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INTRODUCTION 
 

Globally, lung cancer remains the predominant 

contributor to cancer-induced fatalities, representing 

18.0% of such deaths [1–3]. Among the various subtypes, 

lung adenocarcinoma (LUAD) emerges conspicuously. 

The formidable characteristics of LUAD, notably its 

invasive nature and pronounced variability, make the 

prognosis challenging [4, 5]. The intricacies of the  

tumor microenvironment (TME) and pervasive mutations 

diminish the effectiveness of certain interventions, such 

as targeted therapy and immunotherapy in the context of 

LUAD [6, 7]. Consequently, identifying and utilizing 

precise biomarkers to refine LUAD diagnosis is 

imperative to enable individualized treatment approaches. 

 

Inflammation is associated with myriad ailments, 

including LUAD [8–11]. In some instances, transient 

inflammation may bolster anticancer immune activity, 

whereas in others, chronic inflammatory responses 

precipitated by therapeutic interventions may fortify 

tumor resilience [12–14]. 
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ABSTRACT 
 

The role of inflammation is increasingly understood to have a central influence on therapeutic outcomes and 
prognosis in lung adenocarcinoma (LUAD). However, the detailed molecular divisions involved in inflammatory 
responses are yet to be fully elucidated. Our study identified two main inflammation-oriented LUAD grades: the 
inflammation-low (INF-low) and the inflammation-high (INF-high) subtypes. Both presented with unique 
clinicopathological features, implications for prognosis, and distinctive tumor microenvironment profiles. 
Broadly, the INF-low grade, marked by its dominant immunosuppressive tumor microenvironment, was 
accompanied by less favorable prognostic outcomes and a heightened prevalence of oncogenic mutations. In 
contrast, the INF-high grade exhibited more optimistic clinical trajectories, underscored by its immune-active 
environment. In addition, our efforts led to the conceptualization and empirical validation of an inflammation-
centric predictive model with considerable predictive potency. Our study paves the way for a refined 
inflammation-centric LUAD classification and fosters a deeper understanding of tumor microenvironment 
intricacies. 
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The advent of immunotherapy has transformed 

oncological care, reigniting interest in tumor immunology. 

However, despite the exploitation of immune checkpoint 

inhibitors as a therapeutic arsenal, the outcomes for 

advanced-stage LUAD continue to be suboptimal [15, 

16], prompting the need to unearth the underpinnings  

of immune evasion and develop innovative immuno-

therapeutic avenues tailored for LUAD. 

 

In this context, our study marks a pioneering  

effort to shed light on the contribution of inflam- 

mation to LUAD initiation, evolution, and therapeutic 

responsiveness. We identified two inflammation-centric 

subtypes of LUAD and investigated the disparities 

between these subgroups concerning their inflammatory 

signatures, clinicopathological attributes, TME nuances, 

and responses to immunotherapy. Subsequently, we 

designed an inflammation-centric gene-predictive model 

to enhance the overall survival forecasting accuracy of 

patients with LUAD by employing diverse regression 

methodologies. Furthermore, we validated the expression 

trends of inflammation-associated genes by single-cell 

RNA sequencing (scRNA-seq) data analysis. 

 

MATERIALS AND METHODS 
 

Data collection and analysis 

 

The scRNA-seq dataset GSE131907, encompassing  

11 tumors and 11 corresponding normal lung samples 

from LAUD [17], were procured from the GEO (Gene 

Expression Omnibus) repository. Single cells were 

selected based on the gene expression observed in at 

least three cells, with each cell manifesting a minimum 

of 250 genes. Bulk RNA-seq datasets, comprising 

survival data, were gathered from repositories  

such as TCGA-LAUD, GSE3141, GSE37745, and 

GSE68465. Moreover, the dataset treated with PD-L1 

along with its clinical characteristics was retrieved 

from the GSE78220 database and the IMvigor210 

cohort [18]. 

 

Inflammation-related gene characterization, 

consensus clustering, and principal component 

analysis 

 

The set of genes related to inflammation was sourced  

by gene set enrichment analysis (HALLMARK_ 

INFLAMMATORY_RESPONSE). Consensus clustering 

was using the “ConsensusClusterPlus” package in R. 

An ideal cluster count between k = 2 and k = 10  

was determined, and the process was reiterated  

1000 times to obtain robust and consistent results. A 

cluster map was generated using pheatmap function in 

the R software. Principal component analysis (PCA) 

was employed to explore the transcriptional patterns. 

The analysis was executed using the “limma” package, 

and results were visualized using the “ggplot2” 

package in R. 

