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SUPPLEMENTARY METHODS 
 
Data source and organization 

 
Original data 

The gene expression datasets used in this paper were 

downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/browse/). 

 
To train the AI model of this paper (Figure 8), the gene 
expression profile GSE15222 is selected. GSE15222 is 
based on the GPL2700 platform. For every patient, the 

expression levels of 16782 genes are sampled. So, the 
total original data is 363 × 16782. 

 
The normalization of original data 

For every patient (or a sample, or a subject), 16782 
genes are sampled, then 16782 data are obtained. And 

these data form a sequence. Let ZScore normalization 
algorithm act on the sequence. Then the normalized 
sequence is the output. 

 
The organization of the normalized data 

After data are normalized, all data are organized as the 

following matrix. 
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In the above matrix, “m” represents the number of 
genes, and “n” represents the number of samples, 

including both patients and controls. “xij” represents the 
expression level of the i – th gene expression which is 
sampled from the j – th patient. 

 
In this paper, n = 363 m = 16782. That is, all of the 
original data are samples from 363 patients and 16782 

genes are tested. 

 

Let js  denotes the j – th column vector. That is, 

 

1 2s ( , , , , , )j j j ij mjx x x x=  

 

The column vector js  is a data sequence, in which all 

data are sampled from the j – th patient and total m 

genes are sampled. 

 
Then all of the gene data can be represented as 
following format also. 

 

 1(s s s )j nX =  (Eq. 1) 

In Eq. 1, all data are organized by samples (patients), 

every patient corresponds to a column vector. 
 

Let 
ig  denote the i – th line vector. That is, 

 

1 2( , , , , , )i i i ij ing x x x x=  

 

The line vector 
ig  is a data sequence, in which all data 

corresponds to the i – th gene, and they are sampled 
from different patients. 

 
Then all of the gene data can be represented as 

following format too. 
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 (Eq. 2) 

 
Training of neural network models 

 
Input data 

n = 363 samples (or patients). For every patient, m = 

16782 genes are sampled and generate the expression 
level x1, x2, …, xm respectively. All these data are from 

database GSE15222. 
 
Training neural network 

The model of the neural network is illustrated as 
Figure 1. This model comprises distinct layers: input, 
hidden, and output. 

 
The input layer holds m neurons, and corresponds to m 
input data x1, x2, …, xm, which is the expression level of 

m genes respectively. Data x1, x2, …, xm are sampled 
from a same patient. Totally, n patients and m genes are 

used for training. 
 
The hidden layer comprises three neurons. Every 

neuron is activated by a sigmoid function. 
 
The output layer consists of two neurons. The output 

data of this layer traverses through the Softmax  
layer, where the Softmax layer yields the probability  

of patients having a risk of AD [1]. 
 
In sum, the model of neural network is the realization of 

multivariate function f(x1, x2, …, xm). And the function f 
is realized by the hidden layer, and the probability of 
AD risk yields by the Softmax layer. 

https://www.ncbi.nlm.nih.gov/geo/browse/
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Figure 1. The schematic diagram of the computational model. (A) The neural network model determines the function f as shown in 
Equation 3, which is divided into an input layer (m neurons, m = 16782), a hidden layer (3 neurons), and an output layer (2 neurons). Where 
each neuron corresponds to a gene expression in a certain sample, thus a total of m genes corresponds to m neurons. Sigmoid function as 
an activation function in hidden layers. A Softmax layer is added to the output layer to transform the output of output layer to probability. 
Therefore, the output of function f represents the probability of having AD or not. (B) ROC curve image obtained by 10-fold cross-
validation. The relationship between sensitivity and specificity of the model is reflected by the curve image. The horizontal axis is the false 
positive rate (false alarm rate), the closer to zero the higher the accuracy rate; The vertical axis is called the true positive rate (sensitivity), 
and the larger it is the higher the accuracy rate. The area under the curve is called the AUC (Area Under Curve), which indicates the 
prediction accuracy. The higher the AUC value, that is, the larger the area under the curve, the higher the prediction accuracy. 
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Output of neural network 

The probability of AD risk is the output. That is, for the 

input data sampled from a patient, his probability of AD 
risk will be calculated by the neural network. 
 

