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INTRODUCTION 
 

Osteoarthritis (OA) is the most common orthopedic 

disorder and is characterized by progressive damage  
of articular cartilage and its surrounding structures,  

such as subchondral bone and synovial tissues [1, 2]. 

The epidemiological study revealed that there are about  

300 million patients with hip and/or knee OA, and  

OA serves as one of the leading causes of disability 

around the world [3]. To date, plenty of pathological 

mechanisms have been disclosed, including mechanical 
stress, immune response, programmed cell death, and 

energy metabolism, providing therapeutic opportunities 

[4–7]. Based on these efforts, some clinical trials 
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ABSTRACT 
 

Background: Lactate is gradually proved as the essential regulator in intercellular signal transduction, energy 
metabolism reprogramming, and histone modification. This study aims to clarify the diagnosis value of lactate 
metabolism-related genes in osteoarthritis (OA). 
Methods: Lactate metabolism-related genes were retrieved from the MSigDB. GSE51588 was downloaded from 
the Gene Expression Omnibus (GEO) as the training dataset. GSE114007, GSE117999, and GSE82107 datasets 
were adopted for external validation. Genomic difference detection, protein-protein interaction network 
analysis, LASSO, SVM-RFE, Boruta, and univariate logistic regression (LR) analyses were used for feature 
selection. Multivariate LR, Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB) were used 
to develop the multiple-gene diagnosis models. 12 control and 12 OA samples were collected from the local 
hospital for re-verification. The transfection assays were conducted to explore the regulatory ability of the gene 
to the apoptosis and vitality of chondrocytes. 
Results: Through the bioinformatical analyses and machine learning algorithms, SLC2A1 and NDUFB9 of the 273 
lactate metabolism-related genes were identified as the significant diagnosis biomarkers. The LR, RF, SVM, and 
XGB models performed impressively in the cohorts (AUC > 0.7). The local clinical samples indicated that SLC2A1 
and NDUFB9 were both down-regulated in the OA samples (both P < 0.05). The knockdown of NDUFB9 
inhibited the viability and promoted the apoptosis of the CHON-001 cells treated with IL-1beta (both P < 0.05). 
Conclusions: A lactate metabolism-related gene signature was constructed to diagnose OA, which was validated 
in multiple independent cohorts, local clinical samples, and cellular functional experiments. 
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associated with the therapy strategies targeting the 

disease-causing genes, including TGF-beta, IFN-beta, 

IL10, IL-1R, and NKX3, have been performed [8]. 

These bracing advancements enlighten the researchers 

to seek more gene therapy targets, which is the aim of 

this study as well. 

 

Lactate was considered the waste substance of 

anaerobic glycolysis in the past. However, emerging 

evidence has disclosed its pivotal biological functions 

and regulatory ability in different cellular processes [9]. 

Lactate was able to regulate adipocyte differentiation 

[10], tumor immune escape [11], and neuronal network 

activity [12] by interacting with its receptor GPR81. 

Histones are vital components in the chromosome, and 

their epigenetic modification plays important roles in 

the regulation of diverse cellular activities. Lactylation 

is a newly discovered histone modification type and 

has been proven as the regulator in M2 macrophage 

polarization, cell metabolic processes, and so forth 

[13]. The tight association between lactate and OA  

has also been reported. Compared with the normal  

hip, the concentration of lactate exhibited a 50% 

increase in the OA hip [14]. Hurter et al. found that  

the levels of lactate dehydrogenase in the synovial  

fluid could act as a potential diagnostic biomarker for 

OA [15]. Nevertheless, the number of studies focusing 

on the interaction between lactate metabolism and  

the pathogenesis of OA is still limited currently. 

Comprehensive analyses of lactate metabolism-related 

genes to unearth novel biomarkers of OA and uncover 

the underlying pathological mechanisms are urgently 

demanded. 

 

Herein, the present study aims to develop a lactate 

metabolism-related gene signature as the diagnosis 

biomarker in OA. Diverse machine learning algorithms, 

including least absolute shrinkage and selection 

operator (LASSO), Boruta, supporter vector machine-

recursive feature elimination (SVM-RFE), logistic 

regression (LR), random forest (RF), supporter vector 

machine (SVM), and XGBoost (XGB) were used for 

feature selection and model construction. 24 clinical 

samples collected from the local hospital were utilized 

to re-confirm our findings. The transfection assays were 

conducted to elucidate the regulatory relationship 

between the identified gene and the proliferation and 

apoptosis of chondrocytes. 

 

MATERIALS AND METHODS 
 

Data collection 

 
273 lactate metabolism-related genes were retrieved 

from the Molecular Signatures Database (MSigDB, 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp), as 

displayed in Supplementary Table 1. GSE51588  

dataset [16], which included the transcriptome 

sequencing data of the subchondral bone tissues  

isolated from 10 control and 40 OA patients, was 

obtained from the Gene Expression Omnibus (GEO, 

https://ncbi.nlm.nih.gov/geo/) as the training cohort. 

GSE114007 [17], GSE117999, and GSE82107 [18] 

datasets, which were also downloaded from the GEO, 

were selected for external validation. It should be stated 

that GSE114007 and GSE117999 datasets contained the 

transcriptome sequencing of the cartilage tissues, while 

the GSE82107 dataset included the transcriptome 

sequencing of synovial tissue. Therefore, GSE114007 

and GSE117999 datasets were merged as one dataset, 

namely “Validation-cartilage” cohort. GSE82107 dataset 

was called “Validation-synovial” in this study. To 

further detect the ability of the genes to distinguish OA 

from rheumatoid arthritis (RA), GSE89408 dataset  

[19], which included the transcription sequencing data 

of the joint synovial biopsies from 22 OA and 152 RA 

samples, was also downloaded from GEO and named  

as “OA vs. RA” cohort. The batch effects across these 

experiments were reduced via the sva package in R as 

possible. More detailed information on these public 

cohorts can be seen in Supplementary Table 2. 

 

Gene expression difference detection and protein-

protein interaction (PPI) network construction 

 

The differentially-expressed genes between the control 

and OA samples were identified via the limma package 

in R with |log fold change [FC]| > 0.5 and false discovery 

rate (FDR) < 0.05 filtering. Subsequently, the lactate 

metabolism-related genes showing expression differences 

were included in the PPI network based on the STRING 

database (https://cn.string-db.org/) with a confidence 

level = 0.4. The cytoHubba app in the Cytoscape (version 

3.8.0) was harnessed to quantify the importance of the 

gene in the PPI network, where the degree algorithm was 

adopted. The top 25 genes exhibiting the highest degree 

were selected for further analysis. 