 

Hub gene identification 

 

Genes associated with prognosis were identified by 

univariate Cox regression analysis using the Kaplan–

Meier “survival” package (P < 0.05). LASSO Cox 

regression analysis was performed to minimize gene 

quantity, followed by multivariate Cox regression 

analysis using stepwise regression. The predictive 

accuracy of the risk signature was evaluated by ROC 

analysis using the “timeROC” package. 

 

Analysis of immune landscape 

 

The CIBERSORT algorithm was used to analyze  

the ratios of 22 immune cell subtypes in the TCGA 

cohort, providing insights into immune cell infiltration 

[19]. The ESTIMATE algorithm was used to determine 

the immune and stromal scores, facilitating a deeper 

exploration of the TME. To confirm variations in 

immune status among subtypes, both ESTIMATION 

and ssGSEA were performed [20, 21]. The “cancer-

immunity cycle,” comprising seven sequential steps, 

was analyzed in two subtypes using TIP [22]. These 

steps included tumor antigen creation (step 1), antigen 

presentation (step 2), priming and activation (step 3),  

T cell migration to tumors (step 4), immune cell  

entry into tumors (step 5), tumor cell recognition by  

T cells (step 6), and tumor cell apoptosis (step 7).  

The immunological functions of these steps were 

assessed in the three subtypes by using TIP. 

 

scRNA-seq evaluation 

 

TISCH was used to analyze the scRNA-seq data [23, 24]. 

This single-cell RNA-seq data resource focuses on the 

TME and offers detailed cell-type annotations at the 

single-cell level, enabling TME research across various 

cancers. 

 

Patient recruitment and tissue collection 

 

Localized NSCLC tumor tissues and corresponding 

normal tissues (n = 3 each) were procured from patients 

treated at Jiangsu Province People’s Hospital between 

2015 and 2016. 

 

Western blot analysis 

 

Proteins were isolated from the collected tissues by 
using radio-immunoprecipitation assay lysis buffer 

(Thermo Fisher Scientific, MA, USA), supplemented 

with 1% Halt™ Protease and Phosphatase Inhibitor 
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Cocktail (Thermo Fisher Scientific). Standard western 

blot procedures were using primary antibodies specific 

for NF-kB p65 (sc-8008, 1:500) sourced from Santa 

Cruz Biotechnology (TX, USA) and β-actin (#21338, 

1:1000) obtained from Signalway Antibody (MD, 

USA). For detection, horseradish peroxidase-conjugated 

secondary antibodies, namely goat anti-rabbit (#L3012, 

1:10000) and goat anti-mouse (#L3032, 1:10000) IgG, 

were used, which were also procured from Signalway 

Antibody (MD, USA). 

 

RNA isolation and quantitative real-time PCR (qRT-

PCR) 

 

Total RNA was extracted from tissue samples  

using TRIzol Reagent (Invitrogen, CA, USA). The 

isolated RNA was then reverse-transcribed to cDNA 

using a HiScript III 1st Strand cDNA Synthesis Kit 

(+gDNA wiper) (Vazyme, Nanjing, China). RELA and 

β-actin primers were procured from RiboBio Company 

(Guangzhou, China). 

 

Animal studies 

 

Male BALB/c nude mice, aged six weeks and weighing 

15–20 g, were procured from the Model Animal Research 

Center of Nanjing University (Nanjing, China). The  

mice were housed in a controlled environment with a  

12-hour light/dark cycle and provided access to food and 

water ad libitum. For the subcutaneous tumorigenesis 

model, mice were categorized into three groups: RELA 

Overexpression (RELA-OE), Control, and RELA Short 

Hairpin RNA (RELA-sh) with seven mice in each group. 

Stable transgenic LUAD cell lines (RELA-OE, Control, 

RELA-sh) were prepared as sterile cell suspensions, and 

0.1 mL (roughly 5 x 106 cells) of the suspension was 

injected subcutaneously under the axillary skin of the 

mice. The mice were finally euthanized via intraperitoneal 

injection of high-dose pentobarbital (200 mg/kg), and 

tissues were harvested for subsequent analyses. 

 
FRAP and imaging 

 

Fluorescence recovery after photo-bleaching (FRAP) 

was performed using a Stellaris STED confocal 

microscope with a 63× oil immersion objective. To 

assess the FRAP in the central region of the protein 

droplets, the bleaching step was repeated thrice using  

a 488 nm Argon laser at 60% power. The recovery of 

fluorescence after bleaching was documented every 2 s 

for a total duration of 400 s. 