In sum, the neural network is the realization of function 
y = f(x1, x2, …, xm). After training, the function is 

represented by the neural network. 
 
For this study, 80% (290 samples) was allocated  

as training data and 20% (73 samples) was allocated  
as testing data. The optimization process involves 
employing the stochastic gradient descent (SGD) 

algorithm with a learning rate of 0.0001. Upon 100 
iterations, the function successfully converges.  

 
In addition, ten-fold cross-validation is used to  
assess the performance and generalization ability of 

machine learning models by segmenting the dataset, 
training and validating it multiple times to derive 
reliable performance metrics. It helps to prevent 

overfitting, as well as to evaluate model performance 
under uneven data distributions, and is ultimately 

used to select the most suitable model for the task. 
The results of the ten-fold cross-validation method 
are shown in Figure 1B. The images show an area 

under the curve greater than 50%, indicating high 
prediction accuracy. And the model performs stably on 
each fold without significant performance differences, 

indicating that the model generalizes well and is not 
overfitted. 
 

Derivative calculation method in this paper 

 

The principle of method 

When the independent variable of a function varies at 
a particular point, the derivative at that point is defined 

as the ratio of the change in the output value to the 
change in the independent variable, as the change in 
the independent variable approaches zero. Thus, the 

derivative of a function at a point describes the rate of 
change of that function near that point. 

 
The genes related to AD hold the feature in general that 
its expression level will change with AD progression, 

and this type of gene is considered in this paper. If  
a gene holds the above feature, its expression level x  
is associated with the probability y, where y is the 

probability that the patient has the risk of AD. In other 
words, there is a function f such as y = f(x). And the 
derivative f′(x) represents the degree of sensitivity to 

AD progression, the bigger f′ (x), the more sensitive the 
gene. That is, a slight change in the expression level x 

leads to a significant change in the probability of AD 
risk. 

Method 

Let’s contemplate a ternary function, denoted as f.  

This function takes three inputs: x, y, and z, yielding an 
output u. This relationship is represented by Equation 3. 
 

( , , )exampleu f x y z=  (Eq. 3) 

Consequently, the partial derivative of 𝑦 at the specific 

point (x0, y0, z0) can be articulated as follows: 

 
𝜕𝑢

𝜕𝑦
|𝑥=𝑥0,𝑦=𝑦0,𝑧=𝑧0 = lim

∆𝑦→0

∆𝑢

∆𝑦
=

lim
∆𝑦→0

𝑓𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑥0,𝑦0+∆𝑦,𝑧0)−𝑓𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑥0,𝑦0,𝑧0)

∆𝑦
   (Eq. 4) 

 
Equation 4 can be understood by holding the values of  
x and z constant at x0 and z0 while allowing 𝑦 to undergo 

a slight increment Δy around y0. Consequently, the 

function u = fexample(x,y,z) yields an increment Δu = 
fexample(x0, y0,+ Δy, z0) –fexample(x0,y0,z0). As Δy 

approaches infinitesimally small values, the ratio u

y




 is 

referred to as the partial derivative of function fexample 

concerning variable 𝑦 at the specific points x0, y0 and z0. 

 
Hence, the partial derivative of function fexample with 

respect to 𝑦  signifies the rate of transformation of  

the function concerning the variable 𝑦  at the specific 

coordinates (x0, y0, z0). This rate of alteration indicates  

the extent to which 𝑦  influences the outcome of the 

function u. A higher derivative implies that even a minor 

alteration in 𝑦 leads to a substantial shift in the function’s 

output, u. Conversely, the opposite holds true as well. 

