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INTRODUCTION 
 

Alzheimer’s disease (AD), the most common cause of 

dementia, is one of the diseases that cause disability  

or premature death of the elderly in the world [1–3].  

By 2021, more than 50 million people will have 

dementia, and AD is believed to account for 60–80% of 

the cases of dementia [4, 5]. The cognitive impairment 

and lifestyle change of AD patients have not only 

caused serious damage to countless families, but also 

posed a huge challenge to the social health system. 
 

AD is a neurodegenerative disease that can be caused 

by multiple pathways. The pathways associated with 

AD include autophagy, inflammatory and immune 

responses, and lipid metabolism, among others [6–8]. 

Recently, some new factors that cause effects on  

AD have been presented, such as the coherent effect on 

AD between methylation and energy metabolism [9], 

and the miRNA effect on AD [10, 11]. These studies 

indicate that Alzheimer’s disease is not caused by a 

singular pathogenic mechanism.  

 
Since AD is a multifactorial disease, it is a question 

which factor is significantly sensitive to AD. 

 
To answer the above question, in this paper, machine 

learning is used to filter out genes sensitive to AD, and 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Sensitivity of substrate translocation in chaperone-mediated 
autophagy to Alzheimer’s disease progression 
 

Lei Yu1,*, Xinping Pang2,*, Lin Yang1, Kunpei Jin1, Wenbo Guo1, Yanyu Wei3, Chaoyang Pang1 
 
1College of Computer Science, Sichuan Normal University, Chengdu 610101, China 
2West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China 
3National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and 
Engineering, University of Electronic Science and Technology of China, Chengdu, China 
*Equal contribution and share first authorship 
 
Correspondence to: Chaoyang Pang, Yanyu Wei; email: cypang@sicnu.edu.cn, yywei@uestc.edu.cn 
Keywords: Alzheimer’s disease, chaperone-mediated autophagy, lysosome, GFAP 
Received: November 9, 2023 Accepted: April 15, 2024 Published: May 23, 2024 
 
Copyright: © 2024 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Alzheimer’s disease (AD) is a progressive brain disorder marked by abnormal protein accumulation and 
resulting proteotoxicity. This study examines Chaperone-Mediated Autophagy (CMA), particularly substrate 
translocation into lysosomes, in AD. The study observes: (1) Increased substrate translocation activity into 
lysosomes, vital for CMA, aligns with AD progression, highlighted by gene upregulation and more efficient 
substrate delivery. (2) This CMA phase strongly correlates with AD’s clinical symptoms; more proteotoxicity 
links to worse dementia, underscoring the need for active degradation. (3) Proteins like GFAP and LAMP2A, 
when upregulated, almost certainly indicate AD risk, marking this process as a significant AD biomarker. Based 
on these observations, this study proposes the following hypothesis: As AD progresses, the aggregation of 
pathogenic proteins increases, the process of substrate entry into lysosomes via CMA becomes active. The 
genes associated with this process exhibit heightened sensitivity to AD. This conclusion stems from an analysis 
of over 10,000 genes and 363 patients using two AI methodologies. These methodologies were instrumental in 
identifying genes highly sensitive to AD and in mapping the molecular networks that respond to the disease, 
thereby highlighting the significance of this critical phase of CMA. 
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the Chaperone-mediated autophagy (CMA) is identified 

as a factor sensitive to AD. So, CMA is introduced as 

below. 

 

The most prominent pathology of AD is the deposition 

of abnormal proteins in the brain. The aggregation of 

abnormal proteins leads to proteotoxicity and neuronal 

dysfunction. CMA, one of the three types of autophagy, 

actively promotes the clearance of abnormal proteins 

and provides effective neuroprotection [12]. In CMA, 

heat shock cognate 71 kDa protein (HSC70) chaperones 

bind to damaged or defective proteins containing the 

pentapeptide KFERQ-like sequences and transport 

them to the lysosomes for degradation via lysosome-

associated membrane protein 2A (LAMP2A) [13, 14]. 

The main target of CMA regulation appears to be 

LAMP2A [15]. The intermediate filament protein glial 

fibrillary acidic protein (GFAP) and elongation factor 

1α (EF1α, mainly encoded by EEF1A1) have been 

shown to be components of the lysosomal membrane 

that regulate LAMP2A dynamics [16]. After LAMP2A 

forms a multimeric complex with HSC70, the substrate 

needs to be unfolded and transported into the lysosome. 

Unphosphorylated GFAP binds to LAMP2A and 

stabilizes the LAMP2A multimeric complex, thereby 

facilitating substrate transport in CMA, while phos-

phorylated GFAP binds to EF1α at the lysosomal 

membrane [14, 16]. In the presence of GTP, EF1α is 

released from phosphorylated GFAP on the lysosomal 

membrane, allowing phosphorylated GFAP to self-

assemble with GFAP molecules released from LAMP-

2A [16]. 

 

CMA is associated with the accumulation of toxic 

proteins [17–20]. However, its relationship with AD is 

not well understood. 

 

The motivation of this paper is to explore the 

relationship between CMA and AD. To explore the 

relationship, an advanced tool is necessary, different 

tool may lead to different discoveries. AI tool is  

useful. For example, the authors’ team used ant colony 

algorithm to discover the coherent effect on AD 

between methylation and energy metabolism [9], and 

the team used the cross-algorithm between genetic 

algorithm and grey wolf optimizer to filter out some 

gene expression characteristics of AD [21]. The 

integrated application of artificial intelligence, statistics, 

and bioinformatics appears to be more effective. For 

example, the team used the integrated application,  

it was discovered that modified folding molecular 

network causes effect on AD [20], the interaction 

causes effect on AD between T-cell antigen receptor-
related genes and MAPT [22]. Not only AI method, but 

also the integrated application looks more useful [9, 21–

23]. In this paper, the integrated application is adopted 

still basing on the authors’ previous accumulated 

experience on AD study [9, 21–23]. And AI methods 

[24] are used to train out the mathematics function 

between gene expression levels and the probability of a 

patient having the risk of AD, filter out the genes 

sensitive to AD progression, identify the molecular 

network sensitive to AD progression. So, CMA is 

drilled out. After that, the methods of statistics and 

bioinformatics act on CMA to explore the relationship 

between CMA and AD. At last, the conclusion is 

deduced that CMA is sensitive to AD progression. 

 

RESULTS 
 

Drill out CMA which is sensitive to AD 

 
Drill out the set S2 that consists of the genes sensitive 

to AD individually 

The principle of method: Genes implicated in AD  

are characterized by alterations in expression levels  

that correlate with the progression of the disease. This 

investigation focuses on such genes, positing that if a 

gene exhibits this characteristic, its expression level (x) 

is linked to the probability (y) of an individual being at 

risk for AD. Mathematically, this relationship is defined 

by a function y = f(x), where the derivative f’(x), denotes 

the sensitivity to AD progression. Higher values of  

f’(x) indicate greater sensitivity, implying that minor 

fluctuations in expression level (x) result in substantial 

changes in the risk probability for AD. 

 
The aim of this section: Select the genes with the top 

derivative f’(x). That is, select the top genes sensitive to 

AD. 

 
Method: Given that the functional relationship f(x) 

delineating gene expression levels and AD risk does  

not explicitly manifest within gene datasets, this study 

employs machine learning techniques to elucidate this 

function. Recognizing that AD is associated with not 

merely a single gene but an array of over 10,000 genes, 

the investigation expands the model to a multivariate 

function y = f(x1, x2, …, xm). Consequently, the concept of 

a singular derivative f’(x) is refined to encompass partial 

derivatives 
2
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 to accommodate the 

multidimensional nature of gene expression’s impact  

on AD risk. A novel algorithm integrating machine 

learning with partial derivatives is developed to identify 

genes with the highest sensitivity to AD progression, 

detailed in Method. 

 
Input data of computation: More than 10,000 genes  

and 363 patients, dataset GSE15222 (The details are in 

Method). 
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Table 1. A part of genes sensitive to AD. 

Gene name Gene full name Related to CMA Rank 

GFAP Glial fibrillary acidic protein √ 1 

MT1F Metallothionein 1F  2 

… …  … 

EEF1A1 Eukaryotic translation elongation factor 1 alpha 1 √ 53 

… …  … 

HSP90AB1 Heat shock protein 90 alpha family class B member 1 √ 146 

 

 

Output of computation: The analysis identified the top 

20% of genes exhibiting significant partial derivatives, 

indicative of heightened sensitivity to AD progression 

(Table 1). These genes have been ranked according  

to their partial derivative values in a sequence denoted 

as Ssensitivity–sequence or S1, with comprehensive results 

available in Supplementary File 1. 

 

The subset comprising the top 20% of genes, 

characterized by substantial partial derivatives and 

denoted as Ssensitivity–top or S2, reflects a heightened 

sensitivity to fluctuations in gene expression levels 

concerning the risk of AD. In essence, s2 ⸦ s1, where S2 

encapsulates those genes whose expression alterations  

are most closely associated with changes in AD risk 

probability. Key findings from S2 are detailed in 

Table 1. 

 

The genes of CMA are included in the top 20% 

(Table 1): Genes associated with the substrate 

translocation into lysosomes during CMA feature 

prominently in the top 20% of those identified for 

sensitivity to AD progression (Table 1). Specifically, 

Table 1 indicates that GFAP emerges as the gene  

most sensitive to AD, securing the highest rank. 

Concurrently, additional genes pivotal to the process  

of substrate entry into lysosomes within the CMA 

pathway, such as EEF1A1 and HSP90AB1, also achieve 

top rankings, highlighting their critical sensitivity to 

AD. 

 

Drill out the set S4 that consists of the genes causing 

molecular network sensitive to AD  

The principle of method: Molecular networks underpin 

biological functions, exemplified by CMA, which 

facilitates the degradation of substrates by delivering 

them to lysosomes. As AD progresses, the accumulation 

of abnormal proteins intensifies, prompting an increased 

demand for such degradation processes and thereby 

activating CMA. Consequently, the likelihood of an 

individual being at risk for AD can be inferred from 
the activity of CMA. From a mathematical perspective, 

this relationship is encapsulated by a function f,  
such that f(CMAgenes), where CMAgenes denotes the 

expression levels of all genes associated with CMA, and 

y represents the probability of AD risk attributable to 

the CMA network. If alterations in the expression 

levels of CMA genes result in significant changes in 

AD risk probability, it suggests that CMA is highly 

sensitive to the disease. This insight renders machine 

learning an invaluable tool for deriving the function f, 
thereby enabling the quantification of CMA’s sensitivity 

to AD.  

 

The aim of this section: Drill out molecular networks 

sensitive to AD. 

 

Method: For example, the molecular network 

facilitating substrate entry into lysosomes during CMA 

encompasses genes such as GFAP, LAMP2A, EEF1A1, 

and HSP90AB1. Utilizing machine learning, we can 

derive the function y = f1(x1, x2, x3, x4), where x1, x2, x3, 

x4 correspond to the expression levels of GFAP, 

LAMP2A, EEF1A1, and HSP90AB1, respectively,  

with y denoting the AD risk probability. By isolating 

GFAP and recalibrating the model, a secondary function 

w = f2(x2, x3, x4) is established. The differential Δ = y–w 

quantifies GFAP’s impact on AD within this network, 

with larger Δ values indicating a more substantial 

influence. Given GFAP’s involvement across various 

molecular networks, the mean of these differential 

values assesses its overall effect on AD risk. The  

greater the average, the more pronounced is GFAP’s 

contribution to AD susceptibility through its network 

interactions. A comprehensive methodological exposition 

is provided in Method and the Supplementary Materials. 

 

Input data of computation: More than 10,000 genes and 

363 patients, dataset GSE15222 (The details are in 

Method). 