 
Immunofluorescence 

 

H1299 cells were seeded in 6-well plates. After 

adhesion, the cells were washed and fixed with 4% 

paraformaldehyde for 30 min and permeabilized with 

0.5% Triton X-100 for 20 min. Blocking was 

performed with BSA for 1 h. Subsequently, cells were 

incubated overnight at 4° C with primary antibodies: 

rabbit anti-RELA (#8242S, Cell Signaling Technology, 

USA), mouse anti-H3K4me3 (#PTM-160, PTM  

BIO, USA), and mouse anti-RNA Pol II-S5P (#04-

1571, Sigma-Aldrich, USA). Following primary anti- 

body incubation, cells were exposed to fluorescent 

secondary antibodies (#20000668 and #20000631, 

1:3000; Proteintech, Wuhan, China) for 1 h at 25° C, 

shielded from light. Finally, the cells were stained with 

DAPI, and images were captured using a Stellaris 

STED confocal microscope (Leica, Germany). 

 

Statistical analysis 

 

Statistical analyses were conducted using R software 

(v4.1.2). Pearson’s or Spearman’s correlation was used 

for estimating the correlation matrices, and group 

comparisons were performed using the Wilcoxon test. 

Survival disparities were evaluated using Kaplan–Meier 

curves and the log-rank test, with a P-value < 0.05 

deemed statistically significant. 

 

Data availability statement 

 

The authors confirm that the data supporting the 

findings of this study are available within the article and 

its Supplementary Materials. 

 

RESULTS 
 

Consensus clustering identified two inflammation-

based subtypes of LUAD 

 

A compendium of 200 inflammation-related genes was 

assembled, of which 197 were retrieved from TCGA-

LUAD cohort. Univariate Cox regression analysis 

identified 49 genes significantly associated with  

LUAD prognosis (Figure 1A). Consensus clustering 

was employed to discern LUAD inflammation-based 

subtypes, leading to the identification of two distinct 

clusters within TCGA cohort, with both exhibiting 

disparate inflammation gene expression patterns (Figure 

1B, 1C). The inflammatory response score for each 

patient was quantified using ssGSEA, which revealed 

that the C2 cluster had the highest score (Figure 1D). 

Consequently, C1 was designated as an inflammation-

low (INF-low) subtype and C2 as an inflammation- 

high (INF-high) subtype, with the latter manifesting  

as elevated inflammatory gene expression (Figure 1E). 

PCA was performed to compare the transcriptional 

patterns of these inflammatory subtypes and revealed a 

clear segregation between the two clusters, indicating 

distinct transcriptional profiles (Figure 1F). 
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Patients stratified into different inflammation 

subtypes presented distinct prognoses and clinico-

pathologic features 

 

Previous studies have established the significant impact 

of inflammation on the onset and progression of cancer 

[25]. Survival analyses using TCGA data confirmed  

that distinct inflammation-based subtypes corresponded 

to specific clinical outcomes. The INF-low subtype had 

an unfavorable prognosis, marked by diminished overall 

survival (OS) and progression-free survival (PFS) 

(Figure 2A, 2B). A comparative assessment of the 

 

 
 

Figure 1. Identification of two inflammation subtypes in LUAD. (A) Volcano plot of prognosis-related inflammation genes identified 
by univariate Cox regression analysis. (B) Consensus clustering matrix for k = 2. (C) Consensus of the items (k = 2–4) in each cluster. (D) Violin 
plots indicating the differences between the 2 subtypes. (E) Heatmap of 49 inflammation response gene expression in different subgroups; 
red represents high and blue represents low expression levels. (F) Principal component analysis plots. ****P < 0.0001. 
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clinicopathological characteristics of the two subtypes 

showed that patients identified with the INF-low 

subtype were predominantly male and presented with  

an advanced stage, while experiencing reduced OS 

duration, being younger, and displaying more adverse 

cancer effects than those identified with the INF-high 

subtype (Figure 2C–2E). 

 

Inflammation-based subtypes were associated with 

distinct TME features and anticancer immune 

activities 

 

Inflammation markedly influences the TME, particularly 

the immune cells implicated in tumor evolution  

and progression. To elucidate the distinctions and 

relationships between the two subtypes, we analyzed 

their respective TME composition. The immune  

score notably declined from the INF-high to INF- 

low subtypes (Figure 3A), whereas tumor purity 

significantly increased (Figure 3B), suggesting higher 

immune cell infiltration in the INF-high subtype. We 

employed the CIBERSORT method to assess immune 

heterogeneity among the subtypes, which revealed 

variations in the infiltration of 22 immune cell types 

(Figure 3C). Specifically, the INF-low subtype showed 

elevated levels of immunosuppressive cells, such as 

M2-type macrophages, and resting immune cells,  

such as resting NK cells, indicating a potential 

immunosuppressive microenvironment driven by this 

TME composition (Figure 3D). 

