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INTRODUCTION 
 

As reported in the most recent Global Cancer Statistics, 

ovarian cancer (OV) is one of the most frequent causes 
of female cancer-related mortality [1]. OV is one of the 

most frequent gynecologic tumors, ranking the third in 

incidences and deaths [1, 2]. As a predominant type of 

OV, ovarian epithelial carcinoma accounts for 90% of 

all OV cases, and serous ovarian carcinoma is the most 

prevalent subtype [3]. As currently we lack effective 

screening methods, serous OV is often diagnosed at a 
late stage [4]. 5-year survival rate of patients with serous 

OV is 43%, which is noticeably less than that of clear 

cell carcinoma (66%), mucinous (71%), and endometroid 
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ABSTRACT 
 

Background: As a newly defined regulated cell death, ferroptosis is a potential biomarker in ovarian cancer 
(OV). However, its underlying mechanism in tumor microenvironment (TME) and clinical prediction significance 
in OV remained to be elucidated. 
Methods: The transcriptome data of high-grade serous OV from The Cancer Genome Atlas (TCGA) database 
were downloaded. Molecular subtypes were classified based on ferroptosis-correlated genes from the FerrDb 
database by performing consensus clustering analysis. The associations between the subtypes and 
clinicopathologic characteristics, mutation, regulatory pathways and immune landscape were assessed. A 
ferroptosis-related prognostic model was constructed and verified using International Cancer Genome 
Consortium (ICGC) cohort and GSE70769.  
Results: Three molecular subtypes of OV were defined. Patients in subtype C3 tended to have the most 
favorable prognosis, while subtype C1 showing more mesenchymal cells, increased immune infiltration of 
Macrophages_M2, lower tumor purity, and epithelial-to-mesenchymal transition (EMT) features had the 
poorest prognosis. A ferroptosis-related risk model was constructed using 8 genes (PDP1, FCGBP, EPHA4, GAS1, 
SLC7A11, BLOC1S1, SPOCK2, and CXCL9) and manifested a strong prediction performance. High-risk patients 
had enriched EMT pathways, more Macrophages_M2, less plasma cells and CD8 cell infiltration, greater 
tendency of immune escape and worse prognosis. The risk score has negatively correlated relation with LAG3, 
TIGIT, CTLA4, IDO1, CD27, ICOS, and IL2RB but positively correlated with PVR, CD276, and CD28. Moreover, low-
risk patients were more sensitive to Cisplatin and Gefitinib, Gemcitabine. 
Conclusions: Our results could improve the understanding of ferroptosis in OV, providing promising insights for 
the clinical targeted therapy for the cancer. 
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(82%) [3]. Standard therapeutic strategy for newly 

diagnosed cases is cytoreductive surgery, systematic 

pelvic and para-aortic lymph node dissection and 

adjuvant platinum-based chemotherapies for patients 

with higher stage or higher grade [4]. However, drug 

resistance and adverse reactions are great challenges  

in clinical treatment. Though immunotherapies could 

improve the prognosis of recurrent OV, durable 

response rate and disease control rate of patients are 

generally lower than 20% and 50%, respectively [5, 6]. 

Hence, developing potential therapeutic biomarkers for 

prognostic prediction and personalized therapies is of 

great significance.  

 

Cell death is a life process that occurs under 

physiological or pathological conditions [7]. Ferroptosis 

is a newly defined regulated cell death resulting from an 

overload of iron-dependent lipid peroxidation on cellular 

membranes [8]. Ferroptosis can be induced via oxidative 

turbulence, which is mainly modulated by system Xc- 

and glutathione peroxidase 4 [9, 10]. Different from 

regulated cell death such as apoptosis, autophagy or 

necroptosis, ferroptosis is manifested as mitochondrial 

atrophy and reduction of mitochondrial crista [11]. 

Study showed that ferroptosis is closely involved in 

cancer development, progression, and suppression [11]. 

Inducing ferroptosis in tumor cells could be a promising 

strategy in cancer therapies including radiotherapy (RT), 

immunotherapy, chemotherapy and targeted therapies 

[12]. Although ferroptosis-related differential expressed 

genes (DEGs) have been used to develop a prognostic 

model for OV [2, 13], prognostic significance of 

ferroptosis-based genes in OV classification and 

prognostic prediction and response to anti-tumor therapy 

remains to be investigated. 

 

This study collected a total of 361 primary high-grade 

serous OV cases from The Cancer Genome Atlas 

(TCGA) database. Three heterogeneous subtypes  

were classified and their relationships with genomic 

alteration, clinicopathological characteristics, and 

immune characteristics were evaluated. Moreover,  

a prognostic risk model was developed and validated  

to be able to accurately predict OV prognostic 

outcomes and patients’ responses to chemotherapy/ 

immunotherapy. Collectively, our findings could 

improve the current understanding underlying the 

mechanism of ferroptosis in OV, contributing to the 

development of the clinical therapy for OV. 

 

MATERIALS AND METHODS 
 

Data source and pro-processing 

 

We downloaded the RNA-Seq data of a total  

of 361 primary high-grade serous OV samples  

(non-Stage I and non-Grade 1) from TCGA 

(https://portal.gdc.cancer.gov/) database using Genomic 

Data Commons Application Programming Interface. 

The data in TCGA-OV cohort were pre-processed to 

obtain qualified samples with high-grade serous OV 

and survival time > 30 days and remove those without 

survival time, survival states or clinical follow-up 

information. Following that, FPKM was converted to 

TPM, and ensembl gene IDs were transformed into 

gene symbol IDs. The median was used to express the 

genes with various gene symbol IDs. 