 

Output of computation: All genes have been ranked 

according to their average differential value (Δ), 

resulting in a sorted set designated as Seffect–sequence or S3 

detailed in Supplementary File 2. From this ranking, the 
top 20% of genes have been curated into a subset, 

denoted as Seffect–top or S4. A selection of genes within S4 

is presented in Table 2. 
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Table 2. The partial list of top genes that cause molecular network sensitive to AD progression. 

Gene name Gene full name Related to CMA Rank 

GFAP Glial fibrillary acidic protein √ 10 

… …  … 

EEF1A1 Eukaryotic translation elongation factor 1 alpha 1 √ 37 

… …  … 

EEF1A2 Eukaryotic translation elongation factor 1 alpha 2 √ 221 

… … … … 

HSP90AB1 Heat shock protein 90 alpha family class B member 1 √ 360 

 

 

The substrate translocation into lysosomes during CMA 

exhibits a preferential response to AD progression:  

As AD advances, the accumulation of abnormal 

proteins intensifies, leading to increased proteotoxicity 

and compromised proteostasis. In response, CMA  

is activated to transport these abnormal proteins to  

the lysosome, playing a crucial role in maintaining 

proteostasis. This selective responsiveness of CMA to 

AD progression is underpinned by the observation that 

each gene involved in the process of substrate entry into 

lysosomes during CMA occupies a prominent position 

in Table 2. This indicates that even minor variations in 

the expression levels of these genes significantly impact 

the probability of AD risk through molecular networks. 

Given that all genes associated with this specific  

CMA process are highly ranked, it demonstrates that  

the network governing substrate entry into lysosomes 

during CMA is markedly sensitive to AD, responding 

preferentially as the disease progresses. 

 

Filter out subset S6 from S2 ⋂ S4 which is related to 

CMA  

In “Drill out the set S2 that consists of the genes 

sensitive to AD individually” section, the gene set S2 is 

characterized by its constituents’ heightened sensitivity 

to AD progression, with each gene within the set 

demonstrating a discernible response to the disease’s 

advancement. Conversely, by “drilling out the set S4 

that consists of the genes causing molecular network 

sensitive to AD” section, the gene set S4 is introduced, 

which embodies a distinct trait: the expression level 

changes of any given gene within this set—and the 

molecular network encompassing it—result in a 

significantly pronounced effect on AD progression 

through the network. This suggests that the gene is 

crucial within its network, rendering the network itself 

particularly sensitive to AD progression. 

 

By intersecting S2 and S4, a new set is defined, S5 = S2 ⋂ 

S4, comprising 1,575 genes. These genes simultaneously 
exhibit the aforementioned characteristics, implying that 

networks with particular sensitivity to AD progression 

are embedded within S5. However, the task of visually 

identifying these sensitive networks from the  

substantial dataset of 1,575 genes is beyond the scope  

of human analytical capabilities, given the vastness  

of the information presented. Consequently, traditional 

bioinformatics methodologies are applied to S5 in this 

section to navigate through and analyze the extensive 

data. 

 

Enrichment analysis conducted on set S5 yields insights 

delineated in Figure 1, through both Kyoto Encyclopedia 

of Genes and Genomes (KEGG) and Gene Ontology 

(GO) analyses. KEGG analysis categorizes genes in 

relation to specific diseases and biochemical pathways 

[25, 26], while GO analysis organizes genes based on 

their molecular functions and biological processes [27]. 

According to KEGG, genes within S5 are significantly 

represented in pathways associated with various brain 

disorders, notably including “neurodegenerative-multiple 

disorders,” “Alzheimer’s disease,” and “Huntington’s 

disease” (Figure 1A). GO analysis reveals a predominant 

enrichment in biological processes such as “establishment 

of protein localization to membranes’ and “protein 

targeting to membranes” (Figure 1B), suggesting a 

crucial role in cellular functionality. Further details are 

available in Supplementary File 3. 

 

These findings indicate that the genes in set S5 are 

implicated in Alzheimer’s disease, either individually or 

through specific gene networks, with a significant number 

participating in pathways relevant to neurodegenerative 

diseases. Notably, their cellular functions are chiefly 

enriched in processes related to protein localization and 

targeting to membranes, underscoring their potential roles 

in the pathological mechanisms underlying AD. 

 
Given the prominent ranking of GFAP in both preceding 

analyses, our attention pivoted to biological networks 

featuring GFAP, as identified in the Gene Ontology (GO) 

analysis. The pertinent GO term associated with GFAP 

emerged as “regulation of protein catabolic process”.  

The gene set encapsulated by this term, designated as 

Scatabolic or S6, comprises 51 genes distinguished by their 

acute sensitivity to AD. These genes are posited to exert 
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influence on AD progression through their involvement 

in biological functional networks. Notably, S6 includes 

genes related to CMA, and forthcoming analyses will 

assess the significance of these CMA-related genes 

within S6. Detailed information on the genes constituting 

S6 is provided in Supplementary File 4. 

CMA is induced from set S6 

The STRING database facilitates the exploration of 

potential associations among genes based on functional 

interactions. Utilizing this resource, the gene set S6 

underwent analysis for Protein-Protein Interactions 

(PPI) to construct a gene network. Subsequent 

 

 
 

Figure 1. The schematic diagram of enrichment analysis KEGG and GO. (A) The bubble diagram shows the top 10 pathways that 

are enriched for important genes. The results show that most of the S5 genes are enriched in the “Pathways of neurodegeneration-multiple 
diseases” pathway. In addition, these genes are mainly involved in “Alzheimer Disease”, “Huntington Disease” and other 
neurodegenerative pathways. (B) The bubble diagram shows the top 8 GO terms that are enriched for important genes. The vertical axis 
corresponds to the Biological Process (BP), Cell Component (CC), and Molecular Function (MF). The results indicate that most of the S5 
genes are involved in “establishment of protein localization to membrane” and “protein targeting in membrane” biological processes. 
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evaluation of network topology was performed 

through the Betweenness Centrality algorithm, 

calculating the centrality of each node. The findings 

are visually represented in Figure 2, where a gene’s 

proximity to the center signifies its pivotal role 

within the network. Notably, GFAP emerged as  

the most central gene, registering the highest 

centrality score (172.77), followed by HSP90AB1 

(143.75), SMAD3 (129.80), and UBB (121.34). 

Detailed centrality scores for the remaining genes are 

accessible in Supplementary File 5. 

 

This network revealed that the main functions of the 

gene that plays a dominant role in collection S6 were all 

related to chaperone-mediated autophagy. Genes close 

to the center such as GFAP, HSP90AB1 and EEF1A1 

are involved in chaperone-mediated autophagy. Thus, 

the results suggest that CMA plays an important role 

in AD. 

 

The analysis of the network underscores that the 

primary functions of genes central to the set S6  

are intrinsically linked to the process of substrate 

translocation into lysosomes during CMA. Key genes 

situated near the network’s core, such as GFAP, 

HSP90AB1, and EEF1A1, play pivotal roles in  

this specific autophagy process, highlighting CMA’s 

significant contribution to AD pathology. 

 

 
 

Figure 2. PPI network map of genes contained in S6, was constructed based on STRING database and visualized by 
Cytoscape. The ranking was performed after filtering by the betweenness centrality algorithm, with nodes closer to the center or colored 
closer to red indicating higher scores. The results show that GFAP still dominates in this network, and other genes associated with CMA are 
close to the center of the network. 
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Table 3. The characterization of set SCMA. 

Characterization of SCMA Description 

Sensitivity to AD 
The genes of SCMA are sensitive to AD individually excluding LAMP2 (“Drill out the set S2 

that consists of the genes sensitive to AD individually” section) 

Causing molecular network  
sensitive to AD  

CMA preferentially responds to AD progression (“Drill out the set S4 that consists of the 
genes causing molecular network sensitive to AD” section) 

Pathway enrichment (KEGG) 
Primarily involved in neurodegenerative disease pathways, including AD (“Filter out 
subset S6 from S2 ⋂ S4 which is related to CMA” section) 

Function enrichment (GO) 
The GO term “regulation of protein catabolic process” contains GFAP with the highest 
confidence level (“Filter out subset S6 from S2 ⋂ S4 which is related to CMA” section) 

PPI analysis 
These genes were located at the center of the network, suggesting an important role in 
their biological function (“CMA is induced from set S6” section) 

 

Figure 2 illustrates the critical involvement of several 

CMA-associated genes, including GFAP, HSP90AB1, 

and EEF1A1, in AD, suggesting a nuanced under-

standing of their impact. To refine the assessment of their 

effects on AD, the analysis incorporates LAMP2, the 

gene encoding the lysosome-associated membrane 

protein 2A (LAMP2A), leading to an updated gene set S7. 

 

Figure 2 shows that most of the genes in CMA, such as 

GFAP, HSP90AB1 and EEF1A1, play important roles 

in AD. In order to more precisely assess the effect on 

AD, LAMP2 is considered, which encodes the protein 

LAMP2A. Then update gene set S6 and get set S7. 
 

7S S { , 90 1, 1 1, 2}CMA GFAP HSP AB EEF A LAMP= =  
 

The genes encompassed by set S7 encode proteins critical 

to the process of substrate translocation into lysosomes, a 

key aspect of CMA, thereby aligning S7 closely with this 

specific phase of CMA. Consequently, S7 is designated as 

representative of this crucial autophagic pathway, 

henceforth denoted as SCMA. The characteristics and 

significance of are outlined in Table 3, which clarifies the 

relationship between this targeted aspect of CMA and 

AD, emphasizing the susceptibility of this autophagic 

route to AD’s progression. 

 
The analysis of CMA characterization 

 

Differential expression analysis of CMA 

Following the identification of the gene network S7, 

which is associated with the process of substrate 

translocation into lysosomes within CMA, we proceeded 

to examine the expression profiles of genes within this 

network. Differential expression analysis was carried out 

between AD cohorts and control groups, utilizing three 

separate datasets. The results of this analysis are visually 

detailed in Figure 3, providing insight into the 

expression patterns of these genes in the context of AD. 

 
GFAP has been documented as a regulator of  

LAMP-2A assembly/depolymerization through a  

GTP-dependent mechanism, consequently influencing 

the pace of CMA [16, 28]. As a result, the observed 

upregulation of GFAP during the Alzheimer’s  

disease phase implies a positive regulation of CMA 

facilitated by GFAP. The rate of CMA is also linked to 

the abundance of LAMP-2A within the lysosomal 

membrane [16, 28]. The quantity of LAMP-2A, in  

turn, is subject to regulation through transcriptional 

upregulation [28, 29]. The result showed a significant 

expression of LAMP2 during AD, implying the 

activation of CMA at the outset of AD, T-test was used 

to verify the significance of the genes. Additionally, 

HSP90AB1, a member of the HSP90 chaperone protein 

family, helps stabilize protein folding [30]. HSP90 is 

believed to have the potential to unfold substrates that 

have already folded in complexes on the lysosomal 

membrane [31, 32]. Thus, its downregulation assists  

in unfolding substrates, making it easier for them to 

enter lysosomes. Collectively, these results suggest that 

the process of substrate translocation into lysosomes,  

a critical component of CMA, is upregulated in AD to 

augment the degradation of abnormal substrates. 

 

Correlation analysis of CMA 

Given the synergistic interactions between genes 

involved in the process of substrate translocation to  

the lysosome, it becomes important to study their 

interrelationships. Accordingly, this section is dedicated 

to the calculation of correlation coefficient matrices. 

 

The input data for this analysis are derived from  

the GSE15222 dataset. The outputs are matrices 

representing the correlation coefficients, with one 

derived from control group data (Figure 4A) and the 

other from AD patient data (Figure 4B). The difference 

matrix between the control group and the AD group 

indicates changes in correlation (Figure 4C). 