 

 
 

Figure 2. Differences in the prognostic and clinicopathologic features among the inflammation subtypes. (A, B) Kaplan–Meier 

OS and PFS curves of patients from TCGA cohort assigned as INF-low and -high subtypes. (C–E) The clinicopathologic features of the subtypes. 
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Subsequently, we assessed anticancer immune functions 

in the seven-step cancer immunity cycle for both 

subtypes using TIP. The INF-high subtype demonstrated 

elevated activity in steps 2 (presentation of tumor 

antigen), 4 (T cell transfer to tumors), and 5 (immune cell 

infiltration into tumors). In contrast, the INF-low subtype 

exhibited enhanced activity in steps 1 (antigen release 

from tumors), 3 (priming and activation), 6 (tumor  

cell detection by T cells), and 7 (tumor cell apoptosis) 

(Figure 3E). These observations suggest that mitigating 

the immunosuppressive microenvironment and boosting 

immune cell infiltration in the INF-low subtype may 

improve clinical outcomes in LUAD. 

 

Additionally, we explored the pathways associated with 

the inflammation-based subtypes. The results of GSVA 

indicated that the INF-low subtype was significantly 

enriched for pathways negatively regulating immune 

responses, such as TGF-β signaling, hypoxia, epithelial-

mesenchymal transition, and angiogenesis (Figure 3F). 

 

Identification of hub genes associated with 

inflammation in LUAD 

 

A total of 49 inflammation-related genes that 

significantly correlated with LUAD prognosis were 

initially identified using univariate Cox regression 

analysis (Figure 4A). Subsequently, LASSO Cox 

regression analysis was employed to refine this list, 

retaining 15 genes with a lambda value of 0.0389  

(Figure 4B, 4C). The final 15-gene risk signature derived 

from multivariate Cox regression analysis using a 

stepwise regression method comprised ADM, CCL20, 

CD69, CX3CL1, MMP14, NMI, PCDH7, PSEN1, PVR,

 

 
 

Figure 3. The distinct TME features and anticancer immune activities of the two subtypes. (A, B) Violin plots showing the immune 

score and tumor purity score of each subtype. (C, D) Immune infiltration in TCGA-LUAD samples. (E) Anticancer immune activity of the seven-
step cancer-immunity cycle. (F) Heatmap of the 36 hallmark pathways differentially enriched between different inflammation subtypes 
identified by GSVA. 
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Figure 4. Identification of the predictive hub genes for the construction of a risk signature. (A) Forrest plot of prognosis-related 

inflammation genes identified by univariate Cox regression analysis. (B) The trajectory of each independent variable with lambda. (C) Plot of 
the generated coefficient distributions for the logarithmic (lambda) series for parameter selection. (D) Multivariate Cox coefficients for each 
gene in the risk signature. (E–H) Kaplan–Meier and ROC curves of the risk model constructed using the data of 15 genes from TCGA, GSE3141, 
GSE37745, and GSE68465 cohorts. 
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RELA, RIPK2, SLAMF1, SLC11A2, SPHK1, and  

TLR2 (Figure 4D). The risk score for each sample  

was calculated using the formula: Risk score = 

ADM*0.081382906 + CCL20*0.118144771 + CD69*(-

0.05315822) + CX3CL1*(-0.084434545) + MMP14* 

0.0345135 + NMI*0.26713128 + PCDH7*0.149137053 

+ PSEN1*0.303754865 + PVR*0.082834768 + RELA* 

0.289113195 + RIPK2*0.115193023 + SLAMF1*(-

0.516865874) + SLC11A2*(-0.322541796) + SPHK1*(-

0.007444817) + TLR2*(-0.056765323). The samples 

were categorized into high- and low-risk groups 

following z-mean normalization. Kaplan–Meier survival 

analyses indicated that high-risk patients exhibited 

significantly worse survival outcomes than their low-

risk counterparts in both TCGA and GEO cohorts 

(Figure 4E–4H). The model’s area under the curve 

(AUC) values for 1- to 5-year survival data ranged from 

0.71 to 0.73, 0.72 to 0.81, 0.67 to 0.73, and 0.63 to  

0.72 in TCGA, GSE3141, GSE37745, and GSE68465 

cohorts, respectively (Figure 4E–4H). 

