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INTRODUCTION 
 

Glioma is one of the most prevalent malignant tumors 

affecting the central nervous system, characterized  

by aggressive growth, high resistance to therapy,  

and increased recurrence rates [1–4]. The 2021 World 

Health Organization (WHO) classification criteria 

categorize malignant gliomas into low-grade gliomas 

(WHO grade II and III) and high-grade gliomas, notably 

glioblastoma (GBM, WHO IV) [5]. Low-grade gliomas 

(LGG) exhibit clinical and histological heterogeneity, 

with varying prognoses and risks of progression to 

aggressive GBM [6, 7]. Despite traditional approaches 
such as surgery, radiotherapy, and chemotherapy, 

treatment options for LGGs are limited, resulting in 

frequent disability and premature death. 

The current treatment strategy for LGG involves a 

comprehensive assessment of various prognostic 

factors, encompassing age, gender, initial symptoms, 

neurological deficits, Karnofsky Performance Status 

(KPS), tumor grade, histology, tumor size and 

localization, and the extent of resection [8–12]. While 

molecular markers such as IDH mutations, 1p19q  

co-deletions, and MGMT promoter methylation play a 

crucial role in prognosis, diagnosis, management, and 

potential targeted treatments of LGG [13–18], their 

limitations are evident, particularly given the prevalence 

of IDH1 mutations in LGG patients [19–21]. 

 
Reactive oxygen species (ROS) play an important  

role in cancer progression [22, 23], with cancer cells 

frequently displaying elevated baseline ROS due to 
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ABSTRACT 
 

Cancer cells can induce molecular changes that reshape cellular metabolism, creating specific vulnerabilities for 
targeted therapeutic interventions. Given the importance of reactive oxygen species (ROS) in tumor 
development and drug resistance, and the abundance of reduced glutathione (GSH) as the primary cellular 
antioxidant, we examined an integrated panel of 56 glutathione metabolism-related genes (GMRGs) across 
diverse cancer types. This analysis revealed a remarkable association between GMRGs and low-grade glioma 
(LGG) survival. Unsupervised clustering and a GMRGs-based risk score (GS) categorized LGG patients into two 
groups, linking elevated glutathione metabolism to poorer prognosis and treatment outcomes. Our GS model 
outperformed established clinical prognostic factors, acting as an independent prognostic factor. GS also 
exhibited correlations with pro-tumor M2 macrophage infiltration, upregulated immunosuppressive genes, and 
diminished responses to various cancer therapies. Experimental validation in glioma cell lines confirmed the 
critical role of glutathione metabolism in glioma cell proliferation and chemoresistance. Our findings highlight 
the presence of a unique metabolic susceptibility in LGG and introduce a novel GS system as a highly effective 
tool for predicting the prognosis of LGG. 
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metabolic shifts and genomic mutations [24, 25]. This 

requires a higher antioxidant demand for cancer 

survival [26, 27]. Furthermore, the cancer redox 

environment constitutes a crucial element of the tumor 

immune microenvironment (TIME), influencing tumor 

progression, immune infiltration, immune evasion,  

and responses to immunotherapy [28, 29]. Reduced 

glutathione (GSH), as the most abundant intracellular 

antioxidant, plays a vital role in cellular defense 

against oxidative stress, contributing to metastasis  

and chemoresistance [30]. Classical tumor metabolic 

pathways, including Myc, p53, and PI3K can perturb 

intracellular glutathione levels [31–33]. The depletion 

of glutathione has been used in cancer therapy [31, 34, 

35]. Despite the crucial role of glutathione metabolism 

in cancer therapy, the characterization of glutathione 

metabolism-related signatures in low-grade glioma 

(LGG) prognosis and treatment remains underexplored.  

 

While previous studies have explored the use of 

antioxidants, including GSH levels and antioxidant 

enzymes, to predict LGG prognosis and guide 

treatment [36–38], a systematic investigation into the 

collective impact of an integrated GMRGs gene set on 

LGG prognosis and treatment has been lacking. In our 

study, we demonstrate that a risk score derived from a 

set of GMRGs serves as a highly effective predictive 

factor for LGG prognosis and treatment outcomes. 

Additionally, we provide experimental evidence from 

glioma cell lines indicating the critical role of GSH 

metabolism levels in cancer cell progression. 

 

RESULTS 
 

Given the important role of glutathione  

metabolism in tumor development, our study 

commenced by identifying all 56 human GMRGs  

from the MSigDB database using the gene set 

“GOBP_GLUTATHIONE_METABOLIC_PROCESS”. 

Subsequently, we examined the expression levels of these 

GMRGs and their correlation with patient prognosis 

across 33 different cancer types, encompassing more than 

10,000 patient samples. When ranked by survival, LGG 

exhibited a strong association of patient survival with 

this gene set, with almost half of the genes significantly 

associated with overall survival (OS) in LGG patients. 

(Supplementary Figure 1 and Supplementary Table 1). 

Among the 56 GMRG genes, 35 are up-regulated and 17 

are down-regulated in LGG patient samples compared 

to normal brain tissue (Supplementary Figure 2A). 

Additionally, GMRGs were found to be associated  

with infrequent mutations (Supplementary Figure 2B), 

but extensive copy number alterations (Supplementary 

Figure 2C). A genetic interaction network was 

constructed with GeneMANIA which demonstrated  

the association among GMRGs (Figure 1A).  