 

Upon comparison of the control and AD groups, two 

notable observations emerge: 
 

1. The robust correlation among GFAP, HSP90AB1, and 

EEF1A1 is maintained, indicative of their concerted 

function within the process of substrate translocation 
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into lysosomes, a pivotal aspect of CMA. Specifically, 

HSP90AB1 is implicated in the initiation of this 

substrate delivery process. GFAP plays a critical role 

in the delivery action itself, crucial for stabilizing the 

CMA complex. The protein encoded by EEF1A1 

facilitates the completion of substrate delivery. These 

operational dynamics of CMA, particularly in relation 

to substrate translocation into lysosomes, are discussed 

in detail in Discussion and Conclusion. 

Consequently, the observed strong correlation 

among these genes underscores the heightened 

activity of this specific autophagic pathway during 

the progression of AD, suggesting its vital role in 

responding to the disease’s advancement. 

2. As AD progresses, LAMP2 exhibits an increasing 

correlation with other genes involved in the  

process of substrate translocation into lysosomes, a 

critical function of CMA. In the substrate delivery 

phase, GFAP and LAMP2A collaborate to form a 

translocation complex essential for substrate 

movement into lysosomes. Here, LAMP2A plays a 

direct role in the delivery, while GFAP contributes 

to the stability of this process, as detailed in 

Discussion and Conclusion. Therefore, the observed 

enhancement in gene correlation indicates that the 

substrate translocation aspect of CMA intensifies in 

activity during AD progression, facilitating increased 

substrate degradation. 

 

The relationship between CMA and dementia degree 

In this section, linear regression analysis is employed 

to investigate the relationship between the process  

of substrate translocation into lysosomes during CMA 

and key clinical or anatomical indicators of AD 

progression. 
 

The clinical indicator under consideration is the Mini-

Mental State Examination (MMSE), with lower scores on

 

 
 

Figure 3. Analysis of differential expression between AD patients and controls. (A, B) Box plots of CMA-related genes 

differentially expressed in GSE15222 and GSE5281, distinguishing the AD group from the control group. Both GFAP and LAMP2 showed a 
trend of upregulation in (A) and (B), and HSP90AB1 shows a different trend. (C) Box-plot of CMA-related genes differentially expressed in 
GSE1297, shown according to control, incipient dementia, moderate dementia, and severe dementia. GFAP expression gradually increased 
with increasing dementia in (C). Additionally, the T-test was utilized to verify the significance of gene expression, with detailed results 
available in Supplementary File 6. 

9079



www.aging-us.com 9 AGING 

this assessment indicating more severe dementia. The 

MMSE score serves as a reflection of AD progression. 

The anatomical indicator examined is the presence of 

Neurofibrillary Tangles (NFTs), where a higher count  

is associated with an increased degree of dementia.  

NFTs signify the accumulation of proteotoxicity, further 

correlating with the disease’s advancement. 

 

Input data are from dataset GSE1297, and the output is 

shown in Figure 5. Figure 5A–5D show the correlation 

between four genes and MMSE. Figure 5E–5H show 

the correlation between four genes and NFT. 

 

Subfigure A illustrates that with an increasing degree  

of dementia, the MMSE scores decrease while the 

expression of GFAP rises. Subfigure E demonstrates 

that excessive proteotoxicity accumulation results  

in both elevated NFT counts and increased GFAP 

expression. To interpret these observations, the paper 

proposes a rationale: as AD progresses, abnormal 

proteins accumulate, activating the process of substrate 

translocation into lysosomes within CMA for clearance. 

GFAP, playing a pivotal role in this process, sees its 

upregulation as critical for mitigating proteotoxicity 

accumulation. This mechanism is elaborated upon in 

Discussion and Conclusion, and illustrated in Figure 6. 

 

Subfigure B correlates higher degrees of dementia 

(reflected by lower MMSE scores) with reduced 

expression of HSP90AB1, while Subfigure F connects

 

 
 

Figure 4. Heat map of correlation matrices of the proteins of CMA. (A, B) The correlation coefficient matrix among the proteins of 

CMA. (C) The difference matrix. Figure 4C shows that the degree of correlation between LAMP2 and the other three genes become 
stronger significantly as AD progresses. And the other three genes keep strong correlations among them. The inhibitory protein HSP90 
unfolds substrates ready to be delivered to the LAMP2A complex for degradation, so the correlation between them becomes stronger. 
After unfolding, LAMP2A works with GFAP to deliver substrates to lysosome together, so the correlation becomes stronger. After finishing 
the delivery, the protein encoded by EEF1A1 dissociates GFAP to restore the LAMP2A complex in CMA, so the correlation becomes 
stronger. Thus, CMA becomes active with AD progression. The more detailed explanation of the molecular mechanism is described in 
Conclusion and Figure 6. 
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Figure 5. The relationship between the process of substrate translocation into lysosomes during CMA and dementia 
degree. (A–D) detail the correlation between gene expression levels and the Mini-Mental State Examination (MMSE) scores, which serve 

as a clinical measure of dementia severity, with lower MMSE scores indicating more severe dementia. The vertical axis denotes MMSE 
scores, while the horizontal axis captures gene expression levels. (E–H) explore the link between gene expression levels and the count of 
Neurofibrillary Tangles (NFTs), markers of neurodegeneration. The underlying molecular mechanism across these subfigures highlights that 
CMA’s role in degrading substrates—generally abnormal proteins—is triggered by substrate accumulation. Excessive accumulation of such 
proteins results in proteotoxicity, correlating with increased dementia severity. Subfigure B demonstrates that lower expression of 
HSP90AB1 aligns with reduced MMSE scores and heightened dementia severity. HSP90AB1 functions as an inhibitory protein; its reduced 
expression facilitates the unfolding of abnormal proteins, easing their entry into the LAMP2A complex and thus activating CMA. 
Consequently, lower levels of HSP90AB1 indicate enhanced CMA activity. Subfigures A and D show that higher expressions of GFAP or 
LAMP2 correlate with lower MMSE scores and increased dementia severity. The GFAP-LAMP2A complex is essential for delivering 
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substrates to the lysosome, and its activation is prompted by the overaccumulation of abnormal proteins. The presence of more severe 
dementia suggests greater protein accumulation, leading to increased activity of the GFAP-LAMP2A complex and elevated expression of 
both GFAP and LAMP2. Upon completion of substrate delivery, the protein encoded by EEF1A1 disassociates GFAP, resetting the LAMP2A 
complex to its initial state, as depicted in subfigure C. Higher levels of EEF1A1, indicating lower MMSE scores and greater dementia, 
underscore its role in concluding the delivery process and reinstating CMA’s baseline functionality. Overall, the sensitivity of the process of 
substrate translocation into lysosomes during CMA to AD progression mirrors the degree of dementia, offering a reflective measure of 
dementia severity. This comprehensive analysis is further detailed in Conclusion and illustrated in Figure 6. 

 

proteotoxicity accumulation with both increased NFT 

and decreased HSP90AB1 levels. HSP90AB1 acts as an 

inhibitory protein, and its downregulation facilitates the 

unfolding of abnormal proteins, easing their entry into 

the lysosomal degradation pathway. 

 

Subfigure C correlates increasing severity of dementia 

(reflected in lower MMSE scores) with an upsurge in 

EEF1A1 expression. Similarly, Subfigure G associates 

heightened proteotoxicity (evidenced by elevated NFT 

counts) with increased EEF1A1 levels. The EEF1A1 

protein is instrumental in dissociating GFAP, thereby 

facilitating the reconstitution of the LAMP2A complex, 

crucial for completing and resetting the process of 

substrate translocation into lysosomes during CMA. 

Consequently, an increase in EEF1A1 expression 

indicates an activation of this specific phase of CMA. 

 

Subfigure D shows that greater dementia severity is 

associated with lower MMSE scores and higher LAMP2 

expression. According to Discussion and Conclusion,  

the GFAP and LAMP2A complex forms the core unit  

of this autophagic pathway, crucial for the translocation  

of substrates into lysosomes for degradation. Elevated 

expressions of GFAP and LAMP2A affirm the operational 

status of this pathway in response to AD progression. 

 

 
 

Figure 6. Substrate entry into the lysosome. Protein degradation by CMA: HSC70 recognizes the KFERQ-like motif in the substrate 

(step 1); the substrate-chaperone complex binds to LAMP2A (step 2); the chaperone complex expands the substrate to form the CMA 
translocation complex (step 3); substrate translocation is mediated by other proteins in the lysosome, when GFAP acts as a reinforcer of the 
complex (step 4); lysosomal protease degrades the substrate and LAMP2A dissociates from the translocation complex (step 5). Where EF1α 
denotes elongation factor 1-α (core subunit is EEF1A1), GFAP denotes glial fibrillary acidic protein, and HSC70 denotes heat shock cognate 
71 kDa protein (also known as HSPA8). 
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In summary, the process of substrate translocation  

into lysosomes within CMA exhibits sensitivity to the 

progression of AD, thereby exerting a notable impact on 

clinical indicators. 

 

CMA is a biomarker of AD 

In this section, the impact of the process  

of substrate translocation into lysosomes within  

CMA on AD is evaluated using a Support Vector 

Machine model (SVM). The dataset GSE5281 

serves as the input, with the findings depicted in 

Figure 7. In addition, the results of ten-fold cross 

validation can be found in Supplementary Figures  

1–3. 

 

Figure 7A illustrates that when both GFAP and 

LAMP2A—proteins integral to the lysosomal substrate 

translocation process of CMA—are upregulated beyond 

their respective thresholds, the likelihood of AD risk in 

a patient approach nearly 100%. 

 

Figure 7B reveals that a significantly high probability of 

AD risk is observed when HSP90AB1 falls below a 

critical level, while GFAP exceeds its threshold. 

 

 
 

Figure 7. Support vector machine models of the process of substrate translocation into lysosomes during CMA.  (A–C) plot 

the expression of GFAP against that of other key CMA proteins. Here, blue and brown markers represent control and AD groups, 
respectively, with dashed lines indicating critical expression thresholds. Subfigure A demonstrates that when both LAMP2A and GFAP 
expressions surpass their thresholds, the risk of AD nears certainty. Subfigure B shows a heightened AD risk when HSP90AB1 falls below its 
threshold, while GFAP’s expression is above its own. Collectively, these models confirm the sensitivity of the process of substrate 
translocation into lysosomes during CMA to the progression of AD, highlighting its potential as a biomarker. The molecular rationale 
underlying these observations involves CMA’s activation in response to the excessive accumulation of abnormal proteins due to AD 
progression, necessitating a three-step process for substrate degradation. Initially, HSP90AB1 facilitates substrate unfolding to prepare for 
lysosomal delivery. Subsequently, LAMP2A and GFAP collaborate to form a translocation complex, efficiently directing substrates to the 
lysosome. Finally, EEF1A1 disengages GFAP from the complex, resetting LAMP2A for subsequent cycles. These stages correspond to the 
findings depicted in Subfigures B, A, and C, respectively. Subfigure B underscores the initial response of the substrate translocation process 
into lysosomes within CMA to proteotoxicity accumulation, a critical factor in AD risk assessment. Subfigure A showcases the delivery 
phase, where the combined actions of LAMP2A and GFAP, manifested through their increased expression levels, significantly boost the 
process’s capacity to eliminate proteotoxic accumulations. This stage indicates the proactive engagement of this specific CMA phase in 
substrate degradation. Thus, the integrated function of this lysosomal entry process, rather than the action of individual proteins, stands 
out as a prominent biomarker for AD. A more comprehensive explanation of this process and its implications for AD diagnosis is provided in 
Conclusion and illustrated in Figure 6. 
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Figure 7C indicates that within the control group, 

EEF1A1 expression is confined to a specific range. 