 

Responsiveness of risk signature to PD-L1 blockade 

immunotherapy 

 

T-cell immunotherapy has gained prominence as an 

anticancer treatment that confers synergistic survival 

advantages. Therefore, we evaluated the prognostic 

relevance of our risk signature for immune checkpoint 

therapy by focusing on the IMvigor210 and GSE78220 

cohort data. The 298 patients in the IMvigor210 cohort 

exhibited varied responses to anti-PD-L1 receptor 

blockers, including complete response (CR), partial 

response (PR), stable disease (SD), and progressive 

disease (PD). Analysis of the IMvigor210 cohort 

revealed that patients categorized into the low-risk 

group based on our risk model experienced substantial 

clinical benefits and markedly prolonged overall survival 

compared with that of their high-risk counterparts 

(Figure 5A). Patients with PD/SD had higher risk scores 

than those with CR/PR (Figure 5B). Furthermore, a 

greater proportion of PD/SD cases was observed in the 

high-risk group than in the low-risk group (Figure 5C). 

Notably, significant survival disparities were evident 

between the distinct risk groups for both stage I + II and 

stage III + IV patients (Figure 5D, 5E), suggesting that 

high-risk patients demonstrated suboptimal responses  

to anti-PD-L1 receptor blockers. This observation was 

true across both early and advanced stages of the 

disease. Similarly, in the GSE78220 cohort, the low-risk 

group exhibited significantly extended overall survival 

relative to that of the high-risk group (Figure 5F). 

Additionally, patients with PD displayed elevated  

risk scores compared to those shown by patients with 
PR/CR, and a higher incidence of PD was observed in 

the high-risk group than in the low-risk group (Figure 

5G, 5H). 

Mutation, immunity, and pathway analysis of the 15 

hub genes 

 

We analyzed the single nucleotide variants (SNVs) of 

the 15 genes included in the risk signature and found 

that PCDH7 and SLAMF1 exhibited SNV mutations in 

multiple samples. Conversely, no SNV mutations were 

identified in PVR or SPHK1 (Figure 6A). Subsequently, 

we explored the co-occurrence probability between the 

13 mutated genes and the 10 most frequently mutated 

genes. Notably, SLAMF1 displayed a high probability 

of co-occurrence with mutations in USH2A, FLG, 

TP53, TTN, CSMD3, and RYR2 (Figure 6B). We  

also assessed the mutation frequency in ten major 

oncogenic pathways and identified mutations in  

several pathways, including the RTK-RAS, Hippo, and 

TP53 pathways (Figure 6C). Among these 15 genes, 

SLAMF1 demonstrated the highest frequency of copy 

number variation (CNV) gain, whereas CD69 had  

the highest frequency of CNV loss (Figure 6D). We 

evaluated the correlation between these genes and 

multiple molecular signatures associated with LUAD. 

The correlation heatmap indicated that CD69 and TLR2 

were significantly negatively correlated with aneuploidy 

score, homologous recombination defects, altered 

fraction, number of segments, and non-silent mutation 

rate. Conversely, PVR exhibited a significant positive 

correlation with these parameters (Figure 6E). The 

relationship between the immune score and expression 

levels of the 15 genes was also analyzed, revealing that 

most genes were positively correlated with the stromal, 

immune, and estimated scores. SLC11A2 and PVR 

expression negatively correlated with these scores 

(Figure 6F). We compared the immune scores between 

the different expression groups based on the median 

gene expression values. The high expression group  

of genes including C7, GPR34, SDS, and STOM 

demonstrated significantly elevated immune scores 

compared to those of the low expression group  

(Figure 6G). Additionally, SLAMF1 and RELA were 

significantly positively correlated with CD8+ T cells 

and M1 macrophages and negatively correlated with 

M2 macrophages (Figure 6H). The expression of 

SLAMF1 and CD69 positively correlated with the  

nine immune cell types (Figure 6I). Pathway analysis 

indicated significant correlations between these genes 

and 41 pathways, including the Notch and JAK-STAT 

signaling pathways (Supplementary Figure 1A, 1B). 

 

The 15-gene signature displayed a substantial 

correlation with immune-related characteristics 

 

To assess the differences in immune status between the 
two risk groups, we used ESTIMATION and ssGSEA. 

Immune and stromal cells were evaluated, and their 

scores were combined to obtain the estimated score, 
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Figure 5. Responsiveness of risk score to PD-L1 blockade immunotherapy in the IMvigor210 and GSE78220 cohorts.  
(A) Prognostic difference among the risk score groups in the IMvigor210 cohort. (B) Differences in risk scores among immunotherapy 
responses in the IMvigor210 cohort. (C) Distribution of immunotherapy responses among the risk score groups in the IMvigor210 cohort.  
(D, E) Prognostic difference between the risk score groups in patients with early or advanced stage disease in the IMvigor210 cohort.  
(F) Prognostic difference among the risk score groups in the GSE78220 cohort. (G) Differences in risk scores among immunotherapy 
responses in the GSE78220 cohort. (H) Distribution of immunotherapy responses among the risk score groups in the GSE78220 cohort.  
***P <0.001, ****P < 0.0001. 
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Figure 6. Analysis of mutation, immunity, and hub gene pathways. (A–E) The correlation between the mutation status and hub 

genes. (F–I) The features of immune cells and immune score based on the 15 hub genes. ***P <0.001, ****P < 0.0001. 
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which was higher in the low-risk group (Figure 7A). 