 

The gene expression profiles of 85 OV samples  

from GSE70769 in the Gene-Expression Omnibus 

(GEO; https://www.ncbi.nlm.nih.gov/geo/) database 

were collected. Normalized gene expression profiles 

and clinical information were acquired from the 

ovarian cancer-Australia (OV-AU) project in ICGC 

(https://icgc.org) database and 93 OV samples were 

obtained. The probe matching to multiple genes  

in GEO were removed. The median was used to 

express the genes. TCGA-OV served as a training 

cohort, while GSE70769 and ICGC-AU were used  

as independent validation cohorts. Subsequently, we 

collected ferroptosis-related genes from the FerrDb 

database (http://www.zhounan.org/ferrdb). 

 

Identification of ferroptosis-based subtypes 

 

Ferroptosis-related genes (with P < 0.05) in TCGA-

OV were identified by univariate Cox analysis from 

the expression profile matrix using the coxph function 

in R. Subsequently, a total of 361 TCGA-OV samples 

were clustered by consensus clustering analysis based 

on the expression profiles of the 17 ferroptosis-related 

genes using “ConsensusClusterPlus” package [14]. 

500 bootstraps containing 80% TCGA-OV patients 

were processed by k-means algorithm and euclidean 

distancing. The optimal subtypes were determined 

from 2 to 10 based on cumulative distribution function 

(CDF) and consensus matrix. Kaplan-Meier (KM) 

curve was plotted for each subtype in TCGA-OV 

cohort. Distributions of ferroptosis-related genes were 

compared using Kruskal-Wallis test and visualized 

using “ComplexHeatmap” package [15]. 

 
Analysis of clinicopathological characteristics among 

the ferroptosis subtypes  

 
The relationship of clinicopathological characteristics 

including age, Stage, Grade and ferroptosis subtypes 

was explored. Also, other immune subgroups including 

C1 (Wound Healing), C2 (IFN-γ Dominant), C3 

(Inflammatory), and C4 (Lymphocyte Depleted) as well 

as “differenced”, “immunoreactive”, “mesenchymal”, 

and “proliferative” were collected from a previous study 
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[16]. Distributions of clinicopathological features 

among the three subtypes were analyzed using 

ANOVA. 

 

Comparisons of mutation characteristics among the 

ferroptosis subtypes  

 

Furthermore, the simple nucleotide variations (SNVs) 

data of TCGA-OV samples processed by MuTect2 

software [17] were downloaded. Homologous re-

combination defects (HRD), mutant-allele tumor 

heterogeneity (MATH), and tumor mutation burden 

(TMB) were calculated using tmb function embedded 

in “maftools” package (version 2.8.05) [18] in R. 

Comparisons among the subtypes were performed 

using Kruskal-Wallis test. 

 

Analysis of immune characteristics among the 

ferroptosis subtypes  

 

In TCGA-OV cohort, StromalScore, ImmuneScore, 

ESTIMATEScore, and TumorPurity were calculated 

using ESTIMATE algorithm to evaluate immune cell 

infiltration [19]. The abundance of 22 immune cells 

was measured with CIBERSORT (https://cibersort.

stanford.edu/) [20]. Single-sample gene set enrichment 

analysis (ssGSEA) was employed to score 29 tumor 

microenvironment (TME)-related gene signatures  

as previously reported [21]. Based on a past study 

[22], we obtained 15 pathways related to immune 

pathways, stromal pathways, DNA damage repair, and 

oncogenic pathways, and the enrichment score was 

calculated by ssGSEA. Comparisons were performed 

by kruskal.test. Statistically significant was defined 

when P < 0.05. 

 

Identifying differential expressed genes (DEGs)  

 

Under the criteria of false discovery rate (FDR) < 0.05 

and |log2 (Fold Chage)| > 1, “limma” package [23] in 

R was used to filter the DEGs among the three 

ferroptosis subtypes. Differentially up-regulated genes 

in subtype C1 and down-regulated genes in subtype  

C3 were analyzed using Gene ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analysis in “clusterProfiler” package [24]. 

 

Development and verification of a risk model 

 

Candidate DEGs with a potential impact on OV 

prognosis were first selected from a total of 3,384 

DEGs under P < 0.01 using univariate Cox regression 

analysis, and their number was further reduced by 
LASSO Cox regression using “glmnet” package [25] 

in R. A risk model was developed applying stepwise 

multivariate regression analysis and stepAIC. 

The formula for the risk score of the prognostic 

signature was: 

 

1
Risk score β EXP

i

ii
i

=
=   

 

where “βi” represents the Cox regression coefficient 

value of i gene and “EXPi” indicates the i gene 

expression level. The risk score was calculated for  

the samples in TCGA-OV cohort, and “timeROC” 

package [26] was used to conduct receiver operating 

characteristic (ROC) analysis with AUCs for 1, 3, and  

5 year(s). Finally, the risk score was standardized to  

z-score to divide patients in TCGA-OV into low-risk 

group (zscore < 0) and high-risk group (zscore > 0). The 

“survminer” package [27] was used to determine the 

optimal cutoff, and KM curves of the two groups were 

plotted. Significant differences were defined by log-

rank test. To validate the robustness of the risk model, 

patients in the validation cohorts were also divided into 

the two risk score subgroups according to the same 

method used to process the TCGA cohort. Then, KM 

curves and ROC curves were generated for the three 

subtypes in GSE102073 cohort and ICGC-AU cohort. 

 
Clinical performance of the risk score and prognosis 

analysis  

 
For high- and low-risk groups, risk score distribution 

among the three subtypes was analyzed using the 

Kruskal.test and the Sankey diagram. KM curves were 

generated to compare the low- and high-risk groups in 

terms of several clinicopathological parameters (Stage 

II-IV and Grade G2-G3). 