When the expression extends beyond this range, coupled 

with GFAP exceeding its threshold, the samples are 

classified as AD. 

 

It is crucial to acknowledge that relying on a single 

protein as a biomarker has its limitations. For instance, 

as shown in Figure 7C, despite GFAP exceeding its 

threshold (indicated by the dashed line), five samples 

remain within the control category. Similar observations 

are noted in the other subfigures. 

 

The SVM model elucidates that GFAP, in conjunction 

with LAMP2 and HSP90AB1, exhibits a synergistic 

interaction affecting AD. If they are both input into the 

model, the accuracy of the model’s prediction can reach 

85%. Collectively, the ensemble of proteins involved in 

the lysosomal substrate translocation phase of CMA 

acts as a robust biomarker for AD, whereas individual 

proteins demonstrate limited biomarker efficacy. 

 

DISCUSSION 
 

AD is a brain disorder that gets worse over time. It’s 

characterized by changes in the brain that lead to 

deposits of abnormal proteins. The aggregation of 

abnormal proteins leads to proteotoxicity and neuronal 

dysfunction. CMA is a lysosomal pathway of proteolysis 

that is responsible for the degradation of cytosolic 

proteins, and it contributes to cellular quality control 

through the removal of damaged or malfunctioning 

proteins. On the one hand, the over-accumulation of 

abnormal proteins accelerates the progression of AD. 

On the other hand, CMA participates in degradation  

to clear up the over-accumulation and slows down  

the progression. The game between the two actions of 

accumulation and clearance affects the progression of 

AD. 

 

The process of substrate translocation into lysosomes 

within CMA constitutes a molecular network involving 

key proteins such as GFAP, LAMP2A, HSP90AB1, and 

EEF1A1. These proteins, encoded by their respective 

genes, collaborate integrally to facilitate the lysosomal 

degradation of substrates. Functioning collectively, this 

network features the chaperone protein HSP90, encoded 

by HSP90AB1, which plays a crucial role in modulating 

substrate unfolding [30–32]. Concurrently, the GFAP 

and LAMP2A complex is essential for the actual 

translocation of substrates into the lysosome, whereas 

the protein produced by EEF1A1 concludes this delivery 

phase [14, 16]. Together, these components underscore 

the orchestrated operation of the CMA pathway, 

particularly its critical phase of moving substrates into 

lysosomes for degradation. 

On one side, the excessive accumulation of substrates 

results in proteotoxicity, contributing to the accelerated 

progression of AD and elevating the likelihood of  

AD risk in individuals. On the flip side, the process of 

substrate translocation into lysosomes, a key facet of 

CMA, responds to this over-accumulation by facilitating 

the degradation of these substrates. Consequently, it  

is plausible that the genes associated with this phase  

of CMA exhibit specific expression patterns in response 

to proteotoxicity accumulation, thereby mirroring the 

individual’s risk of AD. 

 

This paper aims to dissect the intricate relationship 

between the lysosomal entry process of CMA and AD 

progression. More precisely, it seeks to investigate how 

the gene expression profiles pertinent to this particular 

phase of CMA correlate with the probability of AD risk, 

providing insights into the molecular underpinnings of 

the disease’s development. 

 

Driven by the above motivation, two methods are 

proposed in this paper, and they aim at the two functions 

of computation. One is to estimate the patient’s 

probability of AD risk, the other is to identify the 

molecular network sensitive to the change of probability. 

 
To reach the first aim of computation, the improved 

machine learning is designed (“Drill out the set S2 that 

consists of the genes sensitive to AD individually” section, 

“The method to identify the genes sensitive to AD” 

section). The method is abstracted into the following 

mathematics model. The relationship between gene 

expression levels and the probability of AD risk is defined 

as a mathematic function y = f(x1, x2, …, xm), where, x1, x2, 

…, xm denotes the expression levels of m genes 

respectively and these data are sampled from a patient  

or sample, y denotes the probability that the patient has  

a risk of AD. Function y = f(x1, x2, …, xm) represents that, 

for a given patient, his probability of having AD risk can 

be assessed from the expression levels of m genes. And 

partial derivative 
1 2

, , ,
m

f f f

x x x

  

  
 is used to measure 

the degree of sensitivity to AD of every gene respectively. 

For example, if the value 
1

f

x




 is big, the little change of 

the expression level of gene No. 1 leads to a significant 

change of the probability of AD risk. That is, the gene 

No. 1 is sensitive to AD. The function y = f(x1, x2, …, xm) 

is trained out using the proposed AI method in “The 

method to identify the genes sensitive to AD” section. 

Then, the genes highly sensitive to AD are identified by 

the function f, and contained in set S2. 

 
To reach the second aim, the other AI method is proposed 

(“Drill out the set S4 that consists of the genes causing 
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molecular network sensitive to AD” section, “The method 

to identify the genes sensitive to AD through molecular 

network” section). And its idea is illustrated using the 

process of substrate translocation into lysosomes during 

CMA as an example. The probability of AD risk caused 

by this process can be calculated by the above function  

y = f(x1, x2, x3, x4,), where x1, x2, x3, x4 denotes the 

expression level of the four genes in this process. The 

probability is labeled as f[CMA], which measures the 

effect of CMA on AD risk. That is, for a given patient,  

his probability of AD risk is reflected by the efficiency  

of CMA delivering substrates to lysosome, and the 

probability is assessed by f[CMA]. Delete GFAP from the 

set of CMA, and label the updated set as CMA – {GFAP}. 

AI Training method acts on the updated set and gets a 

new function g, then probability is calculated, and is 

labeled as g[CMA – {GFAP}]. Let Δ(GFAP) = f[CMA] – 

g[CMA – {GFAP}], where Δ(GFAP) is the difference of 

probability, which measures the contribution of GFAP to 

network CMA. The bigger Δ(GFAP), the stronger the 

ability of GFAP that regulate the probability of AD risk 

caused by network CMA. GFAP causes the effect on  

AD through molecular networks in general, not through 

GFAP individually. And GFAP participates in many 

networks to cause an effect on AD synthetically. Then, 

every network generates a value, the average of all values 

appears, and the average is labeled as, (GFAP).  The 

average looks more reasonable to assess the effect on AD 

caused by GFAP through networks. For any protein,  

its effect on AD through molecular networks can be 

assessed, such as (LAMP2),  (HSP90AB1),  and 

(EEF1A1).  In “Drill out the set S4 that consists of  

the genes causing molecular network sensitive to AD” 

section, for more than 10,000 genes, the average score of 

each one is calculated, and the genes with a high score are 

collected in set S4. 

 

Then every gene included in the intersection S2 ∩ S4 

holds two features. One feature is that the gene is 

individually sensitive to AD. And the other feature is 

that, the gene is sensitive to AD through molecular 

network. Because the process of substrate translocation 

into lysosomes during CMA is a subset of S2 ∩ S4 and 

every gene in this process holds a high score, this 

process is sensitive to AD significantly. In addition, 

traditional bioinformatics methods act on S2 ∩ S4 to 

confirm that this process is related to AD in this paper. 

 

Using the above two AI methods, the process of 

substrate translocation into lysosomes during CMA is 

drilled out. And its four characteristics are discovered 

and listed as below. 

 

1. As AD progresses, the process of substrate 

translocation into lysosomes, a key phase of CMA, 

exhibits increased activity. This enhanced activity  

is underscored by two principal characteristics:  

the upregulation of proteins that facilitate this 

process or the downregulation of inhibitory proteins, 

as illustrated in Figure 3, and the strengthening of 

correlations among the genes involved in this specific 

phase of CMA as AD advances, demonstrated in 

Figure 4. A higher degree of correlation among these 

genes signifies a more robustly active process of 

substrate translocation into lysosomes, leading to 

more efficient degradation of abnormal proteins 

implicated in AD. 

2. The process of substrate translocation into 

lysosomes during CMA preferentially responds to 

AD progression (“Drill out the set S4 that consists  

of the genes causing molecular network sensitive to 

AD” section). 

3. The process of substrate translocation into 

lysosomes within CMA exhibits a correlation with 

clinical indicators of AD, as depicted in Figure 5. 

With an increase in the severity of dementia, there is 

a corresponding intensification in the accumulation 

of proteotoxicity. This scenario prompts a heightened 

activity in this specific phase of CMA, aimed at 

enhancing the degradation of abnormal proteins 

associated with the progression of AD. 

4. The synergistic interaction of proteins involved in 

the process of substrate translocation into lysosomes 

during CMA functions as an indicator of AD, as 

evidenced in Figure 7. Specifically, when proteins 

such as GFAP and LAMP2A, which are key to this 

phase of CMA, are concurrently upregulated beyond 

their respective thresholds, there exists a near-certain 

risk of AD for the patient, as illustrated in Figure 

7A. 

 
In sum, the process of substrate translocation into 

lysosomes within CMA is sensitive to AD. 

 
Since this process is sensitive to AD, it is interesting  

to explore the molecular mechanism of sensitivity.  

The mechanism is described as below and illustrated by 

Figure 6. 

 
As AD progresses, the accumulation of abnormal 

protein increases. At this point, CMA is activated, and 

chaperone proteins bind to substrates, directing them 

towards lysosome [33, 34]. After the substrate-chaperone 

complex binds to LAMP2A, the chaperone complex 

unfolds the substrate, and the decreased expression  

of HSP90 accelerates substrate unfolding, thereby 

expediting CMA-mediated degradation. LAMP2A then 

forms a polymeric complex on the lysosomal membrane. 

GFAP regulates the stability of the complex through 

GTP-dependent means, and non-phosphorylated GFAP 

binds to LAMP2A polymeric complexes to provide 
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stability [14, 16]. When substrate enters lysosome, 

EF1α dissociates from phosphorylated GFAP in the 

presence of GTP. This process induces conformational 

changes in phosphorylated GFAP, thereby attracting 

unphosphorylated GFAP from the LAMP2A complex 

and restoring LAMP2A. EEF1A1 encodes the core 

subunit of elongation factor 1α (EF1α). HSP90AB1 is  

a member of the HSP90 chaperone protein family, 

stabilizing proteins in the correct folded structure, but 

also participating in protein translocation and degradation 

[30]. Agaraberes et al. [35] identified HSP90 as a 

companion/co-companion complex member of CMA. In 

cellular and mouse models, the inhibition of HSP90 

promotes the clearance of abnormal proteins [31]. HSP90 

is believed to have the potential to unfold substrates  

that are folded within the complex on the lysosomal 

membrane [32]. Therefore, inhibiting the folding 

activity of HSP90 facilitates the transport of unfolded 

proteins and makes substrate proteins more accessible 

to lysosome [32]. Figure 6 illustrates this process. 

 

The above synergistic mechanism collectively  

expedites the transportation of substrate into lysosome, 

consequently enhancing the efficiency of CMA. 

 

However, lysosomal function has been proven to be 

impaired in AD. Microtubule-associated protein tau 

(MAPT), which encodes tau protein, damages lysosomal 

function through various pathways, leading to lysosomal 

enlargement, dysfunction, and rupture. Additionally, the 

regulation of genes such as TMEM106B can directly 

impact brain lysosomal function. Thus, even if the 

process of substrate entry into lysosomes is facilitated, if 

the lysosomes are incapable of degradation, the entire 

process of CMA is still inhibited. This article is primarily 

limited to identifying the sensitivity of the substrate entry 

process into lysosomes to AD, and a comprehensive 

assessment is required to determine whether the entire 

CMA process is stimulated or suppressed. 