 
The neural network function is shown in Equation 5. If  
we substitute the function fexample with f, the independent 

variables x, y, and z will be substituted with gene 
expressions x1, x2, …, xm. The dependent variable becomes 
the estimated probability of Alzheimer’s disease, denoted 

as y. Consequently, for a specific gene i, the partial 
derivative at a particular point indicates the extent to which 

that gene influences the probability of Alzheimer’s disease. 
This relationship is depicted in Equation 6. 

 
𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) (Eq. 5) 

 
𝜕𝑦̂

𝜕𝑥𝑖
= lim
∆𝑥𝑖→0

∆𝑦̂

∆𝑥𝑖
= lim
∆𝑥𝑖→0

𝑓(𝑥1,…,(𝑥𝑖+∆𝑥𝑖),…,𝑥𝑚)−𝑓(𝑥1,…,𝑥𝑖,…,𝑥𝑚)

∆𝑥𝑖
  

(Eq. 6) 

 
Input data 

For a given patient, such as the j – th patient, the 

expression levels of 𝑚  genes are sampled, these data 

form a vector s⃗𝑗 = (x1j, x2j, … , xij, … , xmj), where xij 

denotes the expression level of i – th gene and s⃗𝑗 

represents the data of all genes sampled from the j – th 



www.aging-us.com 4 AGING 

patient. Vector 𝑠1, 𝑠2, … , 𝑠𝑛  form a set of input data, 

which is the domain of function f. 
 
Calculation of the probability of AD risk 

Vector s⃗𝑗 is input the function f(i.e., the above neural 

network), the probability of the j – th patient having 

the risk of AD will be output, and labeled as 𝑦𝑗 . 

That is, 
 

𝑦𝑗 = 𝑓(s⃗𝑗) = 𝑓(𝑥1𝑗, 𝑥2𝑗 , … , 𝑥𝑖𝑗 , … , 𝑥𝑚𝑗) (Eq. 7) 

 
Output of partial derivatives 

Since function f is known, so the partial derivative 

𝑑𝑖𝑗 =
𝜕𝑓

𝜕𝑥𝑖𝑗
 can be calculated, where dij denotes the value 

of partial derivative at the data xij That is, for the i – th 
gene, dij denotes the value of partial derivative at the 

data sampled from the j – th patient. Then the following 
matrix is output. 
 

𝐷 = (
𝑑11 … 𝑑1𝑛
⋮ ⋱ ⋮
𝑑𝑚1 ⋯ 𝑑𝑚𝑛

) =

(

 

𝜕𝑓

𝜕𝑥11
…

𝜕𝑓

𝜕𝑥1𝑛

⋮ ⋱ ⋮
𝜕𝑓

𝜕𝑥𝑚1
⋯

𝜕𝑓

𝜕𝑥𝑚𝑛)

  (Eq. 8) 

 
Every line of the matrix corresponds to a gene, and 
every data in the line represents the value of partial 

derivative obtained from different patients.  
 

Every column of the matrix corresponds to a patient, 
and every data in the column represents the value of 
partial derivative of different gene. 

 
Calculate the average of partial derivative of every 
gene 
 

𝑑̅𝑖 =
1

𝑛
∑ |𝑑𝑖𝑗|
𝑛
𝑗=1  (Eq. 9) 

 

Where, for the i – th gene, 𝑑̅𝑖 denotes the average of the 

absolute value of partial derivatives, and i = 1, …, m,  

j = 1, …, n. That is, from 𝑛 patients, the average value 

𝑑̅𝑖 is calculated. 
 

𝐷̅ =

(

 
 

𝑑̅1
⋮
𝑑̅𝑖
⋮
𝑑̅𝑚)

 
 

 (Eq. 10) 

 
Sort all genes by the average of partial derivative 

Sort all genes in descending order of the average of 
partial derivative. The output is the gene orders after 
sorting. 