TIDE, a tool for predicting tumor patient sensitivity  

to immune checkpoint inhibitors (ICIs), showed that 

the response rate to immunotherapy was poorer in  

the high-risk group than in the low-risk group (Figure 

7B) [26]. Further, the correlation between risk scores  

and the estimated and TIDE scores was significant 

(Figure 7C, 7D). 

 

ssGSEA revealed that the low-risk group had a  

higher abundance of infiltrated immune cell types,  

such as activated CD8+T and B cells than that of the 

high-risk group (Figure 7E). Additionally, the low-risk 

group showed higher levels of TRS, CYT, and IFN-γ, 

indicative of a more immunoreactive microenvironment 

in the TCGA dataset (Figure 7F–7H) [20, 27]. The more 

immunoreactive TME may partially explain the better 

prognosis of patients in the low-risk group. 

 

We analyzed the expression levels of immune 

checkpoints and found them to be elevated in the  

low-risk group, with CTLA4 being notably lower in  

the high-risk group (Figure 7I, 7J). Subclass mapping 

(submap) indicated a higher likelihood of response to 

ICIs in the low-risk group (Figure 7K). 

 

GSVA showed that the high-risk group was enriched in 

pathways negatively modulating immune responses, 

such as TGF-β signaling and hypoxia, aligning with  

the INF-low subtype characteristics (Supplementary 

Figure 1C). The infiltration analysis results of immune 

and stromal cells in both risk groups performed  

using TIMER and MCP-counter are displayed in a 

heatmap. We found that patients in the low-risk group 

exhibited higher proportions of immune and stromal 

cell infiltration than those in the high-risk group 

(Supplementary Figure 1D). These findings suggest that 

the low-risk group, which belongs to the hot tumor 

subtype, may respond favorably to immunotherapy. 

 

Evaluating the sensitivity of chemotherapeutic drugs 

to patients with LUAD and finding potential drugs 

 

To identify potential therapeutic agents for high- 

risk patients with LUAD, we analyzed sensitivity  

data sourced from the Cancer Therapeutics Response 

Portal (CTRP) and profiling of relative inhibition 

simultaneously in mixtures (PRISM) datasets. These 

datasets include sensitivity information for 481 and 

1448 compounds across 835 and 482 cancer cell lines 

(CCLs), respectively [28]. We identified 5 agents from 

CTRP (BI-2536, KX2-391, leptomycin B, paclitaxel, 

and SB-743921) and 13 from PRISM (AT-9283, 
cabazitaxel, cyclocytidine, deforolimus, docetaxel, 

epothilone-b, gemcitabine, ispinesib, PF-03814735, 

PRT062070, R406, SNS-314, and vincristine) that 

showed a significant negative correlation with risk and 

lower estimated AUC values in the high-risk group than 

in the low-risk group (Supplementary Figure 2A–2D). 

To select suitable chemotherapeutic drugs for patients 

with LUAD, we assessed the half-maximal inhibitory 

concentration (IC50) of the four drugs in the two risk 

groups and explored the relationships between the 15 

hub genes and these drugs (Supplementary Figure 2E). 

Our findings indicate that several genes influence 

sensitivity to chemotherapy. For instance, higher PVR 

expression correlated with resistance to multiple drugs 

such as tamoxifen and oxaliplatin but with increased 

sensitivity to irrofulvens. Similarly, elevated CD69 

expression was linked to increased sensitivity to drugs 

such as nellarabine and dexamethasone decadron. 

 

Validation of inflammation-associated gene 

expression pattern by scRNA‑seq analysis 

 

To validate the expression patterns of inflammation-

related genes in distinct cell types within the TME, we 

analyzed the scRNA-seq data from patients with LUAD 

in the GSE131907 dataset. After quality control, data 

normalization, and PCA, cells from the LUAD samples 

were categorized into 24 clusters and 8 cell types using 

the tSNE and UMAP algorithms (Figure 8A–8D).  

We then assessed the intensity of cell communication 

among the eight cell types (Figure 8E) and determined 

the expression levels of 15 inflammation-related genes 

across these cell types. The analysis revealed that CD69 

was significantly overexpressed in mast and T cells. 