 

Shortcomings in this research: 

 
1. After conducting computational experiments, this 

study lacks biological experiments to support its 

theories. The absence of experimental validation 

may lead to discrepancies in the results. To address 

this issue, efforts were made in data preprocessing to 

ensure the authenticity and reliability of the com-

putational outcomes. The initial dataset GSE15222 

had already undergone noise reduction operations to 

maintain consistency in gene expression across 

different samples. In this study, noise was further 

reduced in GSE15222 through z-score normalization, 

eliminating the impact of experimental errors. 

Additionally, the average values of different probes 

for the same gene were taken to minimize noise. 

Finally, by integrating literature analysis, theory and 

computational results were combined to arrive at the 

analysis conclusions. 

2. This paper did not opt for protein expression data for 

experimental validation. Undoubtedly, protein data is 

more precise and could result in more accurate 

findings. However, due to the challenges in obtaining 

protein expression data and the current incapability 

of the team to experimentally acquire such data,  

gene expression data was chosen for the study. 

Furthermore, the advantage of AI calculations lies in 

their ability to analyze large volumes of data, making 

gene expression data beneficial in its own right. 

3. During the experimental process, this study did not 

consider all genes involved in the CMA process, but 

focused only on those genes that facilitate substrate 

entry into lysosomes (because these genes were found 

to be extremely sensitive to AD in the calculation 

results). Therefore, the entire CMA process may be 

influenced by other factors, such as tau pathology 

leading to impaired lysosomal function, ultimately 

potentially inhibiting CMA. 

 

CONCLUSION 
 

AD is a brain disorder that gets worse over time. It’s 

characterized by changes in the brain that lead to deposits 

of abnormal proteins. The aggregation of abnormal 

proteins leads to proteotoxicity and neuronal dysfunction. 

CMA is a lysosomal pathway of proteolysis that is 

responsible for the degradation of cytosolic proteins, 

and it contributes to cellular quality control through the 

removal of damaged or malfunctioning proteins.  

 

The network responsible for substrate translocation  

into lysosomes during CMA includes key proteins  

such as GFAP, LAMP2A, HSP90AB1, and EEF1A1. 

These proteins, encoded by their respective genes, play 

a crucial role in facilitating the entry of substrates  

into the lysosome for degradation. As AD progresses, 

the increased accumulation of substrates triggers the 

activation of this specific phase of CMA, directing 

substrates towards lysosomal degradation through a 

sequence of steps. The initial phase involves the 

preparation for substrate delivery. HSP90AB1 acts to 

unfold the substrate, making it primed for delivery to 

the LAMP2A complex. Although HSP90AB1 functions 

as an inhibitory protein by binding to the substrate and 

potentially hindering the unfolding process, its down-

regulation is advantageous for facilitating substrate 

unfolding. This initial action thus enhances substrate 

readiness for entry into the LAMP2A complex. The 

subsequent phase encompasses the actual delivery 

process. Here, LAMP2A and GFAP collaborate to  

form a translocation complex that associates with the 

substrate, enabling its transport to the lysosome. The 
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final step marks the completion of delivery. EEF1A1’s 

encoded protein separates GFAP from the complex, 

thereby resetting LAMP2A to its original state, ready 

for the next cycle of substrate degradation. This 

organized progression underscores the intricate and 

coordinated mechanism of substrate translocation into 

lysosomes, crucial for combating the proteotoxicity 

associated with AD progression. 

 

It has been noted that the process of substrate 

translocation into lysosomes during CMA exhibits 

increased sensitivity to the progression of AD. Initially, 

HSP90AB1’s downregulation aids in substrate un-

folding, thereby hastening its delivery to the lysosome. 

This reduction in HSP90AB1 levels indicates an excess 

accumulation of substrate proteotoxicity, which in turn 

elevates the risk of AD in patients. This relationship is 

highlighted in Figure 5B, where lower HSP90AB1 

expression correlates with more severe dementia. During 

the delivery phase of this CMA process, GFAP and 

LAMP2A synergize to form a complex that facilitates 

substrate transport. A pronounced upregulation of both 

proteins suggests enhanced delivery efficiency, spurred 

by the buildup of proteotoxicity. This observation is 

reflected in Figure 5A, 5D, demonstrating that higher 

expressions of GFAP and LAMP2A are associated  

with increased dementia severity. At the culmination of 

the CMA process, EEF1A1 disengages the complex, 

returning CMA to its baseline state in preparation for 

subsequent delivery cycles. Elevated EEF1A1 expression 

implies that the rapid dissociation of this complex, 

driven by proteotoxic accumulation, boosts the overall 

efficiency of CMA. This dynamic is captured in Figure 

5C, where higher levels of EEF1A1 are linked to  

greater dementia. Overall, the CMA process operates 

cohesively, with the proteins involved demonstrating 

enhanced synergy throughout the substrate delivery 

phase. This augmented cooperation is evidenced in 

Figure 4, which shows that the correlation among  

CMA proteins strengthens in line with AD progression. 

Here, the degree of protein synergy within the CMA 

network serves as a measure of its collective functional 

efficacy. 

 
The process of substrate translocation into lysosomes 

within CMA exhibits not just a sensitivity to AD 

progression but also a preferential response to the 

disease, as discussed in “Drill out the set S4 that consists 

of the genes causing molecular network sensitive to 

AD” section. 

 
The cooperative interaction among the proteins involved 

in this specific phase of CMA acts as a significant 

biomarker for AD, as demonstrated in Figure 7. For 

instance, when proteins such as GFAP and LAMP2A are 

simultaneously upregulated beyond certain thresholds, 

there exists a near-certainty of AD risk for the patient 

(Figure 7A). The complex formed by GFAP and 

LAMP2A plays a critical role in the degradation of 

substrates within lysosomes. Elevated expressions of 

these proteins indicate an excess accumulation of 

abnormal proteins awaiting degradation, leading to a 

heightened risk of AD. It’s important to underscore that 

while individual proteins offer limited biomarker utility, 

the collective functionality of all proteins involved in this 

CMA process provides a robust biomarker, reflecting the 

integrated nature of their action. 

 

Furthermore, the insights presented stem from an 

extensive analysis of over 10,000 genes and 363 

patients, utilizing two distinct AI algorithms. One 

algorithm was dedicated to pinpointing genes with 

heightened sensitivity to AD, while the other focused  

on identifying the molecular networks particularly 

responsive to the disease. Through this dual approach, 

the critical role of the substrate translocation process 

during CMA in relation to AD was elucidated. 

 

MATERIALS AND METHODS 
 

Data source and organization 

 

Original data 

The gene expression datasets used in this paper were 

downloaded from the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/browse/). 

 

To train the AI model of this paper (Figure 8), the gene 

expression profile GSE15222 is selected. GSE15222 is 

based on the GPL2700 platform. GSE15222 consists of 

363 samples, in which 187 control patients and 176 AD 

patients are included. In GSE15222, 16782 genes are 

included. For every patient, the expression levels of 

16782 genes are sampled, where the data of different 

probes are combined into one item using their average if 

the probes correspond to a same gene. So, the total 

original data is 363 × 16782.  

 

To explore the relationship between gene expression 

level and clinical indicator (Figure 5), GSE1297 is  

used in this paper, which consists of 9 controls and 22 

AD subjects. The 31 subjects include data of clinical 

indicator [36], so the clinical analysis benefits from 

these data. It should be noted that, in GSE5281 and 

GSE1297, there are also instances of multiple probes 

corresponding to a single gene. Therefore, the mean 

value of the probes is used as the expression of the gene 

for these two datasets as well. 

 

To explore the biomarker of AD (Figure 7), GSE5281 is 

used, in which 87 AD samples and 74 normal samples 

are included. 
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The normalization of original data 

For every patient (or a sample, or a subject), 16782 

genes are sampled, then 16782 data are obtained. And 

these data form a sequence. Let ZScore normalization 

algorithm act on the sequence. Then the normalized 

sequence is the output. 

 
The organization of the normalized data 

After data are normalized, all data are organized as the 

following matrix. 

 

11 1

1

n

m mn

x x

X

x x

 
 

=  
 
 

 

 
In the above matrix, “m” represents the number of 

genes, and “n” represents the number of samples, 

including both patients and controls. “xij” represents the 

expression level of the i − th gene expression which is 

sampled from the j − th patient. 

 
In this paper, n = 363 m = 16782. That is, all of the 

original data are sampled from 363 patients and 16782 

genes are tested. 

Let 
js  denote the j − th column vector. That is,  

 

( )1 2, , , , ,j j j ij mjs x x x x=  

 

The column vector 
js  is a data sequence, in which all 

data are sampled from the j − th patient and m genes are 

sampled totally.  
 

Then all of the gene data can be represented as 

following format also. 
 

( )1 j nX s s s=  (Eq. 1) 

 

In Eq. 1, all data are organized by samples (patients), 

every patient corresponds to a column vector.  
 

Let ig  denote the i − th line vector. That is,  

 

( )1 2, , , , ,j i j ij ing x x x x=  

 

The line vector ig  is a data sequence, in which all data 

corresponds to the i − th gene, and they are sampled 

from different patients. 

 

 
 

Figure 8. The neural network model determines the function f as shown in Equation 3, which is divided into an input layer 
(m neurons, m = 16782), a hidden layer (3 neurons), and an output layer (2 neurons). Where each neuron corresponds to a gene 
expression in a certain sample, thus a total of m genes corresponds to m neurons. Sigmoid function as an activation function in hidden 
layers. A Softmax layer is added to the output layer to transform the output of output layer to probability. Therefore, the output of function 
f represents the probability of having AD or not. 
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Then all of the gene data can be represented as 

following format too. 

 

1

i

m

g

X g

g

 
 
 
 =
 
 
 
 

 (Eq. 2) 

 

In Eq. 2, all data are organized by genes, every gene 

corresponds to a line vector.  

 

The method to identify the genes sensitive to AD 

 

The aim of this section is to design a machine learning 

method to identify the genes sensitive to AD. 

 

To reach the aim, the relationship between genes and 

AD is trained out as a mathematics function y = f(x), 

where x denotes the expression level of a gene and 

y denotes the probability of a patient having the risk 

of AD. 

 

Then, derivative f′(x) measures the degree of sensitivity 

to AD. If value f′(x) is big, the little change of input 

data x will lead to a significant change of output data y. 

 

Because many genes are related to AD, the function y = 

f(x) is updated as multivariate function y = f(x1, x2, …, 

xm), where (x1, x2, …, xm) represents the expression level 

of m genes respectively. 

 

Then, the derivative f′(x) is updated as partial 

derivatives 
1 2

, , , .
m

f f f

x x x

  

  
 Every partial derivative 

measures the sensitivity degree of every gene to AD. 

For example, if the absolute value 
1

f

x




 is bigger than 

2

,
f

x




 the first gene is more sensitive than the second 

gene. 

 

The following steps are to train out the multivariate 

function y = f(x1, x2,…, xm), where the function f is 

realized by a neural network. 

 

Step 1. Build and train a neural network (Figure 8).  

 

Input data: n = 363 samples (or patients). For every 

patient, m = 16782 genes are sampled and generate the 

expression level x1, x2, …, xm respectively. All these 

data are from database GSE15222. 

Training neural network: The model of the neural 

network is illustrated as Figure 8. This model comprises 

distinct layers: input, hidden, and output.  
 

The input layer holds 𝑚 neurons, and corresponds to 𝑚 

input data x1, x2, …, xm, which is the expression level of 

𝑚 genes respectively. Data x1, x2, …, xm are sampled 

from a same patient. Totally, 𝑛 patients and 𝑚 genes are 

used for training.  
 

The hidden layer comprises three neurons. Every 

neuron is activated by a sigmoid function. 
 

The output layer consists of two neurons. The output 

data of this layer traverses through the Softmax layer, 

where the Softmax layer yields the probability of 

patients having a risk of AD. 
 