 

Functional enrichment and gene set enrichment 

analysis (GSEA) 

 

The functional annotation of the differentially-expressed 

genes was performed through the ClueGo plug-in in  

the Cytoscape software and the Metascape database 

(https://metascape.org/gp/index.html#/main/step1). The 

Gene Ontology (GO) terms with P < 0.05 were displayed 

in the network. GSEA was conducted through the GSEA 

software (version 4.3.2), and the Hallmark signatures, 

which were downloaded from the MSigDB, were chosen 
as the reference datasets. The signatures with nominal  

P < 0.05 and FDR < 0.05 were considered to be 

statistically significant. 
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Feature selection 

 

Multiple machine learning algorithms were 

simultaneously adopted to identify the genes as the 

significant diagnosis biomarkers of OA. LASSO 

regression with 10-fold cross-validation was implemented 

via the glmnet package. The caret package in R was 

utilized to carry out the SVM-RFE algorithm. Boruta 

algorithm rendered each variable labeled “Tentative,” 

“Rejected,” or “Confirmed,” which represented the 

influence of the variable on the outcomes [20], and  

the Boruta package in R was used for the algorithm 

implementation. Univariate LR was performed to clarify 

the diagnosis value of the variables using the rms 

package, and P < 0.01 was set as the filtering threshold. 

At last, the genes co-determined by the PPI network 

analysis, LASSO, SVM-RFE, Boruta, and univariate  

LR were identified as the significant diagnosis 

biomarkers of OA and then included in the diagnosis 

models. 

 

Unsupervised clustering 

 

The consensus clustering was performed to divide the 

cartilage samples into different clusters using the 

ConsensusClusterPlus package in R software, and then 

the clustering was validated through the Principal 

Component Analysis (PCA) by the “prcomp” function 

in R. The differentially-expressed genes among the 

clusters were detected by the limma package, and 

|logFC| > 2 and FDR < 0.05 were set as the filtering 

thresholds. 

 

Diagnosis model construction and validation 

 

Based on the identified genes, we used multiple 

algorithms, including multivariate LR, RF, SVM, and 

XGB, to develop the diagnosis models using the train 

function of the caret package. A nomogram was drawn 

to visualize the LR model via the rms package. We also 

utilized the calibrate function of the rms package to 

conduct the calibration analysis. The pROC package 

was used to draw the receiver operating characteristic 

(ROC) curves to quantify the performance of the 

models in the training and external validation cohorts. 

Decision curve analysis (DCA) was performed to 

clarify the predictive ability of the models through the 

dcurves package of R. 

 

Meta-analyses 

 

Meta-analyses were conducted to pool the odds ratios 

(ORs) to better clarify the diagnosis value using  
the meta package in R. The fixed- or random-effects 

model would be adopted according to the results of 

heterogeneity test. 

Clinical sample collection 

 

The knee cartilage tissues extracted from 12 subjects 

undergoing traumatic amputation without rheumatoid 

arthritis or OA and 12 OA subjects going through total 

knee replacement were obtained from the Yuebei 

People’s Hospital between 2021 and 2023. The Ethics 

Committee of Yuebei People’s Hospital reviewed  

and approved this research project according to the 

principles of the Declaration of Helsinki. The knee 

cartilage samples were stored in liquid nitrogen for 

RNA isolation. These samples collected from our 

hospital were included in “Validation-local” cohort in 

this study. The baseline clinicopathological features of 

these subjects can be found in Supplementary Table 3. 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

The levels of lactate in the knee cartilage tissues from 

the control and OA subjects were measured by the L-

lactate assay kit (Abcam, The Netherlands) following the 

manufacturer’s instructions. As previously mentioned 

[21], the samples were treated with lactate assay buffer 

(Abcam, The Netherlands) and the endogenous lactate 

dehydrogenase was removed using the deproteinizing 

sample preparation kit-TCA (Abcam, The Netherlands). 

The lactate concentration of the samples was then 

determined using a microplate reader. 

 

Cell culture and treatment 

 

Human immortalized chondrocyte CHON-001 cell line 

was purchased from the American Type Culture 

Collection (USA) and maintained in RPMI-1640 

medium (Thermo Fisher Scientific, USA) supplemented 

with 10% FBS and 1% penicillin-streptomycin at  

37° C in a humidified atmosphere with 5% CO2.  

10 ng/mL IL-1β (Sigma-Aldrich, China) was used to 

treat the CHON-001 cells for 48 hours to mimic OA,  

as previously described [22, 23]. 

 

The transient transfection assays in the CHON-001 

cells were conducted following the manufacturer’s 

protocol of Lipofectamine 2000 reagent (Invitrogen, 

USA). The small interfering RNA (siRNA) targeting 

NDUFB9 and the negative control siRNA (NC) were 

designed and synthesized by the Biosyntech company 

(Suzhou, China). The siRNA sequences can be found 

in Supplementary Table 4. Real-time quantitative PCR 

(RT-qPCR) experiments were used to measure the 

knockdown efficacy of the siRNAs. 

 

RT-qPCR 

 

The total RNA isolation of the CHON-001 cells  

and human cartilage tissues was conducted using the 
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TRIzol reagent (Thermo Fisher Scientific, USA). 

Transcriptor First Strand cDNA Synthesis Kit (Roche, 

Switzerland) was used for the synthesis of cDNA, and 

the SYBR Premix ExTaq kit (TaKaRa, China) was 

implemented for the RT-qPCR experiments based  

on the ABI 7500 system (Life Technology, USA). 

GAPDH was chosen as the reference gene, and the 

results were normalized via the 2-ΔΔCt. The primer 

sequence in these RT-qPCR experiments is shown in 

Supplementary Table 5. 

 

Cell viability and apoptosis 

 

The cell viability of CHON-001 cells was assessed with 

the Cell Counting Kit-8 (CCK-8, Sigma-Aldrich, USA) 

on a 96-well plate at a density of 1×105 cells/well. After 

the treatment, 10 μl CCK-8 reagent was added to the 

platelets and then co-incubated with the cells for 2 

hours at 37° C. The optimal density (OD) value of each 

well was measured by a microplate reader (Bio-Rad, 

USA) at an absorbance of 450 nm. 

 
The apoptosis levels of the CHON-001 cells treated with 

IL-1beta were measured with the Hoechst 33342 reagent 

(Invitrogen, USA) according to the manufacturer’s 

suggestions. The images were then taken by fluorescence 

microscopy. The ImageJ software (version 1.54d) was 

used to analyze the fluorescence intensity to quantify the 

apoptosis levels. Additionally, to further verify our 

finding, the flow cytometry apoptosis assay was also 

conducted. The flow cytometry apoptosis analysis was 

conducted using a fluorescein isothiocyanate-conjugated 

annexin V apoptosis detection kit I (BD Biosciences, 

USA) following the manufacturer’s instructions. The 

analysis of the apoptosis levels of these samples was 

based on a flow cytometry system (BD Biosciences, 

USA). 

 
Statistical analyses 

 
The statistical analyses of the whole study were based 

on the R software (version 4.2.0). Welch’s corrected  

t-test was applied to compare the difference of the 

values detected by the RT-qPCR, CCK-8, and apoptosis 

staining. Unless otherwise specified, P < 0.05 was 

accepted as the significance threshold. *P < 0.05; **P < 

0.01; ***P < 0.001. 

 
Data availability 

 
The data that support the findings of this study are openly 

available in GEO (https://www.ncbi.nlm.nih.gov/geo/) 

and MSigDB (https://www.gsea-msigdb.org/gsea/ 
msigdb/index.jsp). The R codes used in this study can be 

obtained from the corresponding author upon reasonable 

request. 