Next, we assessed the impact of glutathione metabolism 

on survival in LGG patients and discovered a significant 

correlation between high glutathione metabolism and 

worse survival rates (Figure 1B). These findings suggest 

that glutathione metabolic processes play an important 

role in the development and prognosis of LGG. To 

effectively utilize the predictive power of GMRGs in 

LGG treatment and prognosis, we implemented two 

modeling approaches. Additionally, we validated 

treatment paradigms and key gene functions in glioma 

cell lines. The workflow of the subsequent study is 

depicted in Figure 2. 

 

Consensus clustering analysis of GMRGs 

 

Identification of two GMRGs-related clusters 

To identify distinct subgroups of LGG patients based on 

their GMRGs expression patterns, we employed 

consensus clustering. This analysis revealed 2 distinct 

clusters, designated as Cluster 1 (n=392) and Clusters 2 

(n=122) (Figure 1C). Principal Component Analysis 

(PCA) further confirmed the distinct separation of LGG 

patients into these two clusters (Figure 1D). Cluster 2 

exhibited significantly higher glutathione metabolism 

scores compared to Cluster 1 (Figure 1E). The heatmap 

further illustrated that Cluster 2 has higher GMRGs 

expression levels compared to Cluster 1 (Figure 1F). 

Therefore, we designated Cluster 2 as the glutathione 

metabolism-high cluster (GM-high cluster) and Cluster 

1 as the glutathione metabolism-low cluster (GM-low 

cluster). Survival analysis revealed that GM-low cluster 

patients had a significantly superior prognosis for 

overall survival (OS), disease-specific survival (DSS), 

progression-free survival (PFS). While disease-free 

survival (DFS) displays a tendency to favor GM-low 

cluster patients, the difference is not statistically 

significant (Figure 1G). These findings highlight the 

strong association between GMRGs-related clusters, 

glutathione metabolic activity, and prognosis in LGG 

patients. 

 
Functional analysis of the two GMRGs-related 

clusters 

To explore the molecular and cellular mechanisms 

underlying the disparate clinical outcomes observed in 

the two clusters, we performed functional enrichment 

analysis. Employing stringent criteria (| logFoldChange| 

>1 and FDR < 0.05), we identified 3,898 Differentially 

Expressed Genes (DEGs) between the two clusters 

(Supplementary Table 2). Gene Ontology (GO) 

functional enrichment analysis revealed significant 

enrichment of these DEGs in leukocyte-mediated 

immunity, antigen binding, external side of plasma 

membrane, and MHC protein complex (Supplementary 

Figure 3A). Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis further highlighted the 
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association of DEGs with neuroactive ligand−receptor 

interaction, cytokine−cytokine receptor interaction, focal 

adhesion, and the natural killer cell-mediated cytotoxicity 

(Supplementary Figure 3B). These findings suggest that 

the immune microenvironment may play a crucial role 

in shaping the distinct phenotypes of the clusters. 

 

Development and validation of a GMRGs-based risk 

score model 

 

Development of GMRGs-based risk score (GS) 

To develop a more robust GMRGs-based prognostic 

model, three machine learning methods (Lasso,

 

 
 

Figure 1. Identification of two distinct clusters in low-grade glioma (LGG) patients using consensus clustering. (A) The protein-
protein interaction (PPI) network of GMRGs. (B) Kaplan-Meier (K-M) survival analysis based on glutathione metabolism scores. (C) Consensus 
clustering divides all The Cancer Genome Atlas (TCGA)-LGG patient samples into two clusters. (D) PCA analysis shows that the two GMRGs-
related clusters are distinctly separated. (E) Glutathione metabolism differs between the two clusters. (F) Glutathione metabolism related 
genes (GMRGs) expression levels in the two clusters. (G) Survival differences between the two clusters in OS, disease-specific survival (DSS), 
progression-free survival (PFS), and disease-free survival (DFS).  
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Figure 2. The flowchart of the study. 
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SuperPC, plsRcox) were used for model construction 

(Figure 3A and Supplementary Figure 4A, 4B). The 

intersection of the model genes screened by the three 

methods revealed that the 12 genes identified by the 

Lasso method were also identified by the other two 

methods (Supplementary Figure 4C and Supplementary 

Table 3). We compared the C-index of the models 

constructed by three methods and found that the Lasso 

method exhibited the highest C-index (Supplementary 

Figure 4D). Therefore, we employed LASSO Cox 

regression analysis to construct our model and identified 

12 genes for inclusion in the predictive risk model 

based on the optimized λ score (Figure 3A). Employing 

gene expression levels and regression coefficients,  

we formulated the risk score as follows: risk score = 

(0.0560)*DPEP1 + (0.2753)*G6PD + (-0.1521)*GCLC 

+ (0.0802)*GCLM + (-0.0492)*GGT1 + (0.0231)*GGT5 

+ (0.0213)*GSR + (0.2717)*GSS + (-0.1901)*GSTA4 + 

(0.2046)*IDH1 + (0.6843)*NFE2L2 + (0.4495)*OPLAH 

(Figure 3B). The expression levels of these 12  

genes among TCGA-LGG tumor samples and CCLE 

CNS/Brain cell lines were illustrated (Supplementary 

Figure 4E, 4F). We also explored the perturbation 

effects of these genes which suggested that the 

importance of DPEP1, G6PD, GGT1, GGT5, IDH1,  

and NFE2L2 for glioma cell survival (Supplementary 

Figure 4G). This formula revealed higher risk scores  

for the GM-high cluster (Figure 3C), indicating a strong 

correlation between the consensus clustering and the 

risk score. The Sankey diagram (Figure 3D) further 

corroborates this association. Additionally, the high-risk 

group exhibited elevated glutathione metabolism scores 

(Figure 3E), similar to the GM-high cluster (Figure 1E). 