In sum, the model of neural network is the realization  

of multivariate function y = f(x1, x2, …, xm). And the 

function f is realized by the hidden layer, and the 

probability of AD risk yields by the Softmax layer. 
 

Output of neural network: The probability of AD risk is 

the output. That is, for the input data sampled from a 

patient, his probability of AD risk will be calculated by 

the neural network. 
 

In sum, the neural network is the realization of function 
y = f(x1, x2, …, xm). After training, the function is 

represented by the neural network. The training process 

and results of the neural network are detailed in 

Supplementary Materials. 
 

Step 2. Calculate the partial derivatives of all genes. 
 

Input data: For a given patient, such as the j − th 

patient, the expression levels of m genes are sampled, 

these data form a vector 
js  = f(x1j, x2j, …, xij, …, xmj), 

where xij denotes the expression level of i − th gene and 

js  represents the data of all genes sampled from the  

j − th patient. Vector 1 2
, , , ns s s  form a set of input 

data, which is the domain of function f. 
 

Calculation of the probability of AD risk: Vector 
js  is 

input of the function f (i.e., the above neural network), 

the probability of the j − th patient having the risk of 

AD will be output, and labeled as yj. That is, 
 

( )1 2( ) , , , , ,j j j j ij mjy f s f x x x x= =  (Eq. 3) 

 

Output of partial derivatives: Since function f is known, 

the partial derivative ij

ij

f
d

x


=


 can be calculated, 
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Table 4. The calculation of derivative. 

Algorithm 4-1 The calculation of derivative 

  Inputs: The expression of all genes in each sample 

  Outputs: A gene sequence sorted based on gene sensitivity to AD 

  Steps: 

  Step 1. Building neural network and train out function f. 

     Mathematics model: Eq. 3 

     Training data: 80% of all samples.  

     Test data: 20% of all samples.  

     Optimization function: stochastic gradient descent (SGD).  

     Iteration number: 100.  

     Learning rate: 0.0001.  

     Validation method: ten-fold cross-validation. 

  Step 2. Calculate the partial derivatives of all genes. 

     The model of calculation is shown at Eq. 4, and detail is listed at Supplementary Materials. 

  Step 3. Calculate the average of partial derivative of every gene 

     The calculation formula is listed at Eq. 4′. 

  Step 4. Sort all genes by their average of partial derivative.  

 

where dij denotes the value of partial derivative at the 

data xij. That is, for the i – th gene, dij denotes the value 

of partial derivative at the data sampled from the j – th 

patient. Then the following matrix is output. 
 

11 111 1

1

1

nn

m mn

m mn

f f

x xd d

D

d d f f

x x

  
     

   = =         
   

 (Eq. 4) 

 

Every line of the matrix corresponds to a gene, and 

every data in the line represents the value of partial 

derivative obtained from different patients.  
 

Every column of the matrix corresponds to a patient, 

and every data in the column represents the value of 

partial derivative of different gene. 
 

Step 3. Calculate the average of the absolute value of 

partial derivatives for every gene.  
 

1

1 n

i ijj
d d

n =
=   (Eq. 4′) 

 

Where, for the i – th gene, id  denotes the average of the 

absolute value of partial derivatives, and i = 1, …, m, 

j = 1, …, n. That is, from n patients, the average value 

i
d  is calculated.  

 

Step 4. Sort all value i
d  by descending order (i = 1, …, m). 

The value id  measures the degree of sensitivity to AD 

holding view of statistics. If the i − th gene holds big 

,
i

d  a little change of its expression level will lead to big 

change of the probability of AD risk. The bigger the 

value ,
i

d  the more sensitive the i − th gene. That is, the 

i − th gene is sensitive to AD if it holds big .
i

d  

 
The detailed introduction of the above method is listed 

at Supplementary Materials, and its calculation flow is 

shown in Algorithm 4-1 (Table 4). 

 
The method to identify the genes sensitive to AD 

through molecular network 

 
Molecular networks perform their specific biological 

functions. For example, CMA performs the function  

of transporting substrates to lysosomes for degradation. 

If the development of AD stimulates the activity of 

CMA, then for a patient, the probability of having AD 

can be reflected through CMA. From a mathematical 

perspective, the relationship between CMA and AD  

can be described by a function ‘f’, such that y = 

f(CMAgenes). CMAgenes represents the expression 

levels of all genes within the CMA network, and ‘y’ 

represents the probability of the patient having an AD 

risk caused by CMA network. If the removal of a 

specific gene from CMA leads to a significant change 

of probability, it can be inferred that this gene is 

sensitive to AD and has significant contribution to 

CMA network. That is, the gene causes CMA sensitive 

to AD. 
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Table 5. Shapley calculation method. 

Algorithm 4-2 Shapley calculation method 

  Inputs: The expression of all genes in each sample 

  Outputs: A gene sequence sorted based on gene contribution (Shapley’s value) to AD 

  Steps: 

  Step 1. For the i – th gene, calculate Shapley value at j – th sample. 

     Where, the value is denoted by φij, i = 1, …, m, j = 1, …, n. 

     The calculation procedure is described in Supplementary Materials. 

  Step 2. Calculate the average of Shapley’s value. 

     Let 
1

1
, 1, , .

n

i ijj
shapley i m

n


=
= =  

The shapleyi is the average Shapley value, it represents the contribution of the i – th gene to molecular network. 
The bigger the value, the more significant the contribution. 

  Step 3. Sort genes in descending order by their Shapley values. 

 

Guiding by the above idea, the following method is 

proposed to identify genes causing molecular networks 

to AD.  

 
Step 1. Build neural networks and train out mathematics 

functions between the molecular network and the 

probability of AD risk. 

 
For example, CMA network consists of the genes GFAP, 

LAMP2A, EEF1A1, and HSP90AB1, the following 

function can be trained using the method of Figure 8.  

 

1 1 2 3 4
( , , , )y f x x x x=  

 
Where x1, x2, x3, and x4 represent the expressions  

of GFAP, LAMP2A, EEF1A1, and HSP90AB1, 

respectively, and ‘y’ represents the AD risk probability. 

 
The domain of function f1 is the gene expression levels 

of four genes of CMA. So, the function reflects the 

relationship between CMA and AD. 

 
Step 2. For a given gene, measure its contribution to 

molecular network. 

 
For example, if GFAP is excluded from CMA, another 

function w = f2(x2, x3, x4) will be trained out.  

 
Let Δ = y – w. Then, the difference Δ measures the 

contribution of GFAP to network CMA. The bigger the 

difference, the more significant the contribution. 

 
In fact, GFAP also participates in other molecular 

networks and plays different roles, and leads to other 

values similar to Δ. Calculate the average value of these 

data, and denoted by .  Then, the bigger ,  the more 

significant the contribution caused by GFAP. The bigger 

,  the more important the role of GFAP within a network. 

Similarly, for any gene, its contribution can be 

estimated. 

 

Step 3. Shapley’s method is used to estimate the 

contribution of a gene to molecular network. 

To calculate the average   of any gene, Shapley’s 

method is proposed in this paper. 

 

The theory of Shapley’s method: Shapley’s method 

comes from game theory, and Shapley value serves  

as a metric for fairly distributing rewards among  

a set of participants who contribute to an outcome  

[37]. Shapley’s method outputs Shapley value, its 

computation method is presented by Lundberg and  

Lee [24], and the detail of computation is listed in  

the Supplementary Materials. In the Supplementary 

Materials, the Shapley value is labeled as φ. In game 

theory, the bigger the value φ held by a participant, the 

more significant the effect on game caused by the 

participant.  

 

The application of Shapley’s method in this paper:  

In this paper, a molecular network corresponds to a  

game of Shapley’s method, every gene corresponds to  

a participant of game. And value Δ corresponds to a 

participant’s contribution to the game, which is measured 

by Shapley value φ. Thus, the Shapley value φ counts 

how much a gene influences AD through all possible 

networks. A larger φ indicates that the gene can have a 

greater impact on AD across different gene networks.  

 

Using Shapley’s method, the average of Shapley value 

φ can be estimated. Therefore, the average   can be 

estimated by the average of φ. That is, the contribution 

of a gene to molecular network can be estimated by the 

average of φ. 
 

The Shapley’s calculation method is shown in 

Algorithm 4-2 (Table 5). 
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Enrichment analysis 

 

The sensitivity of each individual’s genes to AD  

and the sensitivity of given genes to AD through  

the network are calculated in the above two sections. 

The intersection of the results from both calculations 

S5 (1575 genes) simultaneously possesses these  

two characteristics. Thus, networks sensitive to the 

progression of AD are hidden within the set S5. These 

sensitive networks cannot be visually recognized 

because 1575 is too vast an amount of information for 

human perception. Therefore, functional enrichment 

analysis aids in identifying molecular networks highly 

correlated with AD. The intersection set of two 

significance rankings S5 was analyzed for GO and 

KEGG pathways by the ‘clusterProfiler’ package 

enrichment function in the R software as a way to 

screen for the most significant networks for AD  

p < 0.05, was considered as the cut-off criterion. For 

the results of the GO analysis, the functional network 

was screened with the optimal genes ranked by the 

above algorithms. 

 
Protein-protein interaction network analysis 

 
The PPI network was employed to further identify the 

core genes in the functional network. Gene interactions 

with known or predicted direct (physical) and indirect 

(functional) PPIs in S6 were retrieved using the search 

tool (STRING version 11.5). The significant nodes 

were identified using the betweenness centrality 

algorithm of the CytoNCA [38] plug-in, as shown in 

Equation 5. 

 

,

( )
( ) st

s s t
st

g


 


 
=  (Eq. 5) 

 
In the context of considering each gene in the 

network as a node, the notation σst(υ) represents the 

number of shortest paths from a specific node s  
(a particular gene) to another node t (another gene) 

passing through node υ (yet another gene). On the 

other hand, σst represents the number of shortest  

paths from node s to node t. Consequently, g(υ) 

represents the node (gene) with the highest number  

of connections in the network, commonly referred  

to as the hub node. Betweenness centrality plays a 

crucial role in the analysis of biological networks, and 

betweenness centrality, in particular, is frequently 

applied to mammalian transcriptional regulatory 

networks to reveal potential biological features  

[39]. The S6 set is brought into this algorithm to 

analyze the importance of CMA related genes, which 

is calculated and analyzed to get about the CMA 

network S7. 

Statistical analysis 

 

We used boxplots to count the expression of S7 in each 

of the three datasets. GSE15222 and GSE5281 show the 

expression of the S7 gene in the control group versus the 

AD group, respectively. GSE1297 shows the expression 

of genes according to the degree of dementia. In  

the correlation analysis, cosine similarity was used to 

describe the expression trends of the four genes because 

the GSE15222 data were normalized beforehand. The 

results of the correlation analysis are shown in the  

form of heatmaps. Finally, in the analysis with clinical 

indicators, the relationship between clinical and gene 

expression was calculated using the dataset GSE1297, 

and the trend of gene variation was verified. The 

specific procedure used univariate linear regression to 

calculate the relationship between MMSE, NFT and 

expression values. 

 

CMA validation model 

 

A diagnostic model was constructed by applying  

a support vector machine (SVM) in Python (version 

3.8) using the “sklearn” package. The model is able  

to distinguish between AD and normal samples by 

different combinations of important genes. The samples 

of GES5281 dataset were randomly assigned to the 

training set (80%) and the test set (20%). The model 

was used for validation of the screened genes and 

further exploration of Alzheimer’s disease. 