RESULTS 
 

74 of 273 lactate metabolism-related genes were 

differentially expressed 
 

Figure 1 graphically describes the workflow of this 

study. First, we evaluated the lactate levels in the knee 

cartilage tissues from the control and OA subjects via 

ELISA assay. The results indicated that the levels of 

lactate in the OA samples were higher than those in 

control cases (P < 0.05, Supplementary Figure 1), 

implying that lactate might exert important functions in 

the pathogenesis of OA. As stated above, increasing 

evidence has uncovered that lactate exerts important 

functions in energy metabolism, signal transduction, and 

lactylation (Figure 2A), enlightening us to investigate 

the roles of lactate metabolism-related genes in OA. 

Based on the GSE51588 cohort, a sum of 74 of 273 

lactate metabolism-related genes were differentially 

expressed between the control and OA samples (Figure 

2B and Supplementary Table 6). The expression levels 

of these 74 genes are visualized in the heatmap (Figure 

2C). The GO enrichment analysis indicated that these 

genes were mainly involved in the energy metabolic 

process, glycoprotein synthesis, lactate transport, and 

cell homeostasis maintenance (Figure 2D), indicating 

the underlying functions of lactate metabolism-related 

genes in the pathogenesis of OA. 
 

SLC2A1 and NDUFB9 were identified as significant 

diagnosis biomarkers in OA 
 

A PPI network was constructed to investigate the 

underlying interactions of the 74 differentially-

expressed genes, and the Top 25 genes sharing the 

highest degree in the network were chosen for further 

analysis (Figure 3A). 13 genes were identified by the 

LASSO regression, including XK, GATA1, HMOX1, 

SLC2A1, CYC1, HAGH, NDUFB9, HTRA2, ISCA1, 

HIBCH, FKTN, PDP1, and SLC16A8 (Figure 3B and 

Supplementary Table 7). Meanwhile, the SVM-RFE 

algorithm determined 13 genes as significant factors 

(Figure 3C and Supplementary Table 8), The Boruta 

algorithm helped to identify 44 genes (Figure 3D and 

Supplementary Table 9), and univariate LR analysis 

indicated that 64 genes were of high diagnosis value  

(P < 0.01, Supplementary Table 10). Taken together, 

SLC2A1 and NDUFB9 were co-determined by the  

PPI network analysis, LASSO, SVM-RFE, Boruta, and 

univariate LR (Figure 3E), according to which the 

diagnosis models were constructed. 
 

The unsupervised clustering based on the expressions 

of SLC2A1 and NDUFB9 
 

According to the expressions of SLC2A1 and NDUFB9, 

50 cartilage samples were grouped into Cluster 1 (C1) 
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and Cluster 2 (C2), as displayed in Figure 4A and 

Supplementary Table 11. PCA indicated the distinct 

genomic patterns of these two clusters (Figure 4B). 

Importantly, we noticed that about 95% C2 cases belong 

to OA subjects, and none of the C1 cases exhibited OA 

phenotype (P < 0.001, Figure 4C), suggesting that the 

clustering was associated with the OA characteristics. 

The expressions of SLC2A1 (P < 0.001) and NDUFB9 

 

 
 

Figure 1. The workflow of the present study. 
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(P < 0.001) were significantly down-regulated in C2 

subjects (Figure 4D). Subsequently, the differentially-

expressed genes between the C1 and C2 subjects were 

analyzed, and a sum of 190 genes were screened (Figure 

4E and Supplementary Table 12). The functional 

enrichment displayed that these genes were mainly 

associated with the cell activation and differentiation, 

immune and inflammatory response, and metabolic 

 

 
 

Figure 2. Differentially-expressed lactate metabolism-related genes. (A) The schematic summary of the biological functions of 

lactate. (B, C) The volcano plot (B) and the heat map (C) indicated that 74 of 273 lactate metabolism-related genes were differentially 
expressed between the control and OA tissues. (D) The functional annotation of the 74 genes. Abbreviation: OA, osteoarthritis. 

13081



www.aging-us.com 7 AGING 

processes (Figure 4F), implying the possible functions of 

SLC2A1 and NDUFB9. 

 

SLC2A1 and NDUFB9 were reliable diagnosis 

biomarkers in the meta-analyses 

 

The diagnostic performance of SLC2A1 and NDUFB9 

in the training, GSE82107, GSE114007, and 

GSE117999 cohorts was displayed in Figure 5A– 

5D, respectively. Despite the fact that these genes 

performed poorly in some cohorts, the meta-analyses 

indicated that NDUFB9 (pooled OR = 0.33, 95% 

confidence interval [CI] = 0.15-0.74, Figure 5E) and 

SLC2A1 (pooled OR = 0.24, 95% CI = 0.11-0.53, 

Figure 5F) both served as significant diagnosis 

biomarkers in OA subjects. 

The performance of the machine learning-based 

diagnosis models 

 

Multiple-gene diagnosis models were developed using 

LR, RF, SVM, and XGB based on the mRNA 

expression levels of SLC2A1 and NDUFB9. First, a 

nomogram was constructed using the established LR 

model (Figure 6A). ROC analyses were performed to 

evaluate the predictive performance of the nomogram 

in the training (area under curve [AUC] = 1.000, 

95%CI = 1.000-1.000, Figure 6B), validation-cartilage 

(AUC = 0.726, 95%CI = 0.627-0.830, Figure 6C), and 

validation-synovial (AUC = 0.571, 95%CI = 0.350-

0.786, Figure 6D) cohorts. The calibration plots 

demonstrated that the nomogram had acceptable 

predictive capability in the training (Figure 6E), 

 

 
 

Figure 3. SLC2A1 and NDUFB9 were co-determined by bioinformatical analyses and machine learning algorithms. (A) The 
construction and analyses of the PPI network. (B) 13 genes were identified by the LASSO regression. (C) 13 genes were determined by the 
SVM-RFE algorithm. (D) Boruta algorithm showed that 44 genes were of high diagnosis value. (E) SLC2A1 and NDUFB9 were co-determined 
by the LASSO, SVM-RFE, Boruta, univariate logistic regression, and PPI network analysis. Abbreviations: LASSO, least absolute shrinkage and 
selection operator; SVM-RFE, supporter vector machine-recursive feature elimination; PPI, protein-protein interaction. 
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validation-cartilage (Figure 6F), and validation-synovial 

(Figure 6G) cohorts. Furthermore, decision curve 

analysis (DCA) was conducted to assess the net benefit 

of the nomogram at different decision thresholds in 

these cohorts (Figure 6H–6J). 

In addition to the nomogram, alternative machine 

learning-based models were also developed, as 

previously mentioned. ROC analyses demonstrated that 

the RF model exhibited AUCs of 1.000 (95%CI = 

1.000-1.000), 0.656 (95% CI = 0.524-0.780), and 0.736 

 

 
 

Figure 4. The unsupervised clustering based on the expressions of NDUFB9 and SLC2A1. (A) 50 cartilage samples were divided 

into two different clusters using the consensus clustering algorithm. (B) Principal Component Analysis was performed to confirm the 
reliability of the clustering. (C) The clustering was associated with OA features. (D) The expressions of NDUFB9 and SLC2A1 were significantly 
altered in these two clusters. (E) 190 genes, which were differentially expressed between cluster 1 and cluster 2, were identified. (F) The 
functional enrichment of the 190 genes. ***P < 0.001. 
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Figure 5. The diagnosis value of NDUFB9 and SLC2A1. (A–D) The diagnostic performance of NDUFB9 and SLC2A1 in the training  
(A), GSE82107 (B), GSE114007 (C), and GSE117999 (D) cohorts. (E, F) The meta-analyses were used to pool the ORs of NDUFB9 (E) and 
SLC2A1 (F). Abbreviation: OR, odds ratio. 
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Figure 6. Construction and validation of the diagnostic nomogram. (A) A nomogram was constructed to visualize the LR model.  