Among the previously identified risk genes, PSEN1, 

CCL20, RIPK2, and NMI were mainly expressed in 

myeloid cells, whereas RELA was predominantly 

expressed in endothelial cells (Figure 8F, 8G). 

 

RELA was highly expressed in LUAD tissues and 

promotes the proliferation of tumor cells 

 

Among the genes identified in our model, RELA,  

also known as transcription factor p65, is an  

essential effector molecule in the nuclear factor-kappa  

B (NF-kB) inflammatory signaling pathway [29].  

NF-kB is a critical regulator of inflammation, cancer, 

and immunity, playing a pivotal role in various 

malignancies [30]. The most common form of NF-kB is 

a heterodimer consisting of the p50 and p65 subunits. 

Transcription factor p65 possesses transcriptionally 

active domains and is implicated in cell survival, 

invasion, proliferation, metastasis, angiogenesis, and 

chemoresistance. Therefore, we sought to explore the 

specific oncogenic effects of RELA in LUAD. 

 
Our initial findings indicated that both the RNA and 

protein encoded by RELA were highly expressed in 

LUAD tissues compared to those in normal tissues 
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Figure 7. Analysis of immunity status of risk groups. (A–D) Immune status and immunotherapy between risk groups. (E–H) Active or 

suppressive TME between risk groups. (I, J) Exploration of immune checkpoints. (K) Submap analysis. *P <0.05, **P <0.01, ***P <0.001, 
****P < 0.0001. 
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Figure 8. Hub gene scRNA-seq analysis results. (A–D) 24 clusters and eight cell types identified by tSNE and UMAP algorithms.  

(E) Analysis of cell communications. (F, G) Expression of hub genes in different cell types. 
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(Figure 9A, 9B). Functional assays, including CCK-8, 

wound healing, and colony formation assays, revealed 

that high RELA expression enhanced the proliferation 

and invasiveness of LUAD cells (Figure 9C–9E).  

To further validate the tumor-promoting effects of 

RELA, we subcutaneously injected mice with RELA-

overexpressing or RELA-knockdown cells. Mice 

injected with RELA-overexpressing cells exhibited a 

larger average tumor volume and weight than those  

of the mice injected with RELA-knockdown cells 

(Figure 9F). 

 

RELA undergoes phase separation in vitro and  

in vivo, likely associated with its carcinogenic effect 

 

A search of the UniProt website revealed that the 

protein encoded by RELA contains a significant number 

of intrinsically disordered regions (IDRs). As suggested 

by their names, these regions lack a defined three-

dimensional (3D) structure and often have short amino 

acid motifs capable of mediating weak multivalent 

interactions. IDRs can facilitate protein interactions 

with other macromolecules, leading to liquid-liquid 

phase separation (LLPS) [31, 32]. We postulated  

that RELA could undergo phase separation and that  

this characteristic might be linked to its tumorigenic 

effects. 

 

Analysis of the RELA primary sequence using  

IUPred and VSL2 indicated a significant propensity 

for structural disorder and high likelihood of  

phase separation (Figure 10A). Purified GFP-RELA 

spontaneously formed droplets in solution, with the  

size and number of droplets being dependent on the 

 

 
 

Figure 9. Promotion of tumor cell proliferation by RELA. (A, B) Differential expression of RELA in tumor vs. normal tissues, with 

pronounced upregulation in tumor samples. (C) Microscopic images highlighting cell migration differences across treatments over time.  
(D) Varying clonogenic potential among treatments, notably between RELA-OE and RELA-Si. (E) Results of the CCK-8 assay presenting 
enhanced proliferation in the RELA-OE group. (F) In vivo tumor size differences, with RELA-OE tumors being significantly larger. 
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temperature and salt concentration. Importantly, the 

formation of these droplets was substantially inhibited 

by 5% 1,6-hexanediol, a compound known to disrupt 

weak hydrophobic interactions (Figure 10B, 10C). In 

vitro FRAP experiments confirmed that the condensates 

formed by the RELA exhibited liquid-like properties 

(Figure 10D). 

 

To investigate whether phase separation ability  

is relevant to the biological function of RELA, we 

ectopically expressed GFP-RELA in H1299 cells  

and conducted immunofluorescence studies. Live-cell 

imaging showed that the RELA condensates readily 

fused into larger structures over time (Figure 10E). 

Additionally, the colocalization of RELA with the 

transcriptional activation markers H3K4me3 and  

RNA Pol II-S5P suggested that the condensates 

formed by RELA may recruit other transcription 

factors for activation (Figure 10F). In summary, our 

findings indicate that RELA can undergo phase 

separation to form droplets that activate transcription 

in the nucleus. 