 
Relationship of pathway characteristics and risk 

score 

 
GSEA analysis was conducted on all candidate gene 

sets in KEGG and Hallmark database [28]. Meanwhile, 

the relationship between biological function of different 

samples and risk score was analyzed by calculating  

the scores of different functions in each OV sample 

using ssGSEA analysis in “GSVA” package [29]. The 

correlation heatmap of pathway and risk score was 

visualized by “ggcorrplot” package [30]. Distribution  

of ssGSEA scores between the two risk groups was 

analyzed using kruskal.test and visualized using 

“ComplexHeatmap” package.  

 
Assessment of immune cell infiltration between the 

high- and low-risk groups 

 
Furthermore, we evaluated the immune cell infiltration 

between the two risk groups by ESTIMATE algorithm, 

and the differences were analyzed using wilcon.tests 
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The abundances of 22 immune cells were measured  

by CIBERSORT. The ssGSEA method was employed 

to score the 15 pathways-related gene signatures and  

29 TME-related gene signatures. Comparisons were 

performed using kruskal.test. Statistical significance was 

defined when P < 0.05. Next, the correlation between 

immune cell infiltration, 22 immune cells and risk score 

was analyzed by “ggcorrplot” package. 

 

Prediction of patients’ response to chemotherapy 

and immunotherapy 

 

Patients’ response to ICI therapy was evaluated  

using TIDE algorithm [31], with a high TIDE score 

indicating low response to ICI therapy. Immune 

checkpoints were obtained from a previous study [32]. 

The “ComplexHeatmap” package was used to compare 

immune checkpoint expression patterns between high- 

and low-risk groups. The relationship between risk 

score and immune checkpoints was analyzed using 

“ggcorrplot” package. Meanwhile, IC50 was calculated 

by the “pRRophetic” program [33] and compared  

in the two risk groups using wilcox.tests. Statistical 

significance was defined when P < 0.05. 

 

Cell culture and transfection 

 

Two human ovarian cancer cell lines (SKOV3 and 

A2780) were purchased from the Cell Repository of the 

Chinese Academy of Sciences. McCoy’s 5A medium 

(HyClone, USA) containing 1% Penicillin-Streptomycin 

Solution (Procell Life Science and Technology Co., Ltd., 

China) and 10% fetal bovine serum (FBS, HyClone, 

USA) were used to culture SKOV3 cells. A2780  

cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM, HyClone, USA) supplemented with 

1% Penicillin-Streptomycin Solution (Procell Life 

Science and Technology Co., Ltd., China) and 10%  

FBS (HyClone, USA). All the cells were placed in an 

incubator with 5% CO2 at 37°C. 

 

The expression of PDP1 was inhibited using siRNA 

(GIMA Corporation, China). Initially, both cell lines 

(1 × 105 cells/well) were seeded into 6-well plates 

containing 2-ml corresponding culture medium. Once 

the cells adhered to the surface, a mixture of 5 μl siRNA 

and 5 μl Lipo3000 (Invitrogen, USA) was added into 

each well. Subsequently, the cells were placed back  

into the incubator and the complete culture medium  

was replaced after incubation for 6 hours. Total RNA 

extraction and total protein extraction from the cells 

were performed 48 and 72 hours after transfection, 

respectively. Whether the knockdown of PDP1 was 
successful was analyzed by performing RT-qPCR and 

Western blot analysis. Cell phenotypic experiments 

were conducted 48 hours after the transfection to 

observe the changes in cellular phenotype after PDP1 

knockdown. 

 

The siRNA sequences used were as follows: si-negative 

control (NC): Sense: 5′-UCCUCCGAACGUGUCACG 

UTT-3′, Antisense: 5′-ACGUGACACGUUCGGAGAA 

TT-3′; si-PDP1: Sense: 5′-TCAGTTCAATTCTCATG 

TT-3′, Antisense: 5′-TGAGACTTTGCTAGAGATT-3′. 

The primer sequences used were as follows: GAPDH: 

forward: 5′-GCAAATTCCATGGCACCGT-3′, reverse: 

5′-TCGCCCCACTTGATTTTGG-3′, PDP1: forward: 

5′-GTCCTTCCCATTCTGCAACC-3′, reverse: 5′-GAA 

ACAGAGGAGGACCAAACA-3′. 

 

EdU assay 

 

Forty-eight hours after the transfection, the two cell 

lines (6 × 103 cells) were seeded into a 96-well plate  

per well. After cell adhesion, 100 μM of 2X EdU was 

added to each well and incubated for 2 hours. Next, 

phosphate-buffered saline (PBS) was used to wash  

the cells twice, followed by using 100 μL of general 

tissue fixative to fix the cells for 20 minutes. Next, 

0.3% Triton X was added to lyse the cells for at least  

10 minutes. Once the lysis was complete and cleared, 

the cells were added with a fluorescence staining 

reagent and then incubated for 40 minutes. Finally, after 

washing the cells at least twice with PBS, the nuclei 

were stained by adding Hoechst 33342. The experiment 

was conducted in triplicate. 

 

Wound-healing assay 

 

After transfection for 48 hours, the two cell lines were 

observed to see if they covered 80% of a well of the  

6-well plate. If the coverage was below 80%, cell 

culture was continued until the desired 80% coverage 

was achieved. To detect cell migration ability, 200 μL 

pipette tip was used to gently and uniformly scratch the 

surface of the central area in each well. Subsequently, 

the wells were washed by PBS twice and then the 

corresponding serum-free culture medium was renewed, 

and the plate was placed back into the cell culture 

incubator under the original conditions. After incubation 

for 24 hours, the 6-well plate was removed and images 

were captured using a microscope. Cell migration  

was determined by measuring the distance of wound 

closure on both sides of the scratch. The experiment 

was conducted in triplicate. 