(B–D) ROC analysis shows the predictive ability of the nomogram in the training (B), validation-cartilage (C), and validation-synovial  
(D) cohorts. (E–G) Calibration analysis shows the predictive ability of the nomogram in the training (E), validation-cartilage (F), and 
validation-synovial (G) cohorts. (H–J) DCA analysis shows the predictive ability of the nomogram in the training (H), validation-cartilage  
(I), and validation-synovial (J) cohorts. Abbreviations: ROC, receiver operating characteristic; DCA, decision curve analysis; LR, logistic 
regression. 
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(95%CI = 0.493-0.936) in the training, validation-

cartilage, and validation-synovial cohorts, respectively 

(Figure 7A). Furthermore, the DCA showcased the net 

benefit of the RF model at various thresholds in these 

cohorts (Figure 7B). Likewise, the SVM diagnostic 

model demonstrated AUCs of 1.000 (95%CI = 1.000-

1.000), 0.614 (95%CI = 0.452-0.756), and 0.500 

(95%CI = 0.214-0.829) in the training, validation-

cartilage, and validation-synovial cohorts (Figure 7C). 

DCA was also employed to further elucidate the 

predictive capability of the SVM model in these 

datasets (Figure 7D). Similarly, the XGB model 

exhibited impressive performance in the training (AUC 

= 1.000, 95%CI = 1.000-1.000, Figure 7E), validation-

cartilage (AUC = 0.693, 95%CI = 0.568-0.810, Figure 

7E), and validation-synovial (AUC = 0.571, 95%CI = 

0.271-0.843, Figure 7E) cohorts. The results of DCA  

for the XGB model in these cohorts are illustrated in 

Figure 7F. Additionally, the calibration analyses of the 

RF (Supplementary Figure 2A), SVM (Supplementary 

Figure 2B), and XGB (Supplementary Figure 2C)  

in the training, validation-cartilage, and validation-

synovial cohorts were also performed. Overall, despite 

the suboptimal performance of these models in certain 

cohorts, we have established that the gene signature, 

encompassing SLC2A1 and NDUFB9, represents a 

potential diagnostic biomarker for OA, irrespective of 

whether it is present in cartilage or synovial tissues. 

 

Validation in the local cohort 

 

To further confirm our findings, we collected the 

cartilage tissues isolated from 12 control and 12 OA 

subjects in our local hospital. RT-qPCR experiments 

were conducted to measure the expression levels of 

SLC2A1 (Figure 8A) and NDUFB9 (Figure 8B), and 

the results indicated that SLC2A1 (P < 0.05, Figure  

8C) and NDUFB9 (P < 0.05, Figure 8D) were both 

down-regulated in the OA samples. The ROC analyses 

displayed the diagnosis performance of SLC2A1 (AUC 

= 0.833, 95%CI = 0.639-0.979) and NDUFB9 (AUC = 

0.743, 95% CI = 0.528-0.917) in the local cohort 

(Figure 8E). 

 

Furthermore, in order to provide further insights into  

the diagnostic capabilities of the established models,  

we conducted an analysis to assess the predictive 

performance of the nomogram, RF, SVM, and XGB 

models in the local cohort. The AUCs of the nomogram, 

RF, SVM, and XGB models were found to be 0.667 

(95%CI = 0.542-0.792, Supplementary Figure 3A), 0.715 

(95%CI = 0.510-0.889, Supplementary Figure 3B), 0.580 

(95%CI = 0.333-0.826, Supplementary Figure 3C), and 
0.674 (95%CI = 0.486-0.837, Supplementary Figure 3D), 

respectively. Additionally, DCA plots were generated to 

evaluate the performance of the nomogram, RF, SVM, 

and XGB models in the local cohort (Supplementary 

Figure 3E–3H). Moreover, calibration plots were 

constructed to demonstrate the predictive ability of these 

models in the local cohort (Supplementary Figure 3I–3L). 

It is worth noting that the training cohort utilized 

transcriptome sequencing technology, while the local 

cohort relied on RT-qPCR experiments. The discrepancy 

arising from the utilization of distinct gene expression 

detection platforms could potentially explain the sub-

optimal performance of the predictive models in the local 

cohort. 

 

Knockdown of NDUFB9 inhibited the proliferation 

and promoted the apoptosis of cartilage cells 

 

Human Immortalized chondrocyte CHON-001 cells 

were treated with IL-1beta to construct the OA cell 

model. We observed that the expressions of SLC2A1 

and NDUFB9 were both down-regulated in the OA cell 

models (both P < 0.05, Figure 8F). Since the roles of 

SLC2A1 in OA have been reported by previous efforts 

[24, 25], we then selected NDUFB9 to conduct the 

functional investigation. Two different siRNAs targeting 

NDUFB9 were used for the gene knockdown, and 

siRNA-2 exhibited higher efficacy (P < 0.01, Figure 8G) 

and was chosen for further analysis. The knockdown of 

NDUFB9 significantly suppressed the proliferation (P < 

0.05, Figure 8H) and enhanced the apoptosis (P < 0.05, 

Figure 8I) of the CHON-001 cells treated with IL-1beta. 

In order to gain further insights into the impact of 

NDUFB9 on the IL-1beta-induced apoptosis of CHON-

001 cells, we conducted additional flow cytometry 

apoptosis analysis. The results obtained from the flow 

cytometry assay provide additional validation for our 

findings (P < 0.05, Supplementary Figure 4). 

 

The signal pathways associated with SLC2A1 and 

NDUFB9 in OA 

 

The OA samples extracted from the GSE51588 cohort 

were equally divided into the low- and high-gene 

expression subgroups, and then the GSEA was 

conducted (Figure 9A). The signal pathways associated 

with NDUFB9 and SLC2A1 were shown in Figure  

9B and Figure 9C, respectively. The most relevant 

pathways of NDUFB9 and SLC2A1 are oxidative 

phosphorylation (NES= 3.930, FDR < 0.001, Figure 

9D) and E2F targets (NES = 2.719, FDR < 0.001, 

Figure 9E), which indicated the underlying mechanisms 

of these genes in the pathogenesis of OA. 

