP-13 

[25], leading to an imbalance between cartilage 

synthesis and degradation homeostasis, resulting in 

structural disorders and dysfunction [26]. Herein,  

in line with previous data reported by Huang [27]  

and Yin [28], declined telomerase activity and 

enhanced SA-β-gal activity were observed in IL-1β-

cultured chondrocytes, accompanied by aggravated 

inflammation. Following orexin-A incubation, the 

telomerase and SA-β-gal activity were reversed, 

revealing a repressive function of orexin-A against 

chondrocyte senescence. Moreover, the p53/p21 axis 

was found activated in IL-1β-cultured chondrocytes, 

similar to the results presented by Shao [29]. The 

introduction of orexin-A notably repressed the p53/p21 

axis, further confirming the anti-senescent activity of 

orexin-A. 

 

SIRT3 is a member of the silent information regulator  

2 protein (Sirtuin) family and a NAD-dependent 

deacetylase [30], which is primarily located in 

mitochondrial and nuclear fractions and is evidenced to 

be closely related to the human lifespan [31]. SIRT3 has 

 

 
 

Figure 7. Silencing of SIRT3 abolished the beneficial effects of orexin-A in preventing cellular senescence. Cells were 

transducted Ad-SIRT3 shRNA, followed by stimulation with IL-1β (10 ng/ml) with or without orexin-A (10 µM). (A) Successful knockdown of 
SIRT3; (B) Telomerase activity was measured; (C) Quantification of SA-β-gal staining; (D) The levels of Acetyl-p53; (E) The mRNA levels of 
p21 (##P < 0.01 vs. vehicle group; ^^P < 0.01 vs. IL-1β group; **P < 0.01 vs. IL-1β+ orexin-A group, n = 5). 
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been shown to regulate various biological processes of 

mitochondria, including ROS degradation, ATP pro-

duction, mitochondrial dynamics, oxidation of nutrients, 

and mitochondrial unfolded protein response (UPR) [32]. 

Additionally, SIRT3 plays a key role in mitochondrial 

homeostasis, oxidative stress, metabolism, and genomic 

stability through its deacetylation function [33–35].  

In recent years, multiple studies have demonstrated  

that SIRT3 significantly inhibits the process of cell 

senescence [35–37]. Herein, a downregulation of  

SIRT3 was observed in IL-1β-cultured chondrocytes, 

consistent with the research conducted by Wang [38]. 

The introduction of orexin-A largely increased the 

SIRT3 level, implying that the anti-senescent activity  

of orexin-A is possibly correlated to the SIRT3 

activation. Furthermore, the impact of orexin-A on the 

cell senescence and p53/p21 axis in IL-1β-cultured 

chondrocytes was abrogated by silencing SIRT3, further 

confirming that SIRT3 participated in the anti-senescent 

activity of orexin-A. Both orexin-A and orexin-B  

are derived from a common precursor secreted by 

hypothalamic neurons. Different biological functions  

of orexin-A and orexin-B have been reported in 

previous studies. It should be noted that the potential 

benefits of orexin-B in OA are less reported. We will 

investigate whether orexin-B exerts anti-OA effects in 

our future studies. 

 

In summary, orexin-A alleviated cell senescence in  

IL-1β-cultured chondrocytes by activating SIRT3. 

These findings suggest the novel potential for OA 

interventions by using orexin-A. 
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