 

Colony formation assay 

 

After transfection for 48 hours, the cells (1,000 
cells/well) were seeded into 6-well plates and cultured 

in complete medium for two weeks. After culturing, 

culture medium was discarded and the cells were 
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washed with PBS three times. Subsequently, the cells 

were fixed with formaldehyde for 20 minutes and 

washed by PBS twice. 0.1% crystal violet was used to 

dye the cells for 20 minutes. The results were assessed 

by colony imaging and counting. This experiment was 

repeated three times. 

 

Transwell assay 

 

After transfection for 48 hours, the cells were cultured 

for 24 hours in serum-free medium, then digested  

with trypsin, centrifuged, and washed with PBS  

twice. The cells were resuspended in 200 μL of serum-

free medium and counted to ensure that there were 

approximately 8 × 103 cells per upper chamber. For the 

invasion assay, the bottom surface of the chamber was 

pre-coated with matrix gel and the lower chamber was 

added with 500 μL of complete medium containing 

10% FBS. After incubation for 24 hours, the chamber 

was washed twice with PBS, and non-invaded  

cells were removed using cotton swab. Next, 4% 

paraformaldehyde was used to fix the chamber for 20 

minutes. The cells were dyed by 0.1% crystal violet 

for 20 minutes and washed with PBS. The chamber 

was placed under a 200X magnification microscope 

for imaging and cell counting. This experiment was 

repeated three times. 

 

Data availability statement 

 

The data that support the findings of this study  

are openly available in The Cancer Genome Atlas  

(TCGA, https://portal.gdc.cancer.gov/), Gene-Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/),  

and International Cancer Genome Consortium (ICGC, 

https://icgc.org). The experimental data can be obtained 

from the corresponding author upon reasonable request. 
 

RESULTS 
 

Classification of three ferroptosis subtypes 

 

A total of 17 prognostic genes were selected by 

univariate Cox regression analysis from TCGA- 

OV cohort (Figure 1A). A total of 361 OV patients  

were clustered by these genes using consensus 

clustering analysis. According to the CDF Delta area, 

when cluster = 3, clustering effect was relatively stable 

(Supplementary Figure 1). As shown in Figure 1B, 

consensus matrix k = 3 was determined to classify 

three subtypes of OV. Principal components analysis 

(PCA) presented distinct separation among the three 

subtypes (Figure 1C). From KM curves, it could be 
observed that subtype C3 had the optimal prognosis 

and subtype C1 had the worse survival in TCGA-OV 

cohort (P = 0.0069) (Figure 1D). Furthermore, the 

expression of the 17 genes was measured (Figure 1E). 

Except ATP6V1G2 and IFNG, subtype C1 had most  

of significantly upregulated ferroptosis-related genes. 

Similarly, the heatmap displayed the distributions of 

ferroptosis-related genes among the three subtypes. 

We found that these ferroptosis-related genes were 

remarkably upregulated in subtype C1 but down-

regulated in subtype C3 (Figure 1F). 

 

Association of clinicopathologic characteristics 

among the three ferroptosis subtypes  

 

The three ferroptosis subtypes in TCGA-OV  

cohort showed no significant difference in the 

clinicopathological features such as Grade, age or  

Stage (Figure 2A–2C). Further, we collected other 

subtypes (differenced, immunoreactive, mesenchymal, 

and proliferative) and immune subtypes (C1, C2, C3, 

and C4) from a previous study. Subtype C1 and subtype  

C2 had higher proportion of immune subtype C4 

(Lymphocyte Depleted); subtype C3 exhibited higher 

proportion of immune subtype C2 (IFN-γ Dominant); 

the quantity of mesenchymal cells was significantly 

more in subtype C1 than in subtype C3 (Figure 2D, 2E). 

 

Mutation characteristics among the ferroptosis 

subtypes 

 

Figure 3A–3C displayed no significant differences in 

TMB, MATH, and HRD among the three subtypes  

(P > 0.05). Meanwhile, analysis on the mutation 

characteristics of top 20 mutated genes in each subtype 

showed higher mutation frequencies of TP53 (91.9%) 

and TTIN (37.6%) (Figure 3D). 

 

Immune characteristics among the ferroptosis 

subtypes 

 

The results from ESTIMATE showed that 

StromalScore (P < 0.0001), ImmuneScore (P < 0.05), 

and ESTIMATEScore (P < 0.0001) were remarkably 

higher in subtype C1, but TumorPurity (P < 0.0001) 

was lower in subtype C1 when compared to  

subtype C2 and subtype C3 (Figure 4A). Significant 

alterations in the abundance of immune cells 

infiltration among the three subtypes were analyzed, 

and we found that subtype C1 had abundant 

Macrophages_M2 (Figure 4B). SsGSEA scores for  

29 TME-related gene signatures demonstrated that 

matrix, matrix remodeling, angiogenesis, cancer-

associated fibroblasts (CAF), endothelium, protumor 

cytokines, and EMT signature were enriched in 

subtype C1 (Figure 4C, 4D). Moreover, subtype  
C1 had distinctly higher scores of Wnt signaling 

pathway, PI3K-Akt signaling pathway, TGF-β 

signaling pathway (Figure 4E, 4F). 
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Figure 1. Identification of three ferroptosis-based subtypes. (A) Forest plots for a total of 17 ferroptosis-related genes in TCGA-OV 

cohort analyzed by univariate Cox regression study. (B) Three clusters (k = 3) were classified by consensus matrix heatmap defining. (C) The 
three subtypes showed distinct separation, shown by PCA analysis. (D) The three subtypes in TCGA-OV cohort were plotted for Kaplan-
Meier curves. (E) Alterations of 17 genes related to ferroptosis in TCGA-OV cohort. (F) Heatmap portrayed the distributions of the genes 
related to ferroptosis among three subtypes. nsP > 0.05; ****P < 0.0001. 
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Identification of DEGs 

