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INTRODUCTION 
 

Lung cancer remains a leading cause of cancer-related 

death worldwide [1]. Lung adenocarcinoma (LUAD) is 

the most common histological subtype, accounting for 

40% lung cancer cases [2]. Although great progress has 

been made in LUAD treatment, the five-year survival 

rate of patients remains dismal [3]. Immunotherapy has 
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ABSTRACT 
 

Immunotherapy has been a remarkable clinical advancement in cancer treatment, but only a few patients benefit 
from it. Metabolic reprogramming is tightly associated with immunotherapy efficacy and clinical outcomes. 
However, comprehensively analyzing their relationship is still lacking in lung adenocarcinoma (LUAD). Herein, we 
evaluated 84 metabolic pathways in TCGA-LUAD by ssGSEA. A matrix of metabolic pathway pairs was generated 
and a metabolic pathway-pair score (MPPS) model was established by univariable, LASSO, multivariable Cox 
regression analyses. The differences of metabolic reprogramming, tumor microenvironment (TME), tumor 
mutation burden and drug sensitivity in different MPPS groups were further explored. WGCNA and 117 machine 
learning algorithms were performed to identify MPPS-related genes. Single-cell RNA sequencing and in vitro 
experiments were used to explore the role of C1QTNF6 on TME. The results showed MPPS model accurately 
predicted prognosis and immunotherapy efficacy of LUAD patients regardless of sequencing platforms. High-MPPS 
group had worse prognosis, immunotherapy efficacy and lower immune cells infiltration, immune-related genes 
expression and cancer-immunity cycle scores than low-MPPS group. Seven MPPS-related genes were identified, of 
which C1QTNF6 was mainly expressed in fibroblasts. High C1QTNF6 expression in fibroblasts was associated with 
more infiltration of M2 macrophage, Treg cells and less infiltration of NK cells, memory CD8+ T cells. In vitro 
experiments validated silencing C1QTNF6 in fibroblasts could inhibit M2 macrophage polarization and migration. 
The study depicted the metabolic landscape of LUAD and constructed a MPPS model to accurately predict 
prognosis and immunotherapy efficacy. C1QTNF6 was a promising target to regulate M2 macrophage polarization 
and migration. 
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led to striking clinical improvements while not all  

cancer patients can benefit from immunotherapy due  

to heterogeneity and adaptive evolution of tumor. Only 

about one third of patients acquire durable alleviation 

from it [4]. To give patients more personalized medicine, 

it is essential to reveal the mechanism underlying distinct 

immunotherapy responses and develop signatures to 

predict prognosis and immunotherapy efficacy. 

 

Recent studies revealed that oncogenic transformation 

induces a well-characterized metabolic phenotype in 

tumor cells, which in turn affects tumor microenviron-

ment (TME) [5]. As a new hallmark of malignant 

tumors, metabolic reprogramming improves malignant 

cells adaptation to meet bioenergetic, biosynthetic, 

redox balance demands and immune evasion, thus 

providing a selective advantage during tumorigenesis 

[5]. Aerobic glycolysis (the Warburg effect) is a special 

metabolic pattern that tumor cells consume glucose and 

produces lactate even when oxygen is sufficient. 

Aerobic glycolysis not only provides enough ATP but 

also numerous precursor metabolites for lipids, amino 

acids, and nucleotides biosynthesis to support rapid 

proliferation [6]. Dysregulated lipid metabolism is 

another prominent metabolic alteration in cancer [7]. 

Under energy stressful conditions, tumor cells can 

harness lipid hydrolyzation to generate ATP and second 

messengers including diacylglycerol, arachidonic acid, 

lysophosphatidic acid, and phosphatidic acid to activate 

oncogenic signaling pathways [7–9]. Other metabolic 

pathways such as amino acids metabolism, one carbon 

metabolism, purine and pyrimidine metabolism, are  

also dysregulated in tumor cells due to mutation of 

oncogenes, tumor suppressor genes or metabolic 

enzymes [10, 11]. Increasing evidence has suggested 

that tumor metabolic heterogeneity is greatly associated 

with TME status and immunotherapy [12–14]. Several 

studies have suggested that glycolysis of tumor cells 

restricts glucose utility of tumor-infiltrating lymphocytes, 

thereby inducing T cells exhaustion and immune escape 

[15]. Glutamine deprivation inhibits the transformation 

of CD4+ T cells to inflammatory subtypes, production 

and secretion of pro-inflammatory cytokines (IL-1,  

IL-6, and TNF) by macrophages, and promotes the 

apoptosis of immune cells [16–18]. Large amount of 

lactic acid produced by tumor cells increases the acidity 

of TME and impairs the anti-tumor function of T cells 

and natural killer (NK) cells [19, 20]. Consequently, 

comprehensively depicting tumor metabolic landscape is 

promising to predict the prognosis and immunotherapy 

response of cancer patients and develop new treatment 

strategies. 