 

Shapley calculation method in this paper 

 

Shapley is one of the important calculations in this 
paper and therefore will be described in detail. Shapley 
value is a mathematical concept in game theory and was 

introduced by Lloyd Stowell Shapley in 1951 [2].  
 

The principle of method 

A molecular network performs its corresponding 
biological function. For example, CMA delivers 

substrate to the lysosome to degrade. With the AD 
progression, the aggregation of abnormal proteins 
becomes heavier, the function of delivery is stimulated, 

and CMA becomes active. Then, for a given patient, his 
probability having AD risk is reflected by CMA. 

Holding a view of mathematics, there is a function f 
such that y = f(CMAgenes), where CMAgenes represents 

the expression levels of all genes of CMA, and 𝑦  is  

the probability that the patient has the risk of AD caused 
by network CMA. If the change of expression levels  

of genes in CMA leads to a significant change of 
probability, it can be deduced that CMA is sensitive to 
AD. Then, it is useful to use machine learning to train 

out the function f. 
 
Method 

Guided by the above idea, the following methods are 
proposed to identify genes causing molecular networks 

to AD.  
 
For example, the molecular network CMA consists  

of gene GFAP, LAMP2A, EEF1A1 and HSP90AB1. 
Using machine learning, the function y = f1(x1, x2, x3, x4) 
will be trained out, where x1, x2, x3, x4 represents  

the expression level of GFAP, LAMP2A, EEF1A1  
and HSP90AB1 respectively, and y represents the 

probability of AD risk. The domain of function 𝑓1  is  

the gene expression levels of four genes of CMA.  
So, the function reflects the relationship between CMA 

and AD. 

 
If GFAP is excluded from CMA, the other function w = 

f2(x2, x3, x4) will be trained out. Then, the difference of 

probability 𝛥 = y – w measures the effect of GFAP on 

AD through network CMA. And the bigger the value 𝛥, 

the more significant the effect of GFAP on AD.  

 
In fact, GFAP also participates in other molecular 
networks and plays different roles, leading to other 

values similar to 𝛥 . Calculate the average value of 

these data, and denoted by Δ̅. Then, the bigger Δ̅, the 

more significant the contribution caused by GFAP. 

The bigger Δ̅, the more important the role of GFAP 

within a network. 
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Similarly, for any gene, its contribution can be 
estimated. Shapley value is used to estimate the 

contribution of a gene to molecular network. To 

calculate the average Δ̅ of any gene, Shapley value is 

proposed in this paper. 

 
The theory of Shapley’s method 

Shapley’s method comes from game theory, and 

Shapley value serves as a metric for fairly distributing 
rewards among a set of participants who contribute to 
an outcome. Shapley’s method outputs Shapley value, 

its computation method is shown in Equation 11, where 

𝜑𝑖 represents the Shapley value of the i – th gene, which 

also indicates the sensitivity of the i – th gene to AD 
after passing through the molecular network. The 
Shapley values in this paper is approximated in this 

study using the Shap framework proposed by Lundberg 
and Lee. 

 

𝜑𝑖 = ∑
|𝑺|!(|𝑭|−|𝑺|−1)!

|𝑭|!𝑺⊆𝑭−{𝑔𝑖} (𝑓𝑺∪𝑔𝑖(𝑺 ∪ 𝑔𝑖) − 𝑓𝑺(𝑺))  

(Eq. 11) 

 
Input data 

The expression of all genes in each sample. 

 
Output of Shapley values 

Similar to the computation of partial derivatives,  

using the Shap framework, the Shapley value 𝜑𝑖𝑗  can  

be estimated. Where 𝜑𝑖𝑗  denotes the Shapley value at 

the data xij. That is, for the i – th gene, 𝜑𝑖𝑗  denotes  

the Shapley value at the data sampled from the j – th 
patient. Then the following matrix is the output. 
 