 

Validation of the GMRGs-based risk model  

Survival analysis based on the GS model revealed  

that both TCGA and CGGA patients in the low- 

risk group experienced a more favorable prognosis 

compared to those in the high-risk group (Figure  

3F, 3G). A positive correlation was also observed 

between risk scores and mortality rates, as evidenced  

by the distribution of risk scores and clinical outcomes 

(Figure 3H, 3I). Additionally, for patients who received 

radiotherapy or chemotherapy in both datasets, higher 

risk scores were associated with poorer outcomes 

(Supplementary Figure 4H, 4I), suggesting that the GS 

model is also useful in predicting the prognosis of 

radiotherapy and chemotherapy in LGG patients.  

 

When assessed using a univariate Cox analysis, the  

GS model demonstrated the strongest association 

between GS and LGG prognosis among 33 different 

cancer types (Supplementary Figure 4J). Additionally, 
the GS score is significantly associated with prognosis 

in other cancer types, including liver hepatocellular 

carcinoma (LIHC), acute myeloid leukemia (LAML), 

prostate adenocarcinoma (PAAD), uveal melanoma 

(UVM), glioblastoma multiforme (GBM), and uterine 

carcinosarcoma (UCS) (Supplementary Figure 4J), 

suggesting that it may be a useful prognosis tool for  

a variety of cancers. Compared to existing LGG 

prognostic models [39–42], the GS model exhibited 

superior predictive performance, as evidenced by 

higher-index values (Figure 3J). The GS model also 

outperformed established clinical prognostic factors, 

including neoplasm grade, IDH1 mutation status, and 

MGMT promoter methylation, as indicated by higher 

area-under-the-curve (AUC) values in ROC curves 

(Figure 3K). 

 

Independent prognostic analysis and nomogram 

construction 

Following the construction of the predictive risk 

model, we investigated whether our GS scoring system 

overlaps with other known clinical factors. Univariate 

Cox analyses indicated that the GS risk score, neoplasm 

grade, IDH1 mutation status, and MGMT promoter 

methylation were all significantly prognostic factors 

(Figure 4A, 4B). Significant relationships were also 

observed between the GS risk score and each of  

these clinical factors (Supplementary Figure 5A–5D). 

However, multivariate Cox analyses demonstrated that 

the GS risk score remained an independent prognostic 

factor for LGG prognosis even after adjusting for other 

clinical factors (Figure 4C, 4D). 

 

To enable quantitative predictions in LGG patients,  

we developed an innovative nomogram based on risk 

scores and clinical variables (Figure 4E). The predicted 

1, 3, and 5-year survival rates closely mirrored the 

actual observations (Figure 4F). The development of  

the nomogram further validated the risk model and 

underscored its potential as a valuable tool for risk 

stratification and clinical decision-making in LGG 

management. 

 

Distinct biological behaviors in high-risk and low-

risk groups  

 

Assessment of GS in biological processes and cancer 

stemness 

To elucidate the underlying mechanisms by which 

glutathione metabolism influences LGG cancer 

prognosis, we investigated its association with bio-

logical processes and cancer stemness. KEGG pathway 

analysis revealed that the high-risk group exhibited 

upregulation of glutathione metabolism and a variety of 

immunomodulation-related pathways, such as antigen 

processing and presentation, cytokine-cytokine receptor 
interaction (Figure 5A). HALLMARK gene set analysis 

demonstrated heightened activity in pathways related to 

ROS, immune responses, and several cancer-promoting
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Figure 3. Construction and validation of the GMRGs-based risk score. (A) Lasso Cox regression analysis identified 12 prognostic 

GMRGs for signature construction. (B) Coefficients for the 12 genes. (C) Risk scores correlate with the two GMRGs-related clusters from 
consensus clustering. (D) The Sankey diagram demonstrates the association of GMRGs-related clusters with GMRGs-based risk score and the 
survival status of LGG patients. (E) Glutathione metabolism scores are associated with high-risk and low-risk groups in the TCGA-LGG and 
CGGA-LGG datasets. (F, G) OS curves between the high-risk and low-risk groups in the TCGA-LGG and CGGA-LGG datasets. (H, I) Distribution 
map of risk scores (top) and patient survival status (bottom) in the TCGA-LGG and CGGA-LGG datasets. (J) The C-index of, Tan’s, Wang’s, 
Kuang’s, Cao’s and our GMRGs-based risk score (GS) signatures. (K) ROC curves comparing risk score, age, gender, grade, IDH1 status, and 
MGMT promoter status. 
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pathways, including angiogenesis and epithelial-

mesenchymal transition (EMT) (Figure 5B). GSEA 

revealed that a significant number of oncogenic 

signature pathways exhibited higher Normalized 

Enrichment Scores (NES) in the high-risk group 

(Figure 5C and Supplementary Table 4). Furthermore, 

we examined the GS’s relationship with cancer stem 

cell traits, uncovering a significant positive correlation 

with DNA methylation-based stemness score (DNAss) 

and a significant negative correlation with RNA 

methylation-based stemness score (RNAss), consistent 

with previous findings [42, 43] (Figure 5D, 5E). 

 

Evaluation of GS in chemotherapy efficacy 

To further investigate the clinical implications of GS in 

precision chemotherapy, we evaluated the therapeutic 

 

 
 

Figure 4. Independent prognostic analysis and the construction of nomogram. (A–D) Univariate Cox regression (A, B) and 
multivariate Cox regression (C, D) analysis of risk scores based on OS in TCGA-LGG and CGGA-LGG datasets. (E) Nomograms incorporating the 
GS and several clinical characteristics to predict the survival probability of LGG patients. (F) Calibration curves of the nomogram at 1-, 3-, and 
5-year intervals. 
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efficacy of various conventional chemotherapy drugs 

for treating LGG across the two different risk groups. 