 

Furthermore, we identified 1420 DEGs from subtype 

C1 (including 1406 upregulated and 14 downregulated 

genes) (Figure 5A), 51 DEGs from subtype C2 

(including 19 upregulated and 32 downregulated 

genes), and 3120 DEGs from subtype C3 (including  

30 upregulated and 3090 downregulated genes) 

(Figure 5B). Next, differentially up-regulated genes  

in subtype C1 and down-regulated genes in subtype  

C3 were subjected to functional GO and KEGG 

pathway enrichment analysis. As shown in Figure 5C, 

focal adhesion and proteoglycans, PI3K-Akt signaling 

pathway in cancer were significantly enriched in 

subtype C1. Figure 5D–5F showed the top 20 enriched 

GO terms (BP, CC, and MF). As for BO, subtype  

C had enriched regulation of extracellular matrix 

organization, angiogenesis, and positive regulation of 

cell adhesion. 

 

Development and verification of a risk model 

 

A total of 52 (47 risk genes and 5 protective genes) 

genes with greater impact on prognosis were 

identified from a total of 3,384 DEGs. LASSO Cox 

regression was carried out to compress gene number 

in the risk model. Figure 6A displayed mutual 

increases in both the number of independent variable 

coefficients close to zero and the lambda. See Figure 

6B for confidence interval under each lambda in  

10-fold cross-validation. Using stepwise multivariate 

regression analysis and stepAIC under lambda = 

0.052, 8 ferroptosis-related genes (PDP1, FCGBP, 

EPHA4, GAS1, SLC7A11, BLOC1S1, SPOCK2, and 

 

 
 

Figure 2. Association of clinicopathologic characteristics among ferroptosis-based subtypes in TCGA-OV cohort. (A–C) 
Distributions of age, Stage and Grade among the three subtypes. (D) Distributions of differenced, immunoreactive, mesenchymal, and 
proliferative subtypes among the three subtypes. (E) Alterations of immune subtypes of C1, C2, C3, and C4 in the three subtypes. 
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CXCL9) affecting OV prognosis were selected 

(Figure 6C). The risk score was calculated with the 

formula: risk score = + 0.279 × PDP1 + 0.102 × 

FCGBP + 0.115 × EPHA4 + 0.144 × GAS1 −0.302 × 

SLC7A11-0.205 × BLOC1S1 + 0.068 × SPOCK2 

−0.156 × CXCL9. We found that high-risk patients in 

TCGA dataset showed a poor prognostic outcome 

(Figure 6D). In TCGA cohort, the survival of high-

risk patients was worse than low-risk patients (P < 

0.0001), with 1-year AUC of 0.61, 3-year AUC of 

0.69, and 5-year AUC of 0.74 (Figure 6E, 6F). The 

model robustness was verified using GSE102073 

cohort and ICGC-AU cohort because 1-year, 3-year 

and 5-year in GSE102073 cohort was 0.66, 0.69, and 

0.90, respectively, and in ICGC-AU cohort was 0.72, 

0.71, and 0.61, respectively (Figure 6G–6J). 

 

Clinical associations and prognosis analysis of the 

risk score  

 

The risk score was the highest in subtype C1 and the 

lowest in subtype C3. Additionally, most high-risk 

patients belonged to subtypes C1 and C2 (Figure 7A). 

Furthermore, survival analysis showed that high-risk 

patients with Stage III-IV and Grade G3 exhibited 

dismal prognosis (Figure 7B–7F). 

 

High risk was associated with EMT pathway 

 

To clarify whether there were differentially activated 

pathways in high- and low-risk groups, we performed 

GSEA analysis using KEGG database and Hallmark 

gene sets. KEGG_BASAL_CELL_CARCINOMA, 

KEGG_ECM_RECEPTOR_INTERACTION, KEGG_ 

TGF_BETA_SIGNALING_PATHWAY and KEGG_ 

WNT_SIGNALING_PATHWAY (two EMT-related 

pathways), KEGG_FOCAL_ADHESION were enriched 

in the low-risk group (Figure 8A). In addition, high 

risk was positively associated with pathways involved 

in EMT process, such as HALLMARK_WNT_ 

SIGNALING, and HALLMARK_TGF_BETA_ 

SIGNALING, HALLMARK_NORCH_SIGNALING, 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRA

NSITION (Figure 8B). As illustrated in Figure 8C, 8D, 

high-risk score group had significantly enriched EMT-

related pathways. 