𝐷 = (

𝜑11 … 𝜑𝑛1
⋮ ⋱ ⋮
𝜑1𝑚 ⋯ 𝜑𝑚𝑛

) (Eq. 12) 

 
Every line of the matrix corresponds to a gene, and 
every data in the line represents the Shapley values 

obtained from different patients.  

 
Every column of the matrix corresponds to a patient, 

and every data in the column represents the Shapley 
values of different gene. 

 
Calculate the average of Shapley values of every 
gene 
 

𝜑̅𝑖 =
1

𝑛
∑ |𝜑𝑖𝑗|
𝑛
𝑗=1  (Eq. 13) 

 
Where, for the i – th gene, 𝜑̅𝑖 denotes the average of the 

absolute value of partial derivatives, and i = 1, …, m, j = 

1, …, n. That is, from 𝑛 patients, the average value 𝜑̅𝑖 is 

calculated. 
 

𝐷̅ =

(

 
 

𝜑̅1
⋮
𝜑̅𝑖
⋮
𝜑̅𝑚)

 
 

 (Eq. 14) 

 
Output 

Sort all genes in descending order of the average 
Shapley values. The output is the genes orders after 

sorted.  
 
The method for estimating Shapley values using 

Shap 

 
The kernel SHAP proposed by Lundberg and others 

combines the Local Interpretable Model-agnostic 
Explanations (LIME) algorithm to estimate Shapley 

values [3]. The algorithm is open source and  
available on GitHub, with the website located at 
https://github.com/shap/shap. 

The following text will briefly describe how Kernel 
SHAP estimates Shapley values. 
 

A principle of Shapley values 

1. The Shapley value possesses the following property: 
the sum of contributions from all participants equals the 

total payoff of the grand coalition F. Assuming the gain 

function is represented by 𝑣, this property is expressed 

by Equation 15 [2,4]. 
 

𝑣(𝑭) = ∑ 𝜑𝑖
|𝑭|
𝑖=1   (Eq.15) 

 

Here, |𝑭|  represents the number of participants, and 

v(F) denotes the total gain from all participants. 
 

2. The gain for the coalition F is represented by 
Equation 16. 
 

𝑣(𝑭) = 𝑣({𝑥1, 𝑥2, … , 𝑥𝑚}) = 𝑓(𝑥⃗) − 𝐸[𝑓(𝑥⃗)] 
(Eq.16) 

 
By deducing from Equations 15 and 16, and setting 

𝐸[𝑓(𝑥⃗)] = 𝜑0, then can obtain Equation 19.  

 

𝑓(𝑥⃗) = 𝜑0 +∑ 𝜑𝑖
|𝑭|
𝑖=1  (Eq.17) 

 
This formula is referred to as the additive feature 

attribution of Shapley values [5]. 𝜑𝑖  represents the 

Shapley value of the 𝑖th feature. This formula indicates 

that Shapley values can be transformed into a linear 
equation, where the features are additive. 
 

LIME 

The core idea of the LIME algorithm is to use a simple 

model to explain a complex model [6]. The algorithm 

https://github.com/shap/shap
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consists of three steps: the first step involves 
simplifying the original features to obtain a simplified 

feature vector; the second step perturbs the simplified 
feature vector; the third step involves training a simple 
linear model g (such as linear regression) using the 

perturbed simplified features; the fourth step transforms 
the perturbed simplified features back to the original 

feature format and applies them to the original function 

f for evaluation [6]. If 𝑔(𝑧′) ≈ 𝑓(𝑧) , it can be 

considered that the linear model 𝑔  provides a good 

explanation for the original model f. 
 

The following text will provide a detailed description of 
the calculation process for each step. 

 
Step one involves simplifying the original features to 
obtain a simplified feature vector. For the model f in 

Equation 5, a set of simplified input features can be 
created to indicate whether a feature is present in the 
input feature vector of function f. This simplified input 

vector is represented as per Equation 18. 
 