Higher drug sensitivity scores indicate greater resistance 

to drugs [44]. The findings revealed that individuals  

in the low-risk group exhibited significantly  

enhanced responsiveness to Carmustine, Vorinostat,  

Sorafenib, Afatinib and Olaparib, while demonstrating 

significantly reduced responsiveness to Dasatinib, 5-

 

 
 

Figure 5. Biological processes associated with GMRGs-based risk score. (A) Gene set variation analysis (GSVA) depicts KEGG pathway 
activity differences between high-risk and low-risk groups. (B) GSVA reveals activity variation in 50 signature pathways between high-risk and 
low-risk groups. (C) Gene Set Enrichment Analysis (GSEA) illustrates normalized enrichment score (NES) for oncogenic signature gene sets 
between the high-risk and low-risk groups. (D, E) Correlation analysis of GS and tumor stem cell index based on DNAss (D) and RNAss (E).  
(F) Estimation of chemotherapy response for 10 potential therapeutic drugs between high-risk and low-risk groups. 
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Fluorouracil, Selumetinib, Entospletinib and Trametinib 

with high significance (Figure 5F). These results suggest 

that GS-based stratification can guide chemotherapy 

treatment selection to optimize treatment outcomes. 

 

Exploration of GS and tumor immune 

microenvironment 

Cancer prognosis is significantly influenced by its 

immune microenvironment. Therefore, we conducted  

a comprehensive investigation of immune-related 

disparities within the TCGA-LGG dataset. Our analysis 

revealed significant correlations between risk scores and 

stromal scores, immune scores, and ESTIMATE scores 

(Figure 6A). Multiple immune cell infiltration analysis 

methods demonstrated a positive correlation between 

the risk score and the presence of immune cells such as 

myeloid dendritic cells, M2 macrophages, and cancer-

associated fibroblasts (Figure 6B), which all contribute 

to tumor prognosis [45–48].  

 

Furthermore, we observed a significant elevation of 

numerous immune inhibitors in the high-risk group 

(Figure 6C). This group exhibited increased activity  

in steps related to antigen release (step 1), T cell 

transfer (step 4), immune cell infiltration (step 5),  

and T cell recognition (step 6), while simultaneously 

demonstrating decreased activity in priming and 

activation (step 3) and cancer cell killing (step 7) 

(Figure 6D). These findings provide insights into the 

intricate immune landscape associated with GS and  

may help to explain the observed survival differences 

between risk groups. 

 

Given the apparent connection between GS and  

the immune microenvironment, we investigated the 

association between GS and immunotherapy response. 

The results indicated that the high-risk group had higher 

TIDE, Dysfunction, and Exclusion scores, suggesting 

an increased likelihood of immune escape (Figure  

6E). Consistent with these findings, our analysis also 

revealed a correlation between high levels of immune-

suppressive macrophage infiltration and poor prognosis 

in LGG patients (Figure 6F). Additionally, patients in 

the high-risk group exhibited a worse prognosis in  

the IMvigor210 immunotherapy cohort (Supplementary 

Figure 5E). These findings suggest that patients in  

the high-risk group may be less likely to benefit  

from immunotherapy if it becomes available for LGG 

treatment. 

 

Analysis of GMRGs expression patterns with 
scRNA-seq 
Finally, we conducted an analysis using three  
glioma single-cell datasets, Glioma_GSE89567, Glioma 

GSE70630 and Glioma_GSE131928_10X, to examine 

the cell-specific expression of GMRGs. In the first two 

datasets, the UMAP plot revealed the presence of four 

distinct cell populations: astrocytic differentiation (AC)-

like malignant cells, mono/macro cells, oligodendro-

cyte differentiation (OC)-like malignant cells and 

oligodendrocytes (Supplementary Figure 6A, 7A). We 

subsequently investigated the expression of model 

genes in these two datasets. GSTA4 and IDH1 were 

predominantly expressed in malignant cells, while  

GSR, GSS, NFE2L2, G6PD, GCLC, GCLM, and  

GGT1 were expressed in both normal and malignant 

cells (Supplementary Figures 6B–6D, 7B–7D). In the 

GSE131928 dataset, eight cell types were clustered, 

including AC-like Malignant, CD8Tex, MES-like 

Malignant, Malignant, Mono/Macro, NPC-like 

Malignant, OPC-like Malignant, and Oligodendrocyte. 

The expression patterns of the model genes were similar 

to the GSE89567 and GSE70630 datasets. GSTA4 and 

IDH1 were predominantly expressed in malignant cells, 

while GSR, GSS, NFE2L2, G6PD, GCLC, GCLM, and 

GGT1 were expressed in both normal and malignant 

cells (Supplementary Figure 8). These findings suggest 

that some GMRGs are expressed in tumor surrounding 

cells to play their regulatory roles in cancer progression. 

 

GSH depletion inhibits glioma cell proliferation and 

enhances chemotherapy sensitivity 

 

We have demonstrated through comprehensive 

bioinformatics analyses that GMRGs-related clusters 

and GS are strongly correlated with glutathione 

metabolic activity and, in turn, associated with disease 

treatment and prognosis. To further validate the role  

of GSH metabolism, we conducted experiments  

to investigate whether glutathione is essential for 

proliferation and chemosensitivity in glioma cell lines. 

 

We selected one neuroglioma cell line, H4, and one 

glioblastoma cell line, T98G, since our GS also shows 

predictive power in the prognosis of glioblastoma 

patients (Supplementary Figure 4J). The selection of 

these cell lines aligns with the clinical observation that 

over 70% of LGG advance to higher-grade glioma  

or become aggressive within a decade [49]. Depleting 

glutathione using the glutathione synthesis inhibitor 

BSO [50] led to decreased GSH levels in both glioma 

cell lines (Figure 7A) and a significant reduction in cell 

proliferation and colony formation (Figure 7B–7D).  