 
Based on some metabolic features, many metabolic 

signature-based prognostic models have been established 

and acquired good predicting performance [14, 21, 22]. 

However, most models are based on a single metabolic 

pathway, lacking comprehensive exploration for tumor 

metabolism. Moreover, most models are constructed 

by focusing on exact gene expression and commonly 

unapplicable in another cohort sequenced by different 

platforms. To overcome the above shortcomings, we 

comprehensively assessed 84 metabolic pathways from 

12 kinds of metabolism in LUAD by single sample 

gene set enrichment analysis (ssGSEA), developed  

and validated a metabolic pathway-pair score (MPPS) 

model to accurately predict the prognosis and 

immunotherapy efficacy of LUAD patients regardless 

of sequencing platforms. The model performed better 

than 51 published signatures of LUAD and was 

applicable to pan-cancers. The distinct metabolic 

features, TME between high- and low-MPPS groups 

were depicted. Weighted gene co-expression network 

analysis (WGCNA) and 117 machine learning 

algorithm combinations were performed and identified 

7 MPPS-related genes, of which C1QTNF6 was  

mainly expressed in fibroblast. C1QTNF6 expression  

in fibroblast is positively related to fibroblasts,  

M2 macrophages and Treg cells infiltration but 

negatively related to memory CD8+ T cells and NK 

cells infiltration. Silencing C1QTNF6 expression in 

fibroblast impaired M2 macrophage polarization and 

migration in vitro assays. Meanwhile, Mendelian 

randomization (MR) also indicated that C1QTNF6  

was cause of lung cancer onset. The MPPS model 

overcomes the obstacle of sequencing data from 

different platforms and is promising to guide LUAD 

patients’ selection for immunotherapy. 

 

RESULTS 
 

Heterogenous metabolic profiles of LUAD 
 

The overall design of our study was shown in the  

flow chart (Figure 1). To investigate the metabolic 

reprogramming in LUAD, we extracted 84 metabolic 

pathways from the Kyoto Encyclopedia of Genes  

and Genomes (KEGG) database. The 84 meta- 

bolic pathways contained 12 kinds of metabolism,  

including 14 carbohydrate metabolic pathways, 13 

lipid metabolic pathways, 12 cofactors and vitamins 

metabolic pathway, 13 amino acid metabolic pathways, 

14 glycan biosynthesis and metabolic pathways, 2 

biosynthesis pathways of other secondary metabolites, 

3 energy metabolic pathways, 1 genetic information 

processing pathway, 6 other amino acids metabolic 

pathways, 1 terpenoids and polyketides metabolic 

pathway, 2 nucleotide metabolic pathway and 3 

xenobiotics biodegradation and metabolic pathway. 
We first scored each pathway in all samples using 

ssGSEA and characterized the metabolic heterogeneity 

between LUAD and normal tissues (Figure 2A). It was 
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Figure 1. The flow chart of the study. 
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demonstrated that a total of 68 (80.95%) metabolic 

pathways were dramatically dysregulated (23 up-

regulated pathways and 45 downregulated pathways  

in LUAD compared to normal lung tissues) (P < 0.05). 

The dysfunctional pathways encompassed the three 

main kinds of metabolism including carbohydrate,  

lipid and amino acids metabolism. Next, to investigate 

the intratumor heterogeneity of metabolism, we 

classified TCGA-LUAD samples into two clusters 

based on 84 metabolic pathways scores by unsupervised 

consensus clustering (Figure 2B). PCA and metabolic 

heatmap displayed that the two clusters had obviously 

heterogenous metabolic characteristics (Figure 2C, 2D). 

The cluster A seemed to be a “cold” metabolic subtype 

 

 
 

Figure 2. The metabolic heterogeneity of lung adenocarcinoma (LUAD). (A) The differences of 84 metabolic pathways scores 

between LUAD and normal tissues in TCGA. (B) An unsupervised consensus clustering according to 84 metabolic pathways scores in TCGA-
LUAD samples. (C) Principal Component Analysis of cluster A and B of TCGA-LUAD. (D) The differences of 84 metabolic pathways scores 
between cluster A and cluster B. Pathological stage, sex, age, and survival status used as patients’ annotation. (E) The differences of 84 
metabolic pathways scores among different cells by single-cell RNA sequencing (scRNA-seq) data. *P < 0.05, **P < 0.01, ***P < 0.001. 
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but the cluster B seemed to a “hot” metabolic subtype. 