 

 
 

Figure 3. Mutation characteristics among ferroptosis-based subtypes in TCGA-OV cohort. (A–C) Alterations of TMB, mutant-

allele tumor heterogeneity, and homologous recombination defects in TCGA-OV cohort. (D) Mutation frequencies of top 20 somatic 
mutations in TCGA-OV cohort. ns represents P > 0.05. 
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Potential immune characteristics of the two risk 

groups 

 

To elucidate the alterations in immune 

microenvironment, we determined the immune 

infiltration between the two risk groups. Figure 9A 

revealed that patients with low risk had higher 

ImmuneScore (P = 0.033) but lower StromalScore  

(P = 0.0021). The T_cells_follicular_Tregs, 

Macrophages_M1, T_cells_CD8, Plasma_cells, 

T_cells_CD4_memory_activated accumulated noticeably 

more in patients with a low risk, while high-risk patients 

had more Macrophages_M2 (Figure 9B). Furthermore, 

the score of 29 TME-related gene signatures in the two 

risk groups was calculated, and angiogenesis, CAF and 

EMT were highly enriched in patients with a high risk, 

whereas anti-tumor cytokines, NK cells, and T cells 

were more enriched in low-risk patients (Figure 9C). As 

shown in Figure 9D, EMT-related pathways, including 

PI3K-Akt signaling pathway, Wnt signaling pathway, 

and TGF-beta signaling pathway, were significantly 

activated in high-risk patients, while some pathways

 

 
 

Figure 4. Immune characteristics among the subtypes correlated with ferroptosis in TCGA-OV cohort. (A) The immune 

infiltration score of the three subtypes were shown in box plot. (B) Abundance of immune cells infiltration of 22 immune cells among three 
subtypes. (C) 29 TME-related gene signatures among three subtypes were shown in heatmap. (D) 29 gene signatures related to TME were 
shown in box plots. (E) 15 pathways-correlated gene signatures among three subtypes were shown in the heatmap. (F) Box plots of 15 
pathways-related gene signatures among three subtypes. ns represents P > 0.05; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. 
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such as homologous recombination, antigen processing 

and presentation, natural killer cell-mediated cytotoxicity, 

mismatch repair were apparently activated in low-risk 

patients. Further correlation analysis demonstrated that 

the risk score was positively related to StromalScore, 

Macrophages_M2, Mast_cells_activated, angiogenesis, 

fibroblasts, EMT signature, and EMT-related pathways 

(Figure 9E). 

 

 
 

Figure 5. Identification of DEGs in TCGA-OV cohort. (A) Volcano diagram shows DEGs between subtype C1 and others. (B) The DEGs 

between subtype C3 and others were shown in volcano diagram. Blue dots mean genes with downregulated expression and red dots mean 
genes with upregulated expression. (C–F) Functional KEGG and GO enrichment analysis between subtype C1 and others. 
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Figure 6. Development and verification of ferroptosis-based risk model. (A) Mutual increase between independent variable 
coefficients and lambda. A total of 18 genes were detected when lambda = 0.052. (B) The confidence interval under each lambda 
determined by 10-fold cross validation. (C) Forest plots of 8 ferroptosis-related prognostic genes TCGA-OV cohort. (D) Distributions of 
ferroptosis-related prognostic genes, risk score, survival status in TCGA-OV cohort. (E, F) ROC curves with AUCs and Kaplan-Meier curves 
plotted from patients with high and low risk in TCGA-OV cohort. (G, H) ROC curves with AUCs and Kaplan-Meier curves plotted from 
patients with low and high risk in GSE102073 cohort. (I–J) ROC curves with AUCs and Kaplan-Meier curves plotted from patients with low 
and high risk in ICGC-AU cohort. 
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Prediction of patients’ responses to immunotherapy 

and chemotherapy 

 

Differences in response of high-risk patients to anti-

tumor therapies were analyzed. Differential analysis  

of immune checkpoints (Figure 10A) revealed that 

inhibitory immune checkpoints such as LAG3, TIGIT, 

CTLA4, and IDO1 were mainly upregulated in low-

risk patients, while PVR and CD276 were upregulated 

in high-risk patients. CD27, ICOS, and IL2RB were 

high-expressed in low-risk samples, whereas CD28 

was high-expressed in high-risk samples. The risk 

score showed positive correlation with PVR, CD276, 

and CD28 and negative correlation with LAG3, 

TIGIT, CTLA4, IDO1, CD27, ICOS, and IL2RB 

(Figure 10B). Patients with low risk exhibited lower 

CAF (P = 1.8e-09), TAM.M2 (P = 0.011), exclusion 

score (P = 2.2e-07), and TIDE score (P = 0.0049), 

indicating that they might have less escape from 

immune elimination (Figure 10C). Moreover, we also 

evaluated the response to traditional chemotherapy 

drugs (Paclitaxel, Cisplatin, Gemcitabine, Gefitinib, 

and Olaparib) of all the TCGA-OV patients, and found 

a higher sensitivity of low-risk patients to Cisplatin, 

Gemcitabine, and Gefitinib (Figure 10D). 

 

PDP1 promoted the proliferation, invasion, and 

migration of OV cells 

 

The PDP1 gene in the two OV cell lines was  

knocked down, and we conducted multiple phenotypic 

experiments to investigate its impact on OV cancer 

cells. The EdU assay showed that the si-PDP1 group 

had fewer proliferating cells when compared to the 

negative control group, indicating reduced proliferation 

of OV cells (p < 0.001, Figure 11A). In the colony

 

 
 

Figure 7. Clinical associations and prognosis analysis of risk score in TCGA-OV cohort. (A) Risk score among the three subtypes 

was shown in violin plots and Sankey diagram represented the distribution of three subtypes in low-risk and high-risk groups. (B–F) Kaplan-
Meier curves for patients with different clinicopathological characteristics (Stage II–IV and Grade G2-G3) in the two risk groups. *P < 0.05 
and ****P <0.0001. 
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formation assay, the si-PDP1 group formed 

significantly fewer cell colonies than the control group, 

which showed reduced level of cancer cell proliferation 

from a macroscopic perspective (p < 0.001, Figure 

11C). The wound-healing assay revealed that compared 

to the negative control group, the ability of si- 

PDP1 group cells to migrate declined (p < 0.001, Figure 

11B). After PDP1 knockdown, the transwell assay 

demonstrated a significant decrease in the number of 

cells invading the lower surface of the chamber (p < 

0.001, Figure 11D). Collectively, our findings indicated 

that proliferation, invasion, and migration of OV cells 

could be promoted by PDP1. 
 