 

This treatment also enhanced glioma cells’ drug 

sensitivity to sorafenib and carmustine (Figure 7E, 

7F), consistent with our analysis showing that a  

low GS score is associated with higher sensitivity 

(lower sensitivity score) to these two drugs (Figure 
5F). Additionally, the enhanced sensitivity can be 

completely reversed by the exogenous addition of 

antioxidants GSH and NAC (Figure 7G, 7H). These 
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Figure 6. Correlation of GS and tumor immune microenvironment (TIME) characteristics. (A) Variation in TIME scores between 
high-risk and low-risk groups. (B) Correlation between GS and immune cell infiltration assessed through different immunocyte analysis. (C, D) 
Differences in the expression of immunosuppressive genes (C) and cancer immune cycle scores (D) between high-risk and low-risk groups.  
(E) Disparity in Tumor Immune Dysfunction and Exclusion (TIDE) scores between low-risk and high-risk groups. (F) K-M survival analysis based 
on macrophage infiltration levels in TCGA-LGG patients.  
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findings underscore the crucial role of glutathione 

metabolism in glioma proliferation and its significance 

in conferring resistance to chemotherapy treatments. 

 

NFE2L2 promotes glioma cell proliferation and 

migration 

 

Among the twelve signature genes in the risk score, 

NFE2L2 has the most prominent role (Figure 3B). 

The human gene NFE2L2 encodes nuclear factor 

erythroid 2-related factor 2 (NRF2), a master 

transcription factor against oxidative damage [51, 52]. 

NFE2L2 expression was significantly upregulated 

with increasing glioma grade (Figure 8A, 8B). This 

observation was further validated by pathology 

immunohistochemical staining, which revealed higher 

NFE2L2 protein levels in the patient samples with 

higher grade gliomas (Figure 8C).  

 

 
 

Figure 7. Effect of decreased GSH levels on glioma cell proliferation and drug resistance. (A) Measurement of glutathione content 

in T98G and H4 cell lines following preincubation with 100 μM L-buthionine-S,R-sulfoximine (BSO) for 24 h. (B) Effect of BSO treatment on the 
proliferation of T98G and H4 cell lines. (C) Colony formation results in response to BSO treatment. (D) Histograms showing the number of 
colonies under different experimental conditions. (E, F) Measurement of cell viability in T98G and H4 cells treated with varying 
concentrations of sorafenib or carmustine, either in combination with PBS or BSO (100 μM), for 24 h. (G, H) Cell viability assessment in T98G 
and H4 cells treated with BSO (100 μM) and sorafenib (4 μM) or carmustine (100 μM for T98G, 50 μM for H4), along with NAC (5 mM) or GSH 
(5 mM), for 24 hours. All data points are presented as mean ± SD from three or four independent experiments.  
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Figure 8. Expression analysis and biological function assessment of NFE2L2. (A) NFE2L2 expression in normal tissues and gliomas 
was examined using TCGA and GTEx data. (B) Quantification of NFE2L2 expression levels from CGGA datasets. (C) Typical IHC images of 
NFE2L2 expression in the HPA database. (D) qRT-PCR analysis of NFE2L2 mRNA expression in human astrocytes (NHA) and glioma cell lines 
(H4, T98G). (E) Validation of NFE2L2-specific shRNA knockdown efficiency in T98G and H4 cell lines by qRT-PCR. (F) Assessment of glutathione 
levels in T98G and H4 cells after NFE2L2 knockdown. (G) Impact of NFE2L2 knockdown on the proliferation of T98G and H4 cells. (H) Colony 
formation in response to NFE2L2 knockdown in T98G and H4 cell lines. (I) Histograms showing the number of colonies. (J) Scratch 
experiments revealing the effect of NFE2L2 knockdown on the migratory capacity of T98G and H4 cell lines. (K) Histograms showing the 
migration rate (N=5 or N=6). All data points were presented as mean ± SD, from three to six independent experiments. 

9529



www.aging-us.com 13 AGING 

Our experimental data demonstrated that glioma cell 

lines H4 and T98G exhibited higher expression levels of 

NFE2L2 compared to normal human astrocytes (NHAs) 

(Figure 8D). Additionally, NFE2L2 expression positively 

correlated with malignancy, with the glioblastoma  

cell line T98G showing significantly higher NFE2L2 

levels than the neuroglioma cell line H4 (Figure 8D). 

Knockdown of NFE2L2 using shRNA (Figure 8E) 

resulted in reduced GSH levels in T98G and H4 cells 

(Figure 8F), along with significantly inhibited cell 

proliferation and clone formation capability in both cell 

lines (Figure 8G–8I). Moreover, the wound healing 

assay demonstrated a decrease in cell migration ability 

following NFE2L2 knockdown (Figure 8J, 8K). These 

findings further solidify the role of NFE2L2 as a key 

signature gene in our GS prediction system for LGG 

prognosis. 

 

DISCUSSION 
 

Our investigation elucidates the role of glutathione 

metabolism, as reflected by the expression levels of a 

cluster of GMRGs, in predicting prognosis and treatment 

efficacy in LGG. Using GMRGs, both unsupervised 

clustering and a 12-core GMRGs-based risk model 

successfully categorized patients, revealing significant 

differences in cancer progression and treatment 

outcomes. Importantly, the risk model emerged as an 

independent prognostic factor, surpassing established 

models, and exhibited strong correlations with prognosis, 

proto-oncogene signaling, clinicopathology, and immune 

infiltration. Both methods demonstrated interrelatedness 

with respect to glutathione metabolism and were 

correlated with each other. 