 

The ability of SLC2A1 and NDUFB9 to distinguish 

OA from RA 

 

OA and RA are both prevalent joint disorders, 

characterized by overlapping clinical manifestations 
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Figure 7. The predictive performance of the RF, SVM, and XGB diagnosis models. (A, B) ROC (A) and DCA (B) analysis indicates the 

predictive performance of RF model in the training (left), validation-cartilage (middle), and validation-synovial (right) cohorts. (C, D) ROC (C) 
and DCA (D) analysis indicates the predictive performance of SVM model in the training (left), validation-cartilage (middle), and validation-
synovial (right) cohorts. (E, F) ROC (E) and DCA (F) analysis indicates the predictive performance of XGB model in the training (left), validation-
cartilage (middle), and validation-synovial (right) cohorts. Abbreviations: RF, random forest; SVM, supporter vector machine; XGB, XGBoost; 
AUC, area under curve; CI, confidence interval. 
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Figure 8. Experimental validation in the clinical samples and cellular experiments. (A, B) The expression levels of SLC2A1 (A) and 

NDUFB9 (B) in the 12 control and 12 OA samples collected from the local hospital. (C, D) The levels of SLC2A1 (C) and NDUFB9 (D) were 
down-regulated in the OA tissues. (E) The diagnostic performance of SLC2A1 and NDUFB9 in the local cohort. (F) SLC2A1 and NDUFB9 were 
both down-regulated in the CHON-001 cells treated with IL-1beta. (G) Two different siRNAs were used to construct the NDUFB9-knockdown 
CHON-001 cells. (H) The proliferation rate was inhibited in the NDUFB9-knockdown CHON-001 cells. (I) The CHON-001 cells with the 
knockdown of NDUFB9 showed higher levels of apoptosis after the IL-1beta treatment. *P < 0.05; **P < 0.01. 
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including joint pain, swelling, stiffness, and morning 

stiffness. These shared symptoms pose a challenge  

in accurately diagnosing these conditions in clinical 

settings. Consequently, we aimed to investigate the 

discriminative potential of SLC2A1 and NDUFB9 in 

distinguishing between OA and RA, utilizing a sample 

cohort of 22 OA and 152 RA samples obtained from 

the GSE82107 dataset. Upon analysis, it was observed 

that RA tissues exhibited significantly higher levels  

of NDUFB9 compared to OA samples (P < 0.05, 

Supplementary Figure 5A), while no significant 

expression difference was observed for SLC2A1 (P > 

0.05, Supplementary Figure 5A). The area under  

the curve (AUC) values for NDUFB9 and SLC2A1 

were calculated as 0.648 (95%CI = 0.510-0.781, 

Supplementary Figure 5B) and 0.580 (95%CI = 0.418-

0.728, Supplementary Figure 5C), respectively. These 

findings suggest that NDUFB9 may serve as a 

potential biomarker for distinguishing between OA 

and RA. 

 

DISCUSSION 
 

Seeking novel biomarkers in OA has always been a  

hot topic, which helps to perform the early diagnosis, 

disclose new pathogenesis, and develop novel targeted 

drugs. Recently, tremendous advancements have been 

made in OA biomarker identification with the proposal 

and application of machine learning algorithms,  

multi-omics sequencing, and big-data mining [26–28]. 

 

 
 

Figure 9. The functional annotation of NDUFB9 and SLC2A1 in the OA samples. (A) GSEA was conducted according to the median 

expression levels of the genes. (B, C) The biological processes associated with NDUFB9 (B) and SLC2A1 (C). (D, E) The signal pathways most 
relevant to NDUFB9 (D) and SLC2A1 (E). Abbreviation: GSEA, Gene Set Enrichment Analysis. 
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Detection of the biomarkers in OA from particular 

biological aspects, such as immunity [29], cell death 

[30, 31], RNA-binding proteins [32], and epigenetic 

regulators [33], is becoming more and more popular. 

These great efforts expanded our knowledge of the 

initiation and development of OA and provided the 

potential tools in clinical practice. However, despite the 

fact the multiple and pivotal functions of lactate have 

attracted increasing attention in recent years [34, 35], as 

discussed above, no comprehensive analysis of the 

lactate metabolism-related genes as the biomarkers in 

OA has been performed up to date. 

 

In this study, initially, a total of 12 control and 12 OA 

samples were collected from our hospital, and the 

levels of lactate in these tissues were quantified using 

the ELISA. It was observed that the concentration of 

lactate in the OA samples was significantly higher than 

that in the control samples (P < 0.05). Subsequently,  

a comprehensive analysis was conducted using 173 

lactate metabolism-related genes obtained from the 

MSigDB database, and the GSE51588 dataset from  

the GEO database was selected as the training cohort. 

Out of the 273 lactate metabolism-related genes, 74 

exhibited differential expression between the control 

and OA samples. Through the integration of the PPI 

network, LASSO, SVM-RFE, Boruta, and univariate 

LR, SLC2A1 and NDUFB9 were identified as 

significant diagnostic biomarkers. The diagnostic ability 

of SLC2A1 and NDUFB9 in OA was further validated 

through unsupervised clustering and meta-analyses. 

Furthermore, multiple machine learning diagnosis 

models, including LR, RF, SVM, and XGB, were 

constructed based on the expressions of SLC2A1 and 

NDUFB9. A nomogram was developed to visualize 

the LR predictive model. These models demonstrated 

satisfactory performance across the training, validation-

cartilage, and validation-synovial cohorts. Notably,  

the diagnosis models also exhibited effectiveness in 

synovial tissues, despite being trained on subchondral 

bone tissues, indicating the widespread involvement of 

SLC2A1 and NDUFB9 in the pathogenic processes of 

OA. Subsequently, an independent set of 12 control 

and 12 OA samples obtained from a local hospital 

were utilized to confirm our findings (both P < 0.05). 

Cellular functional experiments were conducted, 

revealing that the knockdown of NDUFB9 significantly 

suppressed the viability and enhanced the apoptosis of 

CHON-001 cells treated with IL-1beta (both P < 0.05). 

Finally, the ability of SLC2A1 and NDUFB9 to 

distinguish between OA and RA was evaluated, and 

the results suggested that NDUFB9 holds promise as  

a potential biomarker for distinguishing OA from RA. 
 

In this study, we integrated sequencing data from 

subchondral bone, cartilage, and synovial tissue of 

OA patients, considering the tight relationship of 

these three tissues in the pathogenesis of OA [36]. 

The main pathology of OA is the degeneration  

of articular cartilage, where the cartilage surface 

becomes rough, with cracks and wear. After cartilage 

degeneration, the underlying bone experiences 

additional pressure and friction, leading to increased 

bone cell proliferation and bone density, eventually 

resulting in bone sclerosis and osteophyte formation. 

Osteophytes can further damage the synovium and 

cartilage, exacerbating the condition of OA. The 

degradation and destruction of cartilage release 

certain cellular factors and inflammatory mediators 

that can stimulate synovial cells to produce an 

inflammatory response. Synovitis not only causes 

synovial lesions but also worsens joint destruction. 

Inflammatory mediators produced by synovitis, such 

as cytokines and enzymes, can directly affect the 

metabolism and degeneration process of cartilage, 

while also stimulating inflammatory responses and 

metabolic disorders in subchondral bone cells,  

further exacerbating bone changes and sclerosis [37]. 

Nevertheless, despite the close relationship of these 

tissues in the pathogenesis of OA, the distinctions 

among these tissues should also be acknowledged.  

In this study, the training dataset primarily consisted 

of subchondral bone tissues, whereas the validation 

process focused on cartilage and synovial tissues. This 

selection leads to the potential divergence of the 

analysis results, a factor that should be underscored to 

ensure readers’ awareness. 