DISCUSSION 
 

High-grade serous OV is the most common subtype of 

OV. In serous OV cells, disrupted iron metabolism 

leads to overload of iron, which provides a basis for the 

occurrence of ferroptosis. Thus, analysis on the role of 

ferroptosis in TME of serous OV may reveal a potential 

therapeutic approach to the clinical treatment of high-

grade serous OV. Henein, we classified three subtypes 

of OV based on ferroptosis, and observed significant 

differences in tumor immune microenvironment and 

prognosis among the three subtypes. Next, using 8 

ferroptosis-related genes, a prognostic model was 

developed to accurately evaluate the response to 

immunotherapy and chemotherapy and the prognosis. 

 

Genomic alterations are predominant mediators that 

affect normal activity of genes and lead to the 

disrupting of homeostasis in malignant tumors. As a 

tumor suppressor, TP53 is mutant in 97% of high- 

grade serous OV cases [34], which also indicates that 

TP53 somatic mutation is a crucial factor for OV 

initiation [35]. It has been reported that TP53 mutations 

contribute to tumor progression through changing 

cellular iron acquisition and metabolism and are more 

sensitive to ferroptosis. Hence, inducing ferroptosis  

may represent a potential treatment for tumors with 

distinct TP53 mutation [36]. TTN is a frequently altered 

gene in gynecological tumors [37]. A recent study  

has demonstrated that both TP53 and TTN are the  

most somatic mutant genes in the ICGC cohort and 

TCGA cohort. Meanwhile, patients with TP53 and TTN 

mutations have obviously elevated TMB than those  

of wild-type patients [38]. Additionally, Wang and 

colleagues have also revealed that the most frequently 

altered genes are TP53 (88%) and TTN (34%), which 

 

 
 

Figure 8. Pathway characteristics of high- and low-risk groups. (A) GSEA analysis between the two risk groups based on KEGG 
database. (B) Heatmap for the correlation between hallmark pathways and risk score. (C) Box plots of differential pathway ssGSEA scores 
between the two risk groups. (D) Heatmap of differential pathways between the two risk groups. ***P < 0.001, and ****P < 0.0001. 
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are also related to the risk groups based on ferroptosis 

in OV patients [39]. The current study analyzed the 

somatic mutations in each subtype, and the results 

showed that TP53 (91.9%) and TTN (37.6%) exhibited 

the highest mutation frequencies. Our analysis of 

somatic mutation frequency indicated that higher 

mutation frequencies in TP53 and TTN might be 

implicated in the development and progression of 

high-grade serous OV through suppressing ferroptosis-

mediated process.  

 

 
 

Figure 9. Potential immune characteristics of high- and low-risk groups. (A) Violin plots of ImmuneScore, StromalScore, 

ESTIMATEScore, and TumorPurity between the two risk groups in TCGA-OV cohort. (B) Box plots of 22 immune cells scores between the 
two risk groups in TCGA-OV cohort. (C) 29 TME-related gene signatures between the two risk groups in TCGA-OV cohort were shown in 
box plots. (D) 15 pathway-related gene signatures between high- and low-risk groups in TCGA-OV cohort were shown in box plots. 
(E) Correlation analysis between immune characteristics and risk score. nsP > 0.05; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.  
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TME contains various molecular and cellular factors 

and plays crucial roles in biological processes of tumor. 

Immune cell infiltration is an important indicator of  

the TME in tumor. This study evaluated the immune 

landscape among the three ferroptosis subtypes, and 

found that subtype C1 had abundant Macrophages_M2. 

Macrophages are innate immune cells that can digest 

foreign substances and remove harmful substances, 

such as cellular fragments and tumor cells. According  

to their response to microenvironmental stimuli, 

 

 
 

Figure 10. Prediction of responsiveness to immunotherapy and chemotherapy in TCGA-OV cohort. (A) Heatmap of differential 

expressed immune checkpoints between the two risk groups. (B) Correlation analysis between differential expressed immune checkpoints 
and risk score. (C) Violin plots of MDSC, CAF, TIDE, TAM.M2, exclusion, and dysfunction. (D) Estimated IC50 values for traditional 
chemotherapy drugs Paclitaxel, Cisplatin, Gemcitabine, Gefitinib, and Olaparib were shown in violin plots. nsP > 0.05; *P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001. 
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macrophages are divided into alternatively activated 

(M2) and classically activated (M1) macrophages [40]. 

Macrophages_M2, alternatively known as TAMs, loses 

its phagocytosis of tumor cells, promote tumor cell 

escape, leading to the spread of tumor cells to other 

tissues and organs [41]. Previous study has confirmed 

that Macrophages_M2 infiltration into tumor islets 

could cause poor prognostic outcomes in non-small-cell 

lung cancer [42] and poor response rate of ICI therapies 

in patients with prostate cancer [43]. Hence, we 

suspected that the abundance of Macrophages_M2 

infiltration was closely related to a poor OV prognosis 

in subtype C1. Additionally, in tumor stroma, CAFs is 

one of the most important cellular components that 

could be recruited and reprogrammed by cancer cells to 

promote tumor cell growth and spread. CAFs are 

involved in TME of OV and promote the progression of 

OV [44]. Moreover, the coordination of the actin and 

septin networks in CAFs is essential for matrix 

remodeling, angiogenesis, and tumor growth [45]. 