 

In experiments, we validated that depleting glutathione 

(GSH), either through the application of the chemical 

inhibitor BSO or by knocking down its regulatory gene 

NFE2L2, negatively impacted glioma cell proliferation, 

colony formation, and migration. These findings strongly 

suggest that glutathione metabolism likely has a direct 

effect on glioma cancer cells rather than acting through 

the manipulation of TIME. 

 

However, our analysis reveals that the immune 

environment can also play an important supportive  

role, as indicated by our risk score model’s association 

with differential immune landscape and immunotherapy 

prognosis. Despite the presence of tight junctions in the 

blood-brain barrier, functional lymph nodes and various 

immune cell types exist within the CNS [53–55]. In brain 

tumors, the majority of immune cells are macrophages 

[56], predominantly of the immunosuppressive M2 

subtype, which contribute to an immunosuppressive role 

by upregulating PD-L1 expression [57–59]. Notably,  

the high-risk group in our study exhibited significantly 

higher levels of macrophage infiltration, potentially 

fostering an immunosuppressive environment. Consistent 

with previous findings, our analysis suggests that 

heightened macrophage infiltration is detrimental to the 

patient’s prognosis.  

 

Both reducing and increasing ROS levels have been 

explored as potential therapeutic strategies, and the  

choice depends on the specific cancer type and stage.  

Our study, incorporating both database analyses and 

experimental findings, suggests that inducing a more 

oxidized environment by inhibiting glutathione (GSH) 

synthesis can impede glioma growth. This effect may be 

due to distinct metabolic signatures associated with this 

cancer type, elucidating the effectiveness of our GMRG-

based risk score in predicting prognosis for low-grade 

glioma (LGG) patients (Supplementary Figures 1, 4J). 

Indeed, lower grade gliomas and astrocytomas are 

reported to exhibit higher GSH levels than their higher-

grade counterparts [60, 61]. Whether this risk score model 

could translate into glutathione antioxidant treatment is 

not clear. To establish consistent clinical outcomes with 

antioxidant treatments in brain cancers, comprehensive 

mechanistic studies are essential, considering the tumor 

state, stages, and specific brain region locations. 

 

In summary, our study extensively investigated the  

link between GMRGs and LGG prognosis. By 

establishing a scoring system to quantify the GMRGs-

based risk, the score could serve as a valuable biomarker 

for predicting prognosis and response to immunotherapy 

and chemotherapy, which could contribute to the 

progress of precision therapies and clinical management 

of LGG patients.  

 

MATERIALS AND METHODS 
 

Data acquisition and pre-processing 

 

The Cancer Genome Atlas (TCGA)-LGG (N=514) gene 

expression data (FPKM), somatic mutations, and 

clinical information were obtained from the GDC 

database (https://portal.gdc.cancer.gov/). The data used 

to analyze differential expression of glutathione 

metabolism genes between LGG and normal brain 

tissues were downloaded from UCSC XENA, where 

batch effects have been removed [62]. The expression 

data for 33 cancer types and gene copy number variants 

(CNVs) for TCGA-LGG were also downloaded from 

UCSC XENA (https://xenabrowser.net/datapages/). The 

validation cohort (N=420) (DataSet ID: mRNAseq_693) 

was acquired from the Chinese Glioma Genome  

Atlas (CGGA) database. The expression level and 

perturbation effect of the 12 model genes in CNS/brain 

cell lines were downloaded from the DepMap database 

(https://depmap.org/portal/). The IMvigor210 dataset 
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(N=348) was downloaded using the R package 

“IMvigor210CoreBiologies”. TCGA-LGG mutation 

annotation format (MAF) files were analyzed using the 

R package “maftools”.  

 

GMRGs consensus clustering 

 

Consensus clustering of LGG patients based on GMRG 

expression was performed using the R package 

“ConsensusClusterPlus” [63, 64]. Euclidean distance 

clustering (K=2) was performed on 80% of the samples 

resampled 50 times. Kaplan-Meier (K-M) survival 

analysis was used to compare the prognosis differences 

between the two clusters [64, 65]. 

 

Differential gene screening and enrichment analysis 

 

Genes with a log fold change greater than 1 and an FDR 

less than 0.05 between the two clusters were considered 

differentially expressed. These genes were then used  

for GO and KEGG enrichment analysis using the 

“Clusterfiler” R package [66, 67]. 

 

Development and validation of GMRGs-based risk 

score 

 

The TCGA-LGG and CGGA-LGG datasets were 

standardized to remove batch effects, followed by 

univariate Cox regression analysis of shared GMRGs to 

identify prognostic genes. These genes were subjected 

to three machine learning algorithms (Lasso, SuperPC, 

and plsRcox) to select for the optimal combination for 

constructing the risk signature. Eventually, these genes 

were subjected to LASSO regression for further analysis. 

Risk scores were calculated as the sum of (gene 

coefficient * gene expression). Based on the median 

risk score of the TCGA-LGG dataset, the TCGA-LGG 

and CGGA-LGG datasets were categorized into high-

risk and low-risk groups. Kaplan-Meier analysis was 

used to compare prognostic differences between the 

groups. The relationship between the risk signature and 

clinicopathological characteristics was analyzed using 

the “ggpubr” package. The independence of the risk 

signature as a prognostic factor was assessed using the 

“survival” and “survminer” packages. The predictive 

ability of the risk signature was evaluated and compared 

to other systems using the “survival”, “survminer”,  

and “survcomp” packages. The receiver operating 

characteristic (ROC) curves of the GS model and  

some clinical factors were plotted with the “survival”, 

“survminer”, and “timeROC” packages. 