To further distinguish the metabolic variation in various 

TME cells, we compared metabolism scores among 

endothelial cells, fibroblast, malignant cells and pan-

immune cells by scRNA-seq data. The results suggested 

that malignant cells had a significantly higher metabolic 

level than the other three cells (Figure 2E). The above 

results indicated that metabolic heterogeneity was 

common in LUAD and might play a crucial role in the 

initiation and progression of LUAD.  

 

Development of a prognostic model based on MPPS 

and exploration of its clinical relevance 

 

Different sequencing platforms commonly possess 

different sequencing depth. Consequently, sequencing 

data from different sequencing platforms had different 

numbers of genes and significantly different expression 

levels. When gene expression data from different 

platforms were utilized, data standardization and  

scaling and intersecting gene from different platforms 

are needed, which will cause loss of some genetic 

information. The metabolic pathway pair model can 

reduce the effects of some gene deletion on prediction 

and eliminate the shortcomings of data standardization 

and scaling in gene expression data processing and 

effectively avoid the interference caused by the 

sequencing platform. To develop a prognostic model 

based on MPPS, we firstly paired the 84 pathways and 

525 pathway pairs were obtained after removing those 

pathway pairs that proportion of 0 or 1 was more than 

80% or less than 20%. Subsequently, we conducted 

univariable Cox regression analysis on these pathway 

pairs and selected 106 meaningful metabolic pathway 

pairs for Least absolute shrinkage and selection operator 

(LASSO) regression analysis (Figure 3A). LASSO 

regression analysis yielded 33 metabolic pathway pairs 

with nonzero LASSO coefficients according to the 

optimal λ value (Figure 3B, 3C). Multivariable Cox 

regression analysis was further performed to identify 

prognostic metabolic pathway pairs based on Akaike 

information criterion value and 19 metabolic pathway 

pairs were finally obtained (Figure 3D). MPPS was 

calculated using value of 19 metabolic pathway pairs 

weighted by their multivariable Cox regression co-

efficients and stratified LUAD patients into high- and 

low-MPPS groups according to the optimal cut-off 

point determined by the “survminer” package. PCA 

analysis showed that LUAD patients could be divided 

into distinctive groups according to MPPS (Figure  

3E). The heatmap showed obvious discrepancy of 19 

metabolic pathway pairs between the high- and low-

MPPS group (Supplementary Figure 1A). Patients with 
high-MPPS scores had significantly shortened overall 

survival (OS) and progression-free survival (PFS) in the 

TCGA-LUAD training cohort and six GEO validation 

cohorts (all P < 0.05). The GEO merge cohort 

integrating the six GEO cohorts also showed the same 

trend (P < 0.05) (Figure 3F). The risk plot of MPPS 

indicated that as MPPS increased, OS time decreased 

while mortality rose (Supplementary Figure 1B).  

 

To determine the correlation of MPPS and clinical 

traits, we compared the differences in MPPS among 

different clinical subgroups based on age, sex, survival 

status and pathological stage. Patients in alive, stage I, 

stage T1 and stage N0 subgroups had lower MPPS 

compared to the other subgroups (P < 0.05), while  

there was no significant difference of MPPS in age,  

sex and M stage subgroups (Supplementary Figure 2A–

2G). The Sankey diagram illustrated the distribution  

and correspondence of LUAD patients in MPPS  

groups, survival status, age, sex, and pathological stage 

(Supplementary Figure 2H). In addition, MPPS also 

showed robust performance on predicting prognosis in 

different clinical subgroups, including age, sex, TNM 

stage (P < 0.05) (Supplementary Figure 2I–2P). 

 

Evaluation of the MPPS model  

 

To investigate the accuracy of the MPPS model,  

ROC analysis was conducted and showed good 

performance in both training cohort and validation 

cohort (1-, 3-, 5-year AUC: 0.755, 0.781, 0.785 in  

OS of TCGA-LUAD; 0.664, 0.689, 0.671 in PFS of 

TCGA-LUAD; 0.599, 0.658, 0.695 in OS of GSE3141; 

0.832, 0.705, 0.682 in OS of GSE13213; 0.699, 0.641, 

0.633 in OS of GSE30219; 0.789, 0.661, 0.678 in OS of 

GSE31210; 0.671, 0.624, 0.693 in OS of GSE50081; 

0.641, 0.663, 0.684 in OS of GSE72094; 0.672,  

0.633, 0.66 in OS of GEO merge cohort) (Figure 4A). 