 

The roles SLC2A1 played in OA have been widely 

reported [24, 25, 38]. Guan et al. disclosed that  

the knockout of SLC2A1 promoted the levels of  

HIF-1alpha and apoptosis in chondrocytes [24]. Yao  

et al. and Zheng et al. reported that SLC2A1 could 

serve as the diagnosis biomarker in OA [25, 38], 

which was in accordance with our findings. The 

current study has identified a positive correlation 

between SLC2A1 and E2F-related signaling pathways. 

The E2F gene family plays a pivotal role in the 

regulation of the cell cycle and cell proliferation. E2F 

proteins function as transcription factors that govern 

the expression of genes involved in cell division, DNA 

replication, and cell differentiation [39]. These proteins 

are responsible for orchestrating the progression of 

cells through different phases of the cell cycle, 

ensuring appropriate cell growth and development. 

Dysregulation of E2F genes has been linked to  

various diseases, including osteoarthritis (OA), where 

abnormal E2F activity can result in uncontrolled  

cell apoptosis [40]. However, further investigation  
is required to elucidate the regulatory relationship 

between SLC2A1 and E2F-related signaling in the 

pathogenesis of OA. 
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NDUFB9 encodes a protein serving as a subunit of  

the mitochondrial oxidative phosphorylation complex  

I [41]. Therefore, the dysfunction of NDUFB9  

leads to the overproduction of mitochondria-derived 

reactive oxygen species (mtROS) and the disturbance 

of the NAD+/NADH balance in tumor cells [42]. 

Nevertheless, no investigation of the biological 

functions of NDUFB9 in OA has been conducted so 

far. In this study, we reported that NDUFB9 was a 

significant diagnosis biomarker and could promote 

vitality and inhibit the apoptosis of chondrocytes in 

OA for the first time. Besides, the local samples 

indicated that NDUFB9 was significantly down-

regulated in the cartilage tissues isolated from OA 

patients. The function enrichment analysis revealed  

a positive correlation between NDUFB9 and the 

activation of oxidative phosphorylation. Oxidative 

phosphorylation is a vital metabolic process in cells, 

primarily responsible for converting the chemical 

energy of organic molecules into a usable form of 

cellular energy, specifically adenosine triphosphate 

(ATP). Oxidative phosphorylation is the predominant 

pathway through which cells generate ATP and plays  

a critical role in maintaining cellular survival and 

function. A previous study reported an upregulation  

of oxidative phosphorylation activation levels in 

osteoarthritis (OA) samples, and inhibiting this process 

significantly impeded OA progression [43]. Our findings 

suggest a strong association between NDUFB9 and  

the dysregulation of oxidative phosphorylation in OA, 

although the underlying mechanisms remain unclear. 

 

The current study developed the diagnostic models 

based on four common algorithms, namely LR, RF, 

SVM, and XGB. These algorithms each have their own 

characteristics [44]. The advantage of the LR model 

lies in its simplicity and speed, making it suitable for 

binary classification problems and performing well  

on linearly separable datasets. It also has strong 

interpretability. The RF model is effective in handling 

high-dimensional data and a large number of features, 

and it has good robustness. The SVM model can handle 

high-dimensional data and non-linear relationships, and 

it has good generalization ability. Especially in dealing 

with small samples and high-dimensional features, the 

SVM model performs well and can be used for non-

linear mapping through kernel functions. The XGB 

model can handle various types of data and has good 

accuracy and generalization ability. It can handle high-

dimensional data and non-linear relationships, has good 

robustness and interpretability, and can automatically 

handle missing and outlier values. In this study, we 

observed remarkable performance of the LR model in 
the validation-cartilage cohort (AUC = 0.726), whereas 

the RF model exhibited strong performance in both  

the validation-synovial (AUC = 0.736) and validation-

local (AUC = 0.715) cohorts. These findings indicate 

the versatility of these models across various tissue 

types. 

 

The limitations of this study should be acknowledged. 

First, despite the fact that the diagnosis values of 

SLC2A1 and NDUFB9 have been validated in multiple 

public cohorts and local clinical samples, a large-scale, 

multi-center, and prospective clinical trial would be 

more beneficial to clarify these genes’ usefulness. 

Second, although we have investigated the functions  

of NDUFB9 in vitro, the in vivo experiments and  

the exploration of its specific regulatory mechanisms 

remain needed. 

 

CONCLUSIONS 
 

Collectively, a lactate metabolism-related gene signature 

was developed to diagnose OA, which was validated in 

multiple independent cohorts, local clinical samples, 

and cellular functional experiments. Our findings 

provide novel insights into the biological mechanisms 

of OA and offer a possible tool in clinical practice. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The levels of lactate in the knee cartilage tissues collected from the control and OA subjects. 
Abbreviation: OA, osteoarthritis. 
 

 
 

Supplementary Figure 2. The calibration analysis of the RF (A), SVM (B), and XGB (C) models. Abbreviations: RF, random forest; SVM, 

supporter vector machine; XGB, XGBoost. 
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Supplementary Figure 3. The predictive performance of the established models in the local cohort. (A–D) The ROC analysis 

indicates the predictive performance of the nomogram (A), RF (B), SVM (C), and XGB (D) models in the validation-local cohort. (E–H) DCA 
displays the net benefit under different thresholds of the nomogram (E), RF (F), SVM (G), and XGB (H) models in the local cohort. (I–L) The 
calibration analysis shows the predictive performance of the nomogram (I), RF (J), SVM (K), and XGB (L) models in the local cohort. 
Abbreviations: ROC, receiver operating characteristic; DCA, decision curve analysis; AUC, area under curve; CI, confidence interval. 
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Supplementary Figure 4. Flow cytometry apoptosis analysis. 

 

 
 

Supplementary Figure 5. The ability of SLC2A1 and NDUFB9 to distinguish OA from RA. (A) The expression levels of SLC2A1 and 

NDUFB9 in the joint synovial tissues from 22 OA and 152 RA samples. (B, C) ROC analysis indicates the ability of NDUFB9 (B) and SLC2A1 (C) to 
distinguish OA from RA.  
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 6, 12. 

 

Supplementary Table 1. 273 lactate metabolism-related genes collected from the MSigDB. 