 

Functional enrichment analysis 

 

Gene Set Variation Analysis (GSVA) was performed  

on gene sets “c2.cp.kegg.v2023.1.Hs.symbols.gmt” 

and “h.all.v2023.1.Hs.symbols.gmt” using the  

R package “GSVA”, and Gene Set Enrichment  

Analysis (GSEA) was performed on gene set 

“c6.all.v2023.1.Hs.symbols.gmt” using the R package 

“clusterProfiler”. Glutathione metabolism scores  

were calculated using Single Sample Gene Set 

Enrichment Analysis (ssGSEA) on the gene set 

“GOBP_GLUTATHIONE_METABOLIC_PROCESS”, 

and differences between groups were evaluated using 

the “ggpubr” package. The gene sets used above were 

obtained from the Molecular Signature Database 

(MsigDB, http://software.broadinstitute.org/gsea/msigdb/). 

IHC images for NFE2L2 were obtained from the HPA 

database (https://www.proteinatlas.org/). 

 

Immune landscape identification and 

immunotherapy assessment 

 

The ESTIMATE algorithm was used to assess 

StromalScore, ImmuneScore, and ESTIMATEScore  

in LGG tumor microenvironment. Immune cell 

infiltration analysis (TIMER, CIBERSORT, quanTIseq, 

xCell, MCP-counter, EPIC) [68–73] were obtained from 

TIMER2 online tool (http://timer.cistrome.org/) and used 

in Spearman correlation analysis and K-M analysis. 

Tumor Immune Dysfunction and Exclusion (TIDE) 

scores of the TCGA-LGG samples were generated  

using the TIDE online tool (http://tide.dfci.harvard.edu/). 

Prognostic analysis of glutathione metabolism genes 

across 33 cancer types were performed using the  

Gene Set Cancer Analysis (GSCA) online plat- 

form (http://bioinfo.life.hust.edu.cn/GSCA/#/). Cancer-

Immunity Cycle data were sourced from the TIP  

website (http://biocc.hrbmu.edu.cn/TIP/help.jsp), and a 

list of immune inhibitors was obtained from TISIDB 

(http://147.8.185.80/TISIDB/). TIDE scores, Cancer-

Immunity Cycle activity scores, and immune inhibitor 

genes expression levels were compared using the 

“ggpubr” package. 

 

Analysis of drug sensitivity 

 

The drug sensitivity score for chemotherapeutic  

agents in LGG patients was predicted using the R 

package “oncopredict”, with expression profile data and 

corresponding drug response information sourced from 

the GDSC2 database. Differences in drug sensitivity 

between the high-risk and low-risk groups were 

examined using the Wilcox test. 

 

Single-cell sequencing analysis and construction of 

nomograms 

 
Gene expression in the Glioma_GSE89567, 

Glioma_GSE70630, and Glioma_GSE131928_10X 

single-cell datasets were analyzed using the TISCH2 
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website (http://tisch.comp-genomics.org/home/) [74]. A 

nomogram was generated by integrating gene signatures 

and clinical characteristics with the R package “RMS”. 

Each patient’s total score was calculated as the sum  

of variable scores for each parameter. The calibration 

curves were used to assess the prognostic value of the 

predicted 1-, 3-, and 5-year OS rates in comparison to 

actual observations. 

 

Cell culture 

 

The NHA, T98G, H4 and HEK-293T cell lines were 

obtained from the American Type Culture Collection 

(ATCC) and cultured in DEME medium (Cytiva) 

supplemented with 1% penicillin/streptomycin and 10% 

FBS (Gibco). These cells were maintained at 37° C in a 

humidified atmosphere containing 5% CO2. 

 

GSH concentration measurement 

 

The cells were trypsin-digested, washed thrice with 

PBS, and subsequently resuspended in PBS before 

undergoing sonication. Protein concentrations of the 

samples were measured using the BCA protein assay kit 

(Beyotime Biotechnology), while GSH concentrations 

were measured using the reduced glutathione assay kit 

(Nanjing Jiancheng Bioengineering Institute). The GSH 

concentration of the samples was then normalized to the 

protein concentration. 

 

Cellular assays 

 

In cell viability assays, H4 and T98G cells were seeded 

at 2000 cells per well in 96-well plates and treated with 

varying concentrations of L-buthionine-S,R-sulfoximine 

(BSO), sorafenib, or carmustine. After 24 hours, cell 

viability was measured using 10 μg/ml Resazurin. For 

colony formation, H4 and T98G cells were plated at 

2000 cells per well in six-well plates and the medium 

changed every three days over 11 days. Subsequently, 

the cells were fixed, stained with crystal violet, and 

analyzed using ImageJ. In the wound healing assay, 

cells were seeded at 3x10^5 cells per well in a six- 

well plate with a straight line marked at the bottom.  

The following day, a sterile 200 μl tip created a 

perpendicular scratch, and after three PBS washes, 

serum-free medium was added. Photographs at 0 and  

24 hours recorded the scratch positions, and cell 

migration was analyzed with ImageJ. 

 

Lentiviral packaging and gene knockdown 

 

The shRNA plasmid, along with pCMV-VSV-G, 
psPAX2 plasmids, were transfected into HEK-293T 

cells with PEI 40K (Shanghai Maokang Biotechnology). 

After 15h, the medium was replaced, and the virus was 

collected at 48 and 72 hours. The harvested virus was 

centrifuged at 1000 rpm for 3 minutes and filtered 

through a 0.48 μm filter. To knock down the gene  

in glioma cells, 1 ml of virus was added to T98G and 

H4 cells, with the addition of Polybrene (Beyotime 

Biotechnology) at a final concentration of 8 μg/ml. 