 

Data availability statement 

 

The expression data GSE1297 (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi?acc=GSE1297), GSE15222 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE15222) and GSE5281 (https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi?acc=GSE5281) used in this 
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obtained for this study are included in the article  

and further inquiries can be made by contacting  

the corresponding author. The code used in this study 

is available from the corresponding author upon 
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SUPPLEMENTARY METHODS 
 

Data source and organization 

 
Original data 

The gene expression datasets used in this paper were 

downloaded from the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/browse/). 

 
To train the AI model of this paper (Figure 8), the gene 

expression profile GSE15222 is selected. GSE15222 is 

based on the GPL2700 platform. For every patient, the 

expression levels of 16782 genes are sampled. So, the 

total original data is 363 × 16782. 

 
The normalization of original data 

For every patient (or a sample, or a subject), 16782 

genes are sampled, then 16782 data are obtained. And 

these data form a sequence. Let ZScore normalization 

algorithm act on the sequence. Then the normalized 

sequence is the output. 

 
The organization of the normalized data 

After data are normalized, all data are organized as the 

following matrix. 

 

11 1

1

n

m mm

x x

X

x x

 
 

=  
 
 

 

 
In the above matrix, “m” represents the number of 

genes, and “n” represents the number of samples, 

including both patients and controls. “xij” represents the 

expression level of the i – th gene expression which is 

sampled from the j – th patient. 

 
In this paper, n = 363 m = 16782. That is, all of the 

original data are samples from 363 patients and 16782 

genes are tested. 

 

Let js  denotes the j – th column vector. That is, 

 

1 2s ( , , , , , )j j j ij mjx x x x=  

 

The column vector js  is a data sequence, in which all 

data are sampled from the j – th patient and total m 

genes are sampled. 

 
Then all of the gene data can be represented as 

following format also. 

 

 1(s s s )j nX =  (Eq. 1) 

In Eq. 1, all data are organized by samples (patients), 

every patient corresponds to a column vector. 

 

Let ig  denote the i – th line vector. That is, 

 

1 2( , , , , , )i i i ij ing x x x x=  

 

The line vector ig  is a data sequence, in which all data 

corresponds to the i – th gene, and they are sampled 

from different patients. 

 

Then all of the gene data can be represented as 

following format too. 

 

 

1

i

m

g

X g

g

 
 
 
 =
 
 
 
 

 (Eq. 2) 

 

Training of neural network models 

 

Input data 

n = 363 samples (or patients). For every patient, m = 

16782 genes are sampled and generate the expression 

level x1, x2, …, xm respectively. All these data are from 

database GSE15222. 

 

Training neural network 

The model of the neural network is illustrated as 

Figure 1. This model comprises distinct layers: input, 

hidden, and output. 

 

The input layer holds m neurons, and corresponds to m 

input data x1, x2, …, xm, which is the expression level of 

m genes respectively. Data x1, x2, …, xm are sampled 

from a same patient. Totally, n patients and m genes are 

used for training. 

 

The hidden layer comprises three neurons. Every 

neuron is activated by a sigmoid function. 

 

The output layer consists of two neurons. The output 

data of this layer traverses through the Softmax  

layer, where the Softmax layer yields the probability  

of patients having a risk of AD [1]. 

 

In sum, the model of neural network is the realization of 

multivariate function f(x1, x2, …, xm). And the function f 
is realized by the hidden layer, and the probability of 

AD risk yields by the Softmax layer. 
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Figure 1. The schematic diagram of the computational model. (A) The neural network model determines the function f as shown in 

Equation 3, which is divided into an input layer (m neurons, m = 16782), a hidden layer (3 neurons), and an output layer (2 neurons). Where 
each neuron corresponds to a gene expression in a certain sample, thus a total of m genes corresponds to m neurons. Sigmoid function as 
an activation function in hidden layers. A Softmax layer is added to the output layer to transform the output of output layer to probability. 
Therefore, the output of function f represents the probability of having AD or not. (B) ROC curve image obtained by 10-fold cross-
validation. The relationship between sensitivity and specificity of the model is reflected by the curve image. The horizontal axis is the false 
positive rate (false alarm rate), the closer to zero the higher the accuracy rate; The vertical axis is called the true positive rate (sensitivity), 
and the larger it is the higher the accuracy rate. The area under the curve is called the AUC (Area Under Curve), which indicates the 
prediction accuracy. The higher the AUC value, that is, the larger the area under the curve, the higher the prediction accuracy. 
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Output of neural network 

The probability of AD risk is the output. That is, for the 

input data sampled from a patient, his probability of AD 

risk will be calculated by the neural network. 

 

In sum, the neural network is the realization of function 

y = f(x1, x2, …, xm). After training, the function is 

represented by the neural network. 

 

For this study, 80% (290 samples) was allocated  

as training data and 20% (73 samples) was allocated  

as testing data. The optimization process involves 

employing the stochastic gradient descent (SGD) 

algorithm with a learning rate of 0.0001. Upon 100 

iterations, the function successfully converges.  

 

In addition, ten-fold cross-validation is used to  

assess the performance and generalization ability of 

machine learning models by segmenting the dataset, 

training and validating it multiple times to derive 

reliable performance metrics. It helps to prevent 

overfitting, as well as to evaluate model performance 

under uneven data distributions, and is ultimately 

used to select the most suitable model for the task. 

The results of the ten-fold cross-validation method 

are shown in Figure 1B. The images show an area 

under the curve greater than 50%, indicating high 

prediction accuracy. And the model performs stably on 

each fold without significant performance differences, 

indicating that the model generalizes well and is not 

overfitted. 

 

Derivative calculation method in this paper 

 

The principle of method 

When the independent variable of a function varies at 

a particular point, the derivative at that point is defined 

as the ratio of the change in the output value to the 

change in the independent variable, as the change in 

the independent variable approaches zero. Thus, the 

derivative of a function at a point describes the rate of 

change of that function near that point. 

 

The genes related to AD hold the feature in general that 

its expression level will change with AD progression, 

and this type of gene is considered in this paper. If  

a gene holds the above feature, its expression level x  

is associated with the probability y, where y is the 

probability that the patient has the risk of AD. In other 

words, there is a function f such as y = f(x). And the 

derivative f′(x) represents the degree of sensitivity to 

AD progression, the bigger f′ (x), the more sensitive the 

gene. That is, a slight change in the expression level x 
leads to a significant change in the probability of AD 

risk. 

Method 

Let’s contemplate a ternary function, denoted as f.  

This function takes three inputs: x, y, and z, yielding an 

output u. This relationship is represented by Equation 3. 

 

( , , )exampleu f x y z=  (Eq. 3) 

Consequently, the partial derivative of 𝑦 at the specific 

point (x0, y0, z0) can be articulated as follows: 

 
𝜕𝑢

𝜕𝑦
|𝑥=𝑥0,𝑦=𝑦0,𝑧=𝑧0 = lim

∆𝑦→0

∆𝑢

∆𝑦
=

lim
∆𝑦→0

𝑓𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑥0,𝑦0+∆𝑦,𝑧0)−𝑓𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑥0,𝑦0,𝑧0)

∆𝑦
   (Eq. 4) 

 
Equation 4 can be understood by holding the values of  

x and z constant at x0 and z0 while allowing 𝑦 to undergo 

a slight increment Δy around y0. Consequently, the 

function u = fexample(x,y,z) yields an increment Δu = 

fexample(x0, y0,+ Δy, z0) –fexample(x0,y0,z0). As Δy 

approaches infinitesimally small values, the ratio u

y




 is 

referred to as the partial derivative of function fexample 

concerning variable 𝑦 at the specific points x0, y0 and z0. 

 
Hence, the partial derivative of function fexample with 

respect to 𝑦  signifies the rate of transformation of  

the function concerning the variable 𝑦  at the specific 

coordinates (x0, y0, z0). This rate of alteration indicates  

the extent to which 𝑦  influences the outcome of the 

function u. A higher derivative implies that even a minor 

alteration in 𝑦 leads to a substantial shift in the function’s 

output, u. Conversely, the opposite holds true as well. 

 
The neural network function is shown in Equation 5. If  

we substitute the function fexample with f, the independent 

variables x, y, and z will be substituted with gene 

expressions x1, x2, …, xm. The dependent variable becomes 

the estimated probability of Alzheimer’s disease, denoted 

as y. Consequently, for a specific gene i, the partial 

derivative at a particular point indicates the extent to which 

that gene influences the probability of Alzheimer’s disease. 

This relationship is depicted in Equation 6. 

 
𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) (Eq. 5) 

 
𝜕�̂�

𝜕𝑥𝑖
= lim
∆𝑥𝑖→0

∆�̂�

∆𝑥𝑖
= lim
∆𝑥𝑖→0

𝑓(𝑥1,…,(𝑥𝑖+∆𝑥𝑖),…,𝑥𝑚)−𝑓(𝑥1,…,𝑥𝑖,…,𝑥𝑚)

∆𝑥𝑖
  

(Eq. 6) 

 
Input data 

For a given patient, such as the j – th patient, the 

expression levels of 𝑚  genes are sampled, these data 

form a vector s⃗𝑗 = (x1j, x2j, … , xij, … , xmj), where xij 

denotes the expression level of i – th gene and s⃗𝑗 

represents the data of all genes sampled from the j – th 
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patient. Vector 𝑠1, 𝑠2, … , 𝑠𝑛  form a set of input data, 

which is the domain of function f. 

 

Calculation of the probability of AD risk 

Vector s⃗𝑗 is input the function f(i.e., the above neural 

network), the probability of the j – th patient having 

the risk of AD will be output, and labeled as 𝑦𝑗 . 

That is, 

 

𝑦𝑗 = 𝑓(s⃗𝑗) = 𝑓(𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑖𝑗 , … , 𝑥𝑚𝑗) (Eq. 7) 

 

Output of partial derivatives 

Since function f is known, so the partial derivative 

𝑑𝑖𝑗 =
𝜕𝑓

𝜕𝑥𝑖𝑗
 can be calculated, where dij denotes the value 

of partial derivative at the data xij That is, for the i – th 

gene, dij denotes the value of partial derivative at the 

data sampled from the j – th patient. Then the following 

matrix is output. 

 

𝐷 = (
𝑑11 … 𝑑1𝑛
⋮ ⋱ ⋮
𝑑𝑚1 ⋯ 𝑑𝑚𝑛

) =

(

 

𝜕𝑓

𝜕𝑥11
…

𝜕𝑓

𝜕𝑥1𝑛

⋮ ⋱ ⋮
𝜕𝑓

𝜕𝑥𝑚1
⋯

𝜕𝑓

𝜕𝑥𝑚𝑛)

  (Eq. 8) 

 

Every line of the matrix corresponds to a gene, and 

every data in the line represents the value of partial 

derivative obtained from different patients.  

 

Every column of the matrix corresponds to a patient, 

and every data in the column represents the value of 

partial derivative of different gene. 

 

Calculate the average of partial derivative of every 
gene 
 

�̅�𝑖 =
1

𝑛
∑ |𝑑𝑖𝑗|
𝑛
𝑗=1  (Eq. 9) 

 

Where, for the i – th gene, �̅�𝑖 denotes the average of the 

absolute value of partial derivatives, and i = 1, …, m,  

j = 1, …, n. That is, from 𝑛 patients, the average value 

�̅�𝑖 is calculated. 

 

�̅� =

(

 
 

�̅�1
⋮
�̅�𝑖
⋮
�̅�𝑚)

 
 

 (Eq. 10) 

 

Sort all genes by the average of partial derivative 

Sort all genes in descending order of the average of 

partial derivative. The output is the gene orders after 
sorting. 

 

Shapley calculation method in this paper 

 

Shapley is one of the important calculations in this 

paper and therefore will be described in detail. Shapley 

value is a mathematical concept in game theory and was 

introduced by Lloyd Stowell Shapley in 1951 [2].  