Gene symbol 

HMOX1, NGLY1, CLPB, NDUFB9, FKTN, MLIP, HIBCH, PDP1, SLC2A1, POMT1, SLC4A1, CYC1, COQ2, SLC16A8, 

CFI, SLC25A19, LDHB, RHAG, ALDOA, C1QBP, GATA1, SLC25A12, MRPL12, XK, NDUFB8, LDHA, NDUFAF3, 

TIMM50, NDUFV2, TUFM, EMB, COX8A, MYC, PYGL, MDH2, HTRA2, CYP27A1, HAGH, PLEC, GATA2, 

HSD17B10, PDSS1, SCO1, NDUFS2, CHCHD10, MTHFD1, MRPS22, GYS2, UQCRH, KLF1, SDHB, DGUOK, ISCA1, 

NDUFS1, AIFM1, RPS14, NDUFS6, HBB, PUS1, RNASEH1, COX5A, SUCLG1, JAK2, NDUFA6, ADAMTS13, 

NDUFA2, PIGA, PDHX, STAT2, SLC19A1, RHD, PNPLA8, IRAK1, MRPS7, UQCRC2, HPDL, ABCG8, COX6B1, 

COX4I1, POMT2, SOD1, NDUFAF2, NDUFA13, SFXN4, LIAS, LETM1, ZNFX1, LONP1, SLC25A10, SLC25A3, 

NDUFAF4, MRPS34, ACAT2, MRPS2, SLC5A8, COX10, ECHS1, PMPCB, PNPLA2, SLC16A1, ACAT1, PNPT1, 

NDUFB11, ATAD3A, RHCE, COQ4, NUBPL, PER2, FLI1, MRPL3, TRMT5, LRPPRC, SPP1, CAV3, RRM2B, SDHA, 

COX15, POMGNT1, DNM1L, NDUFS3, EARS2, MRPS28, LYST, INPP5K, WARS2, TK2, PNPO, NARS2, FASTKD2, 

YARS2, NDUFS8, SLC25A4, KY, GAA, NDUFA12, NDUFA1, MIPEP, GOT2, CA5A, ACAD9, ALDH4A1, NDUFB3, 

MPV17, PITRM1, NDUFS7, SLC16A7, AGK, UQCRQ, AARS2, PDHA1, TET2, DLD, SLC13A3, CDAN1, MVK, 

PHKG2, GTPBP3, PARK7, BCS1L, PLA2G6, LIPT2, FBXL4, OGDH, LYRM4, LIPT1, TRMU, PIK3CG, KIF23, 

NDUFA8, TXN2, SLC7A7, TSFM, POLRMT, NDUFB7, NFS1, KCNN4, VARS2, CALR, SLC16A3, COX6A2, FARS2, 

TCIRG1, NDUFA11, SIL1, NDUFB10, LYRM7, SLC19A3, OCRL, STAT4, CD46, LIPA, ATPAF2, DARS2, MPL, POLG2, 

TTC26, NDUFAF1, NSUN2, GFM2, PDSS2, GFM1, UQCRB, LPIN1, SURF1, COX16, MTO1, SYNJ1, PPCS, HLA-

DRB1, SLC25A42, ACTN3, AKR1D1, CHEK2, VPS13A, PC, COL4A1, NDUFC2, MRPS14, SLC25A26, B3GALNT2, 

NDUFA4, HIF1A, TP53, DTYMK, CPT2, FKRP, RARS2, LDHC, FOXRED1, DAG1, RMND1, HMGCL, TMEM126B, 

COQ9, PIEZO1, TACO1, MECR, TIMMDC1, DNAJC19, NDUFA10, ISCU, SLC39A8, MECP2, TIMM22, HS6ST2, 

NSUN3, TPK1, HMGCS2, NDUFS4, CFH, ACADM, MTFMT, MRPS16, ALDH6A1, LDHAL6B, LDHD, SCO2, COG8, 

NFU1, SLC25A13, CARS2, TARS2, PNKD, NDUFV1, UPB1, LDHAL6A, SERAC1, RB1, POLG, NDUFA9, MRPL44, 

PFKFB2, SLC5A12. 

 

Supplementary Table 2. The information of the datasets from the GEO. 

ID Dataset type Tissues Platform 
Experimental 

type 

Sample size 

(Control/OA) 
PMID 

GSE51588 Training Cartilage tissue GPL13497 
Expression 

profiling by array 
10/40 24229462 

GSE114007 Validation Cartilage tissue 
GPL11154 

GPL18573 

Expression 

profiling by high 

throughput 

sequencing 

18/20 30081074 

GSE117999 Validation Cartilage tissue GPL20844 
Expression 

profiling by array 
12/12 NA 

GSE82107 Validation Synovial tissue GPL570 
Expression 

profiling by array 
7/10 27870898 

GSE89408 - Synovial tissue GPL11154 

Expression 

profiling by high 

throughput 

sequencing 

OA: 22 

RA: 152 

28455435 

28863153 
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Supplementary Table 3. The baseline clinicopathological 
features of the control and OA subjects in the local cohort. 

Feature Control (N = 12) OA (N = 12) 

Age 54.17 ± 7.8 60.08 ± 8.1 

Sex   

Male 8 (66.67%) 6 (50.00%) 

Female 4 (33.33%) 6 (50.00%) 

BMI 29.17 ± 7.5 32.08 ± 9.4 

Kellgren-Lawrence Grade   

I - 0 (0.00%) 

II - 0 (0.00%) 

III - 3 (25.00%) 

IV - 9 (75.00%) 

 

Supplementary Table 4. The siRNA sequences used 
in this study. 

ID Sequence (5’-3’) 

si-NDUFB9-1 GTCCCAGAATGGTGCTTAGAT 

si-NC-1 GCGTGTCCAATTCGAGTAGAT 

si-NDUFB9-2 GGCAATGTATCCTGATTACTT 

si-NC-2 GACTTACTCGGCGTTATAATT 

 

Supplementary Table 5. The primer sequence of the qPCR 
experiments. 

Gene Sequence (5’-3’) 

SLC2A1 Forward Primer: GGCCAAGAGTGTGCTAAAGAA 

 Reverse Primer: ACAGCGTTGATGCCAGACAG 

NDUFB9 Forward Primer: GTGGTGCGTCCAGAGAGAC 

 Reverse Primer: GGCCTTCGCCATATCCTTTTC  

GAPDH Forward Primer: GGAGCGAGATCCCTCCAAAAT 

 Reverse Primer: GGCTGTTGTCATACTTCTCATGG 

 

Supplementary Table 6. The expression difference of 273 lactate metabolism-related genes between the 
control and OA samples. 
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Supplementary Table 7. The 
coefficients of the genes in the 
LASSO regression model. 

Gene Coefficients 

XK -0.466813114 

GATA1 -0.297177278 

HMOX1 -1.044903664 

SLC2A1 -0.306222582 

CYC1 -0.009444988 

HAGH -0.09719996 

NDUFB9 -3.705789774 

HTRA2 -0.00717518 

ISCA1 -0.870643408 

HIBCH 0.211640847 

FKTN 0.211721146 

PDP1 3.359955862 

SLC16A8 0.103277647 

 

Supplementary Table 8. The genes identified by the SVM-RFE algorithm. 

Gene 

NDUFB9, CYC1, HMOX1, PYGL, CFI, FKTN, MLIP, SLC2A1, CYP27A1, CLPB, NDUFS2, RHAG, HIBCH. 

 

Supplementary Table 9. The 
results obtained from the 
Boruta algorithm. 