After 24 hours of virus infection, the medium was 

changed, and the cells were selected with 3 μg/ml 

puromycin. The knockdown efficiency was subsequently 

assessed via qRT-PCR. The targeted sequences for 

knockdown were as follows: 

 

sh1-NFE2L2: CCGGCATTTCACTAAACACAA 

sh2-NFE2L2: GCTCCTACTGTGATGTGAAAT 

 

RNA extraction and qPCR 

 

Cells were lysed using RNAiso Plus (Takara), and  

RNA was extracted using standard phenol-chloroform 

extraction method. Subsequently, 1 μg of RNA was 

reverse transcribed into cDNA using HiScript III RT 

SuperMix for qPCR (Vazyme) and then subjected  

to qPCR with Taq Pro Universal SYBR qPCR Master 

Mix Q712 (Vazyme). ACTB served as an internal 

reference for normalization. Gene expression levels 

were quantified using the 2-ΔΔCt method. The qPCR 

primers utilized were:  

 

NFE2L2-FW: TCAGCGACGGAAAGAGTATGA 

NFE2L2 -RV: CCACTGGTTTCTGACTGGATGT 

ACTB-FW: CATGTACGTTGCTATCCAGGC 

ACTB-RV: CTCCTTAATGTCACGCACGAT 

 

Data visualization and statistical analysis 

 

All analyses and graphs were generated using R software 

(R version 4.2.3) and GraphPad Prism 8.0.2. The “limma” 

R package was used to identify differential genes. 

Kaplan-Meier (K-M) survival analysis was conducted 

using log-rank tests. Correlation analysis employed the 

Spearman or Pearson methods. Differences between the 

two groups were assessed using the Wilcoxon test and 

unpaired t-tests. Multiple comparisons in cell viability as 

a function of time or increasing drug concentrations were 

calculated using one-way ANOVA with post hoc Sidak 

test. P<0.05 was considered significant (*), p<0.01 (**), 

p<0.001 (***), and p<0.0001 (****). 

 

Data availability  

 

Public data used in this work can be acquired  

from the TCGA Research Network portal 

(https://portal.gdc.cancer.gov/) and Chinese Glioma 
Genome Atlas (CGGA, http://www.cgga.org.cn/). All 

codes are available on GitHub: https://github.com 

/YuBestLab/YuBestLab.github.io/tree/master. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Survival analysis of glutathione metabolism genes across 33 cancer types using the GSCA website. 
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Supplementary Figure 2. Expression levels and genetic variation landscape of GMRGs. (A) Comparative expression levels of 56 
GMRGs between LGG cancer and normal brain tissues. (B) Mutation frequency of GMRGs in patients from the TCGA-LGG dataset. (C) Copy 
number variation (CNV) frequency of GMRGs in the TCGA-LGG dataset. 
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Supplementary Figure 3. Functional enrichment analysis of GMRGs-related clusters. (A) Gene Ontology (GO) enrichment analysis 

based on the Differentially Expressed Genes (DEGs). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis based on the 
DEGs.  
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Supplementary Figure 4. Construction and confirmation of GMRGs-based risk score. (A) Cross-validation based on the SuperPC 

model. (B) Cross-validation based on the plsRcox model. (C) The Venn diagram displays the intersection of model genes from the three 
machine learning algorithms. (D) The C-index of the three machine learning algorithms. (E) Expression levels of model genes in TCGA-LGG 
dataset. (F) Expression levels of model genes in the CNS/brain cell lines in the CCLE database. (G) Gene perturbation effects of model genes in 
the CNS/brain cell lines in the CCLE database. (H, I) OS curves for patients in high-risk and low-risk groups receiving radiation therapy or 
chemotherapy in TCGA-LGG or CGGA-LGG datasets. (J) Univariate Cox regression analysis based on the risk score across 33 kinds of cancer 
types.  
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Supplementary Figure 5. Association of GS with clinical characteristics of LGG. (A–D) The risk scores are associated with clinical 
characteristics of IDH1 status (A), Grade (B), MGMT promoter status (C), and 1p19q co-deletion (D) in TCGA-LGG and CGGA-LGG datasets.  
(E) Survival analysis of the high-risk and low-risk groups in the immunotherapy IMvigor210 cohort. 
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Supplementary Figure 6. Model gene expression patterns at the single-cell level. (A) Identification of major cell subtypes in the 
LGG single-cell dataset Glioma GSE89567. (B, C) Expression patterns of model genes across different cell populations. (D) Expression patterns 
of model genes in different cell populations. 
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Supplementary Figure 7. Model gene expression patterns at the single-cell level. (A) Identification of major cell subtypes in the 

LGG single-cell dataset Glioma_GSE70630. (B, C) Expression patterns of model genes across different cell populations. (D) Expression patterns 
of model genes in different cell populations. 
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Supplementary Figure 8. Model gene expression patterns at the single-cell level. (A) Identification of major cell subtypes in the 

Glioma_GSE131928_10X single-cell dataset. (B, C) Expression patterns of model genes across different cell populations. (D) Expression 
patterns of model genes in different cell populations. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Results of survival analysis of glutathione metabolism genes across 33 cancer types. 

 

Supplementary Table 2. Differential expression of genes between GM-high and GM-low clusters. 

 
Supplementary Table 3. Genes selected by three machine learning algorithms. 

 
Supplementary Table 4. Gene set enrichment analysis (GSEA) reveals risk-associated pathways in high and low-
risk groups. 
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