 

The principle of method 

A molecular network performs its corresponding 

biological function. For example, CMA delivers 

substrate to the lysosome to degrade. With the AD 

progression, the aggregation of abnormal proteins 

becomes heavier, the function of delivery is stimulated, 

and CMA becomes active. Then, for a given patient, his 

probability having AD risk is reflected by CMA. 

Holding a view of mathematics, there is a function f 

such that y = f(CMAgenes), where CMAgenes represents 

the expression levels of all genes of CMA, and 𝑦  is  

the probability that the patient has the risk of AD caused 

by network CMA. If the change of expression levels  

of genes in CMA leads to a significant change of 

probability, it can be deduced that CMA is sensitive to 

AD. Then, it is useful to use machine learning to train 

out the function f. 
 

Method 

Guided by the above idea, the following methods are 

proposed to identify genes causing molecular networks 

to AD.  

 

For example, the molecular network CMA consists  

of gene GFAP, LAMP2A, EEF1A1 and HSP90AB1. 

Using machine learning, the function y = f1(x1, x2, x3, x4) 

will be trained out, where x1, x2, x3, x4 represents  

the expression level of GFAP, LAMP2A, EEF1A1  

and HSP90AB1 respectively, and y represents the 

probability of AD risk. The domain of function 𝑓1  is  

the gene expression levels of four genes of CMA.  

So, the function reflects the relationship between CMA 

and AD. 

 
If GFAP is excluded from CMA, the other function w = 

f2(x2, x3, x4) will be trained out. Then, the difference of 

probability 𝛥 = y – w measures the effect of GFAP on 

AD through network CMA. And the bigger the value 𝛥, 

the more significant the effect of GFAP on AD.  

 
In fact, GFAP also participates in other molecular 

networks and plays different roles, leading to other 

values similar to 𝛥 . Calculate the average value of 

these data, and denoted by Δ̅. Then, the bigger Δ̅, the 

more significant the contribution caused by GFAP. 

The bigger Δ̅, the more important the role of GFAP 

within a network. 
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Similarly, for any gene, its contribution can be 

estimated. Shapley value is used to estimate the 

contribution of a gene to molecular network. To 

calculate the average Δ̅ of any gene, Shapley value is 

proposed in this paper. 

 

The theory of Shapley’s method 

Shapley’s method comes from game theory, and 

Shapley value serves as a metric for fairly distributing 

rewards among a set of participants who contribute to 

an outcome. Shapley’s method outputs Shapley value, 

its computation method is shown in Equation 11, where 

𝜑𝑖 represents the Shapley value of the i – th gene, which 

also indicates the sensitivity of the i – th gene to AD 

after passing through the molecular network. The 

Shapley values in this paper is approximated in this 

study using the Shap framework proposed by Lundberg 

and Lee. 

 

𝜑𝑖 = ∑
|𝑺|!(|𝑭|−|𝑺|−1)!

|𝑭|!𝑺⊆𝑭−{𝑔𝑖} (𝑓𝑺∪𝑔𝑖(𝑺 ∪ 𝑔𝑖) − 𝑓𝑺(𝑺))  

(Eq. 11) 

 

Input data 

The expression of all genes in each sample. 

 

Output of Shapley values 

Similar to the computation of partial derivatives,  

using the Shap framework, the Shapley value 𝜑𝑖𝑗  can  

be estimated. Where 𝜑𝑖𝑗  denotes the Shapley value at 

the data xij. That is, for the i – th gene, 𝜑𝑖𝑗  denotes  

the Shapley value at the data sampled from the j – th 

patient. Then the following matrix is the output. 

 

𝐷 = (

𝜑11 … 𝜑𝑛1
⋮ ⋱ ⋮
𝜑1𝑚 ⋯ 𝜑𝑚𝑛

) (Eq. 12) 

 

Every line of the matrix corresponds to a gene, and 

every data in the line represents the Shapley values 

obtained from different patients.  

 
Every column of the matrix corresponds to a patient, 

and every data in the column represents the Shapley 

values of different gene. 

 
Calculate the average of Shapley values of every 
gene 

 

�̅�𝑖 =
1

𝑛
∑ |𝜑𝑖𝑗|
𝑛
𝑗=1  (Eq. 13) 

 
Where, for the i – th gene, �̅�𝑖 denotes the average of the 

absolute value of partial derivatives, and i = 1, …, m, j = 

1, …, n. That is, from 𝑛 patients, the average value �̅�𝑖 is 

calculated. 

 

�̅� =

(

 
 

�̅�1
⋮
�̅�𝑖
⋮
�̅�𝑚)

 
 

 (Eq. 14) 

 

Output 

Sort all genes in descending order of the average 

Shapley values. The output is the genes orders after 

sorted.  

 

The method for estimating Shapley values using 

Shap 

 

The kernel SHAP proposed by Lundberg and others 

combines the Local Interpretable Model-agnostic 

Explanations (LIME) algorithm to estimate Shapley 

values [3]. The algorithm is open source and  

available on GitHub, with the website located at 

https://github.com/shap/shap. 

The following text will briefly describe how Kernel 

SHAP estimates Shapley values. 

 

A principle of Shapley values 

1. The Shapley value possesses the following property: 

the sum of contributions from all participants equals the 

total payoff of the grand coalition F. Assuming the gain 

function is represented by 𝑣, this property is expressed 

by Equation 15 [2,4]. 

 

𝑣(𝑭) = ∑ 𝜑𝑖
|𝑭|
𝑖=1   (Eq.15) 

 

Here, |𝑭|  represents the number of participants, and 

v(F) denotes the total gain from all participants. 

 

2. The gain for the coalition F is represented by 

Equation 16. 

 

𝑣(𝑭) = 𝑣({𝑥1, 𝑥2, … , 𝑥𝑚}) = 𝑓(�⃗�) − 𝐸[𝑓(�⃗�)] 
(Eq.16) 

 

By deducing from Equations 15 and 16, and setting 

𝐸[𝑓(�⃗�)] = 𝜑0, then can obtain Equation 19.  

 

𝑓(�⃗�) = 𝜑0 +∑ 𝜑𝑖
|𝑭|
𝑖=1  (Eq.17) 

 

This formula is referred to as the additive feature 

attribution of Shapley values [5]. 𝜑𝑖  represents the 

Shapley value of the 𝑖th feature. This formula indicates 

that Shapley values can be transformed into a linear 

equation, where the features are additive. 
 

LIME 

The core idea of the LIME algorithm is to use a simple 

model to explain a complex model [6]. The algorithm 
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consists of three steps: the first step involves 

simplifying the original features to obtain a simplified 

feature vector; the second step perturbs the simplified 

feature vector; the third step involves training a simple 

linear model g (such as linear regression) using the 

perturbed simplified features; the fourth step transforms 

the perturbed simplified features back to the original 

feature format and applies them to the original function 

f for evaluation [6]. If 𝑔(𝑧′) ≈ 𝑓(𝑧) , it can be 

considered that the linear model 𝑔  provides a good 

explanation for the original model f. 
 

The following text will provide a detailed description of 

the calculation process for each step. 

 

Step one involves simplifying the original features to 

obtain a simplified feature vector. For the model f in 

Equation 5, a set of simplified input features can be 

created to indicate whether a feature is present in the 

input feature vector of function f. This simplified input 

vector is represented as per Equation 18. 

 

�⃗�′ = [𝑥1
′  𝑥2

′  … 𝑥𝑚
′ ] (Eq.18) 

 

x′j is a binary variable indicating whether the 

corresponding feature xj in the feature vector �⃗�  is 

observed (1 if observed, 0 otherwise). For example, if 

the feature vector is: 

 

�⃗� = [1 2 3 𝑁𝐴] 
Then:  

�⃗�′ = [1 1 1 0] 
 

Additionally, for the aforementioned calculations, it  

can be assumed that there exists a mapping function ℎ 

that maps �⃗�′ to �⃗�, and this function is represented as per 

Equation 19. 

 

ℎ(�⃗�′) = �⃗�  (Eq.19) 

 

Step two involves perturbing the simplified feature 

vector. Given that �⃗�′ = [1 1 1 0] , the vector can be 

perturbed to obtain 𝑧′ . The values of 𝑧′  after 

perturbation are as follows: 

 

𝑧′ = [1 0 1 0] 
 

In simple terms, after perturbation, 𝑧′  corresponds to 

observable features, namely the first feature x1 and the 

third feature x3. It is important to note that the perturbed 

𝑧′ should be close to �⃗�′, that is, 𝑧′ ≈ �⃗�′. 
 

Step three involves substituting the obtained 𝑧′  into 

Equation 19, which allows the mapping of 𝑧′ to 𝑧. 
 

𝑧 = ℎ(𝑧′) = [𝑥1 𝑁𝐴 𝑥3 𝑁𝐴] 

Subsequently, a linear regression model 𝑔  is trained 

using 𝑧′ , and 𝑧  is applied to the original function f. 

When 𝑔(𝑧′) ≈ 𝑓(𝑧)  holds, and 𝑧′ ≈ �⃗�′  after 

perturbation, it can be considered that the model 𝑔 

provides a good explanation for f. 

 

LIME defines a loss function 𝐿(𝑓, 𝑔, 𝜋𝑥)  such that  

when 𝑧′ is very close to �⃗�′, the loss function aims for 

𝑔(𝑧′) to be very close to 𝑓(𝑧). 𝜋𝑥 is a measure of the 

distance between �⃗�′  and 𝑧′ , and when the distance is 

large, 𝜋𝑥  plays a penalizing role in the loss function  

[6]. Additionally, LIME provides a function Ω(𝑔)  to 

describe the complexity of the model g [6]. Therefore, 

the ultimate goal of LIME is to find a function g 

that minimizes the objective function, as shown in 

Equation 20. 

 

argmin(𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔)) (Eq.20) 

 

Kernal Shap 

Through Equation 17 and LIME, it can be inferred that 

if the function 𝑔(𝑧′)  represents a linear explanatory 

model found for 𝑓, then when all elements are present 

in 𝑧′  (all elements in 𝑧′  are 1), its mathematical 

expression is given by Equation 21. 

 

𝑔(𝑧′) ≈ 𝑓(𝑧) = 𝜑0 + ∑ 𝜑𝑖
|𝐹|
𝑖=1   (Eq.21) 

 

Through Equation 21, it is evident that as long as a 

linear function for 𝑔(𝑧′)  is identified, estimates for  

the Shapley values of each feature can be obtained. 

Therefore, Kernel SHAP identifies the most suitable g 

for Shapley value estimation by minimizing Equation 

20, where the computational speed of Kernel SHAP  

is faster than the direct computation speed of Shapley 

values [3]. As this section does not focus on the 

optimization process of Kernel SHAP but rather 

highlights its capability to estimate Shapley values, 

specific details of the optimization process will not be 

further described. 

 
In this study, a neural network is employed as the 

explanatory function for LIME to estimate Shapley 

values. Specifically, the trained neural network f  
is incorporated into the Shap framework to obtain 

estimates by fitting g. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Results of ten-fold cross validation of support vector machine model in GFAP and LAMP2A 
combination. 

 

 

 
 

Supplementary Figure 2. Results of ten-fold cross validation of support vector machine model in GFAP and HSP90AB1 
combination. 
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Supplementary Figure 3. Results of ten-fold cross validation of support vector machine model in GFAP and EEF1A1 
combination. 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1 to 6. 

 

Supplementary File 1. Result set S_1. 

 

Supplementary File 2. Result set S_2. 

 

Supplementary File 3. GO/KEGG analysis results. 

 

Supplementary File 4. Result set S_6. 

 

Supplementary File 5. Result set S_6 score table. 

 

Supplementary File 6. Differential analysis results. 
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