 

 
 

Figure 10. In vitro and in vivo phase separation results of RELA. (A) Predicted phase separation ability of the RELA protein’s IDR 
region. (B, C) In vitro liquid-liquid phase separation (LLPS) of EGFP-tagged RELA under various physicochemical conditions. (D) In vitro 
fluorescence recovery after photobleaching (FRAP) of EGFP-RELA. (E) In vivo droplet fusion events of EGFP-RELA. (F) Co-localization of RELA 
with specific transcription elements, suggesting intricate relationships in gene expression regulation. 
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DISCUSSION 
 

LUAD continues to pose a formidable challenge in  

the field of oncology and is emerging as one of  

the most intricate and enigmatic malignancies. Owing  

to its multifaceted nature and complex etiology,  

LUAD requires a deeper exploration of its underlying 

mechanisms. Central to this quest is an understanding of 

the role of inflammatory responses, which have become 

increasingly recognized as pivotal contributors to patient 

prognosis and efficacy of therapeutic interventions. Our 

recent investigations have extensively delved into these 

aspects, providing novel and insightful insights into the 

molecular landscape of LUAD, particularly emphasizing 

the impact of inflammation. 

 

Utilizing state-of-the-art consensus clustering 

techniques, we conducted a meticulous classification  

of LUAD into two prominent inflammation-based 

subtypes: INF-low and INF-high. This nuanced 

demarcation between the subtypes is underscored by 

contrasting inflammatory responses, which appear to 

have far-reaching implications for the clinical trajectory 

of LUAD. Through a rigorous analysis of our patient 

cohort, we observed that individuals categorized into 

these subtypes demonstrated strikingly divergent clinical 

outcomes, thereby underscoring the profound influence 

of inflammation on the pathology and progression of 

LUAD. 

 

Exhaustive exploration of the TME of these subtypes has 

resulted in distinct and insightful features. The INF-low 

subtype was characterized by an immunosuppressive 

TME, consistent with the hypothesis that such a 

microenvironment can significantly compromise patient 

prognosis. This subtype was found to carry a high burden 

of oncogenic mutations, highlighting its potential for 

targeted therapeutic intervention. In contrast, the INF-

high subtype exhibited robust antitumor immune activity, 

signifying its potential as a prime candidate for tailored 

immunotherapeutic approaches. 

 

Among the 15 identified hub genes, we focused  

on the RELA gene to unravel LUAD complexity. Our 

findings revealed pronounced expression of RELA in 

LUAD tissues and its propensity to fuel tumor cell 

proliferation. In addition to expression level analysis, 

we investigated the unique ability of RELA to undergo 

phase separation both in vitro and in vivo, suggesting  

a molecular mechanism that could be intricately linked 

to its oncogenic potential. 

 

Our investigation also drew attention to the pivotal 

correlation between the risk signature and efficacy of 

PD-L1 blockade immunotherapy. In the current era in 

which immunotherapies are increasingly becoming the 

frontline treatment for various cancers, understanding 

the molecular underpinnings of responsiveness is 

crucial. Our 15-gene signature revealed compelling 

associations with immune-centric characteristics, 

indicating its potential as a powerful tool for patient 

stratification and personalized therapy. 

 

We also performed an exhaustive analysis of chemo-

therapeutic drug sensitivity in patients with LUAD. This 

aspect of our research holds promise for identifying 

novel therapeutic candidates, thereby expanding the 

repertoire of available treatment options. By exploring 

the sensitivities and resistances of LUAD cells to 

various chemotherapeutic agents, our study highlights 

potential pathways for intervention, thus providing 

indications for more effective and tailored therapeutic 

strategies. 

 

In a quest for a granular understanding, our research 

utilized scRNA-seq analysis to validate the expression 

of inflammation-related genes. This approach offers 

detailed, cell-specific insights into the diverse and 

dynamic gene expression patterns in LUAD tumors. 

This level of granularity is pivotal in adding robustness 

and reliability to our findings and further emphasizing 

the complex interplay of inflammatory responses within 

the TME. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Analysis of pathway enrichment and immune cell infiltration of the risk model. (A, B) The correlations 
between hub genes and 41 classical pathways. (C) The correlations between the two risk groups and hallmark pathways identified by GSVA. 
(D) Heatmap of immune cell expression in the TME in LUAD analyzed using multialgorithm, including existing data from TIMER and MCP-
counter. 
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Supplementary Figure 2. Analysis of potential therapeutic agents. (A, B) CTRP- and PRISM-derived compounds. (C, D) Results of 
differential drug response analysis of CTRP- and PRISM-derived compounds; the lower values on the y-axis of boxplots imply greater drug 
sensitivity. (E) The correlation between hub genes and sensitivity to chemotherapy. 
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