Gene Status 

RHAG Confirmed 

XK Confirmed 

GATA1 Confirmed 

SLC4A1 Confirmed 

RHCE Confirmed 

KLF1 Confirmed 

RHD Confirmed 

HMOX1 Confirmed 

LDHA Confirmed 

EMB Confirmed 

SLC2A1 Confirmed 

PYGL Confirmed 

CLPB Confirmed 

CYC1 Confirmed 

C1QBP Confirmed 

HAGH Confirmed 

MYC Confirmed 

LDHB Confirmed 

NDUFB9 Confirmed 

NDUFS2 Confirmed 

MRPL12 Confirmed 

ALDOA Confirmed 
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COX8A Confirmed 

COQ2 Confirmed 

NDUFV2 Confirmed 

HTRA2 Confirmed 

CHCHD10 Confirmed 

MDH2 Confirmed 

NDUFAF2 Confirmed 

NDUFAF3 Confirmed 

TUFM Confirmed 

TIMM50 Confirmed 

PDHX Confirmed 

MTHFD1 Confirmed 

SLC25A12 Confirmed 

CYP27A1 Confirmed 

ADAMTS13 Confirmed 

POMT1 Confirmed 

HIBCH Confirmed 

FKTN Confirmed 

PDP1 Confirmed 

CFI Confirmed 

MLIP Confirmed 

SLC16A8 Confirmed 

PNPLA2 Rejected 

HSD17B10 Rejected 

JAK2 Rejected 

SLC5A8 Rejected 

LONP1 Rejected 

MRPL3 Rejected 

NDUFAF4 Rejected 

PNPLA8 Rejected 

SUCLG1 Rejected 

CAV3 Rejected 

PER2 Rejected 

SPP1 Rejected 

ABCG8 Rejected 

GYS2 Tentative 

HBB Tentative 

SDHB Tentative 

UQCRH Tentative 

NDUFA6 Tentative 

COX5A Tentative 

PUS1 Tentative 

RNASEH1 Tentative 

MRPS7 Tentative 

SLC16A1 Tentative 

COX10 Tentative 

HPDL Tentative 

ISCA1 Tentative 

PIGA Tentative 

COX4I1 Tentative 

PLEC Tentative 

GATA2 Tentative 
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Supplementary Table 10. The univariate logistic regression of 
the differentially-expressed genes associated with lactate 
metabolism. 

Gene OR (95%CI) P-value 

SLC2A1 0.037 (0.004-0.173) <0.001 

SLC25A12 143.349 (11.744-4357.33) 0.001 

HIBCH 1172.193 (41.919-208455.093) 0.001 

LDHB 0.021 (0.001-0.140) 0.001 

COQ2 0.003 (0.001-0.054) 0.001 

TIMM50 0.002 (0.001-0.047) 0.001 

COX8A 0.009 (0.001-0.099) 0.001 

MTHFD1 0.004 (0.001-0.068) 0.001 

SLC16A8 20.916 (4.512-199.328) 0.001 

C1QBP 0.021 (0.001-0.145) 0.001 

MDH2 0.001 (0.001-0.037) 0.001 

MRPL12 0.017 (0.001-0.135) 0.001 

MYC 0.038 (0.003-0.207) 0.002 

PLEC 37.541 (5.505-573.250) 0.002 

NDUFA6 0.010 (0.001-0.113) 0.002 

CYP27A1 258.300 (14.192-19613.825) 0.002 

ISCA1 0.005 (0.001-0.089) 0.002 

NDUFV2 0.003 (0.001-0.064) 0.002 

TUFM 0.001 (0.001-0.021) 0.002 

NDUFAF3 0.001 (0.001-0.012) 0.002 

SUCLG1 0.013 (0.001-0.147) 0.002 

RHAG 0.535 (0.324-0.747) 0.002 

HBB 0.241 (0.081-0.538) 0.002 

GATA2 10.556 (2.938-69.825) 0.002 

CHCHD10 0.025 (0.001-0.190) 0.002 

GYS2 0.226 (0.073-0.523) 0.003 

PDHX 0.053 (0.006-0.304) 0.003 

XK 0.450 (0.236-0.697) 0.003 

EMB 0.190 (0.051-0.477) 0.003 

ADAMTS13 42.235 (5.112-805.013) 0.003 

HAGH 0.106 (0.017-0.375) 0.003 

ALDOA 0.003 (0.001-0.063) 0.003 

NDUFS2 0.001 (0.001-0.014) 0.003 

UQCRH 0.018 (0.001-0.166) 0.003 

NDUFB9 0.001 (0.001-0.004) 0.003 

SLC4A1 0.293 (0.105-0.565) 0.003 

LDHA 0.142 (0.028-0.406) 0.003 

HPDL 0.018 (0.001-0.184) 0.003 

SDHB 0.013 (0.001-0.135) 0.003 

RNASEH1 0.005 (0.001-0.098) 0.004 

MLIP 345.260 (17.277-80337.860) 0.004 

CLPB 0.001 (0.001-0.039) 0.004 

GATA1 0.435 (0.214-0.689) 0.004 

PUS1 0.039 (0.003-0.252) 0.004 

PYGL 0.009 (0.001-0.116) 0.004 

COX4I1 0.021 (0.001-0.206) 0.004 

13102



www.aging-us.com 28 AGING 

MRPS7 0.002 (0.001-0.063) 0.004 

HSD17B10 0.029 (0.001-0.209) 0.004 

COX10 0.003 (0.001-0.090) 0.004 

PIGA 0.050 (0.004-0.311) 0.005 

HTRA2 0.001 (0.001-0.009) 0.005 

PDP1 181.034 (10.849-17070.709) 0.005 

COX5A 0.020 (0.001-0.188) 0.005 

KLF1 0.451 (0.224-0.728) 0.005 

JAK2 0.069 (0.007-0.348) 0.006 

NDUFAF4 0.113 (0.020-0.481) 0.006 

PNPLA8 0.063 (0.005-0.353) 0.006 

NDUFAF2 0.112 (0.017-0.464) 0.007 

RHD 0.514 (0.279-0.791) 0.008 

FKTN 119875.058 (245.767-44103618194.23) 0.009 

LONP1 0.051 (0.003-0.341) 0.010 

ABCG8 10.071 (2.296-80.359) 0.010 

SLC5A8 0.190 (0.045-0.611) 0.010 

SLC16A1 0.126 (0.021-0.532) 0.010 

MRPL3 0.146 (0.028-0.567) 0.010 

SPP1 3.812 (1.445-12.166) 0.012 

PER2 5.184 (1.569-22.371) 0.012 

PNPLA2 0.147 (0.023-0.521) 0.013 

RHCE 0.688 (0.492-0.913) 0.014 

POMT1 15336.767 (60.167-493515289.745) 0.014 

CAV3 10.665 (2.035-102.238) 0.014 

HMOX1 0.001 (0.001-0.021) 0.017 

CFI 708510.387 (272.556-4445894389564.95) 0.017 

CYC1 0.001 (0.000-0.001) 0.217 

 

Supplementary Table 11. The samples in the C1 and C2 clusters.  

Cluster Sample ID 

C1 
GSM1248759, GSM1248760, GSM1248761, GSM1248762, GSM1248764, GSM1248765, GSM1248766, 

GSM1248767. 

C2 

GSM1248763, GSM1248768, GSM1248769, GSM1248770, GSM1248771, GSM1248772, GSM1248773, 

GSM1248774, GSM1248775, GSM1248776, GSM1248777, GSM1248778, GSM1248779, GSM1248780, 

GSM1248781, GSM1248782, GSM1248783, GSM1248784, GSM1248785, GSM1248786, GSM1248787, 

GSM1248788, GSM1248789, GSM1248790, GSM1248791, GSM1248792, GSM1248793, GSM1248794, 

GSM1248795, GSM1248796, GSM1248797, GSM1248798, GSM1248799, GSM1248800, GSM1248801, 

GSM1248802, GSM1248803, GSM1248804, GSM1248805, GSM1248806, GSM1248807, GSM1248808. 

 

Supplementary Table 12. The differentially-expressed genes between C1 and C2 subjects.  
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