Collectively, increased matrix, matrix remodeling, and 

angiogenesis caused by Macrophages_M2 infiltration 

and CAFs might be related to the poor prognosis in 

subtype C1.  

 

Tumor tissues comprise of mesenchymal cells, immune 

cells, stromal cells as well as tumor cells. These 

noncancerous cells are considered as contaminants that 

affect tumor purity. Gong et al. demonstrated that lower 

tumor purity in gastric cancer patients is closely related 

to poor prognosis, upregulated EMT and stemness 

pathways, more immune cell infiltration such as  

Tregs, M1 and M2 macrophages and elevated levels  

of immune checkpoints and chemokines as well as 

immunosuppression [46]. Mao et al. also revealed  

that lower tumor purity in colon cancer is associated 

with unfavorable prognosis, increased TMB, intense 

immune phenotype, and high expression of immune 

checkpoints [47]. This study found that subtype C1  

had an unfavorable prognosis and exhibited higher 

StromalScore, ImmuneScore, and ESTIMATEScore, 

but lower tumor purity. Moreover, mesenchymal cells 

were significantly higher in subtype C1 than C3.  

We therefore speculated that more mesenchymal cells 

and increased Macrophages_M2 infiltration affected 

tumor purity, which served as crucial factors in tumor 

progression and caused a dismal prognosis to patients 

with subtype C1.  

 

During EMT process, epithelial cells acquire 

mesenchymal features and function critically in 

embryogenesis, tissue regeneration and tumor 

progression [48]. Activating EMT induces cell  

polarity loss, cell-cell junction breakage, basement  

membrane degradation and extracellular matrix (ECM) 

reorganization. EMT can be activated by signaling 

 

 
 

Figure 11. The impact of PDP1 knockdown on proliferation, invasion, and migration was investigated in two cell lines, 
SKOV3 and A2780. (A) EdU assay revealed a reduced number of proliferating cells in the si-PDP1 group compared to controls. (B) Wound-

Healing assay demonstrated a decreased migration ability of cells in the si-PDP1 group. (C) Colony formation assay showed a reduced 
number of cell colonies formed in the si-PDP1 group. (D) Transwell assay indicated a decreased invasion ability of cells in the si-PDP1 group. 
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pathways, including Wnt signaling pathway,  

NOTCH pathway, PI3K-Akt signaling pathway, TGF-

beta signaling pathway [49]. Interestingly, except 

intracellular signaling pathways, stromal components 

in the tumor microenvironment such as CAFs and 

TAMs that can secrete TGF-beta, contributing to  

the activation of EMT [49]. Consistent with these 

findings, we found enriched EMT signature and EMT-

related pathways including TGF-β signaling pathway, 

Wnt signaling pathway, and PI3K-Akt signaling 

pathway in subtype C1, which might be the critical 

inducers for OV progression. Notably, elevated CAFs 

and Macrophages_M2 infiltration could promote TGF-

β, resulting in EMT activation.  

 

We also noted that high-risk patients with Stage III-IV 

and Grade G3 exhibited dismal prognosis, high CAFs, 

increased TAM.M2 and a positive correlation with 

EMT-related pathways, which all contributed to the 

progression of OV and unfavorable prognosis to high-

risk patients. However, some pathways such as natural 

killer cell-mediated cytotoxicity and mismatch repair, 

homologous recombination, antigen processing and 

presentation were apparently activated in low-risk 

patients, inducing more cytotoxicity on OV cells and 

provoking DNA repair in the OV tumor. Meanwhile, 

Plasma_cells and T_cells_CD8 were significantly 

accumulated in low-risk patients. Plasma cells 

differentiated from tumor infiltrating B cells or in 

tumor-draining lymph nodes are key mediators in  

anti-tumor immunity [50]. Meanwhile, CD8+ tumor-

infiltrating cells can also exert inhibitory effects on the 

immunity in tumor and provide positive effects on the 

prognosis in virtually all solid tumors [51]. It is believed 

that accumulation of Plasma_cells and T_cells_CD8 

could improve the survival of low-risk patients. 

 

Next, 8 ferroptosis-related genes were used to develop 

a risk model using the TCGA-OV cohort to estimate 

the prognosis of OV patients, and its robustness in  

the GSE102073 cohort and ICGC-AU cohort was 

validated. The risk score showed positive correlation 

with PVR, CD276, and CD28 and negative correlation 

with LAG3, TIGIT, CTLA4, IDO1, CD27, ICOS, and 

IL2RB. Moreover, low-risk patients responded more 

actively to Cisplatin, Gemcitabine, and Gefitinib. Our 

findings also provide a direction for clinical strategies 

of chemotherapy in OV patients. 

 

Some limitations in this study should be equally  

noted. Firstly, this study used retrospective data from 

public databases, therefore prospective study with 

large samples was required in the future. Secondly,  
the underlying mechanism of these ferroptosis-related 

genes in high-grade serous OV should be validated by 

in vitro and in vivo experimental studies. Finally, the 

reliability and long-term clinical application of the 

current model needed to be clinically verified. 

 

CONCLUSIONS 
 

In summary, we developed and validated a novel 

prognostic risk model and molecular subtypes based 

on ferroptosis for high-grade serous OV, providing a 

direction to better understand the role of ferroptosis in 

OV. The current findings could facilitate the prognosis 

prediction and guide targeted therapies for treating 

high-grade serous OV patients.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Consensus clustering analysis in TCGA-OV cohort to identify optimal clusters. (A) Consensus CDF in 

TCGA cohort. (B) Relative changes in area under CDF Delta curve. 
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