𝑥⃗′ = [𝑥1
′  𝑥2

′  … 𝑥𝑚
′ ] (Eq.18) 

 
x′j is a binary variable indicating whether the 

corresponding feature xj in the feature vector 𝑥⃗  is 

observed (1 if observed, 0 otherwise). For example, if 

the feature vector is: 
 

𝑥⃗ = [1 2 3 𝑁𝐴] 
Then:  

𝑥⃗′ = [1 1 1 0] 
 
Additionally, for the aforementioned calculations, it  

can be assumed that there exists a mapping function ℎ 

that maps 𝑥⃗′ to 𝑥⃗, and this function is represented as per 

Equation 19. 
 

ℎ(𝑥⃗′) = 𝑥⃗  (Eq.19) 

 
Step two involves perturbing the simplified feature 

vector. Given that 𝑥⃗′ = [1 1 1 0] , the vector can be 

perturbed to obtain 𝑧′ . The values of 𝑧′  after 

perturbation are as follows: 
 

𝑧′ = [1 0 1 0] 
 

In simple terms, after perturbation, 𝑧′  corresponds to 

observable features, namely the first feature x1 and the 
third feature x3. It is important to note that the perturbed 

𝑧′ should be close to 𝑥⃗′, that is, 𝑧′ ≈ 𝑥⃗′. 
 

Step three involves substituting the obtained 𝑧′  into 

Equation 19, which allows the mapping of 𝑧′ to 𝑧. 
 

𝑧 = ℎ(𝑧′) = [𝑥1 𝑁𝐴 𝑥3 𝑁𝐴] 

Subsequently, a linear regression model 𝑔  is trained 

using 𝑧′ , and 𝑧  is applied to the original function f. 

When 𝑔(𝑧′) ≈ 𝑓(𝑧)  holds, and 𝑧′ ≈ 𝑥⃗′  after 

perturbation, it can be considered that the model 𝑔 

provides a good explanation for f. 

 
LIME defines a loss function 𝐿(𝑓, 𝑔, 𝜋𝑥)  such that  

when 𝑧′ is very close to 𝑥⃗′, the loss function aims for 

𝑔(𝑧′) to be very close to 𝑓(𝑧). 𝜋𝑥 is a measure of the 

distance between 𝑥⃗′  and 𝑧′ , and when the distance is 

large, 𝜋𝑥  plays a penalizing role in the loss function  

[6]. Additionally, LIME provides a function Ω(𝑔)  to 

describe the complexity of the model g [6]. Therefore, 

the ultimate goal of LIME is to find a function g 
that minimizes the objective function, as shown in 
Equation 20. 

 

argmin(𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔)) (Eq.20) 

 

Kernal Shap 

Through Equation 17 and LIME, it can be inferred that 

if the function 𝑔(𝑧′)  represents a linear explanatory 

model found for 𝑓, then when all elements are present 

in 𝑧′  (all elements in 𝑧′  are 1), its mathematical 

expression is given by Equation 21. 
 

𝑔(𝑧′) ≈ 𝑓(𝑧) = 𝜑0 +∑ 𝜑𝑖
|𝐹|
𝑖=1   (Eq.21) 

 
Through Equation 21, it is evident that as long as a 

linear function for 𝑔(𝑧′)  is identified, estimates for  

the Shapley values of each feature can be obtained. 

Therefore, Kernel SHAP identifies the most suitable g 
for Shapley value estimation by minimizing Equation 
20, where the computational speed of Kernel SHAP  

is faster than the direct computation speed of Shapley 
values [3]. As this section does not focus on the 

optimization process of Kernel SHAP but rather 
highlights its capability to estimate Shapley values, 
specific details of the optimization process will not be 

further described. 

 
In this study, a neural network is employed as the 

explanatory function for LIME to estimate Shapley 
values. Specifically, the trained neural network f  
is incorporated into the Shap framework to obtain 

estimates by fitting g. 
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