With the developments in next-generation sequencing,  

a considerable number of prognostic models were 

developed. To compare the performance of MPSS with 

other signatures, we retrieved 51 published signatures of 

LUAD including 15 lncRNA signatures and 36 mRNA 

signatures. These signatures encompassed various 

biological processes, such as autophagy, immune 

response, ferroptosis, stemness, epithelial-mesenchymal 

transition (EMT), hypoxia, ageing, methylation et al. 

The results suggested that MPSS had highest 1-, 3-, 5-

year AUC of TCGA-LUAD cohort (Figure 4B). MPPS 

also displayed higher C-index in TCGA-LUAD cohort 

than almost all models (Figure 4C). 

 

To further investigate the performance of MPPS on 

predicting prognosis of other tumors, we performed 

survival analyses of patients in the high- and low-MPPS 

groups involving 32 types of tumors in TCGA other 
than LUAD. Patients in the high-MPPS group had 

significantly worse OS than low-MPPS group in all  

32 tumors (P < 0.05) (Figure 5A). MPPS also displayed 
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Figure 3. Construction of a metabolic pathway-pair score (MPPS)-based prognostic model. (A) The univariable Cox regression 

analysis of metabolic pathway pairs. (B, C) Determination of the number of metabolic pathway pairs by the LASSO regression analysis. (D) The 
multivariable Cox regression analysis of metabolic pathway pairs. (E) Principal Component Analysis of the high- and low-risk groups. (F) The 
Kaplan-Meier analysis of the high- and low-risk groups in TCGA-LUAD cohort and GEO validation cohorts. OS: overall survival; PFS: 
progression-free survival. The survival analysis was tested by log-rank test. 
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Figure 4. Evaluation of MPPS model. (A) The 1-, 3-, 5-year receiver operating characteristic (ROC) curves of MPPS model in TCGA-LUAD 

cohort and GEO validation cohorts. (B) The 1-, 3-, 5-year area under curves (AUC) of MPPS model and 51 published prognostic models of 
LUAD. (C) C-index of MPPS model and 51 published prognostic models of LUAD. 
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high 1-, 3-, 5-year AUC in predicting prognosis of 32 

tumors (Figure 5B–5D). 

 

Pathway enrichment and function annotation of the 

high- and low-MPPS groups 

 

To explore the underlying mechanism of survival 

variation in different MPPS groups, we first performed 

pathway enrichment and function annotation of the 

high- and low-MPPS groups by KEGG and Gene 

Ontology (GO) analyses. The high-MPPS group had 

higher metabolic levels in pentose phosphate path- 

way, pyrimidine, cysteine and methionine metabolism. 

Multiple proliferation-related pathways including DNA 

replication, cell cycle, mismatch repair were enriched  

in the high-MPPS group (P < 0.05). On the contrary, 

immune response pathways such as B cell receptor 

signaling pathway, JAK/STAT signaling pathway, T 

cell receptor signaling pathway and cytokine-cytokine 

receptor interaction were more enriched in the low-

MPPS group (Figure 6A). GO function annotation  

also demonstrated that DNA replication and translation 

were more associated with high MPPS, and immune 

cell development, maturation, activation and response 

were more related to low MPPS (P < 0.05) (Figure 6B). 

Additionally, multiple oncogenic pathways including 

hypoxia, epithelial-mesenchymal transition, DNA 

damage response, glycolysis, unfolded protein response 

and mTOC1 signaling et al. were significantly enriched 

in the high-MPPS group (Supplementary Figure 3A). 

The above results all indicated that LUAD with high 

MPPS possessed higher malignancy.  

 

To characterize metabolic reprogramming involved in 

MPPS, we firstly analyzed the variation of 31 pathways 

in MPPS model between LUAD and normal lung 

 

 
 

Figure 5. Evaluation of MPPS model in pan-cancer. (A) The Kaplan-Meier analysis of the high- and low-risk groups across 32 tumors in 
TCGA database except LUAD. The survival analysis was tested by log-rank test. (B–D) The 1-, 3-, 5-year AUC of MPPS model across 32 tumors 
in TCGA database except LUAD. 
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Figure 6. Pathway enrichment and function annotation of the high- and low-risk groups. (A) Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses between the high- and low-risk groups. (B) Gene Ontology (GO) between the high- and low-risk groups. 
(C) The differences of 31 metabolic pathways scores between the high- and low-risk groups. (D) The bubble diagram was drawn by the 
average of 19 metabolic pathway pairs in pan-immune cells, endothelial cells, fibroblasts, and malignant cells. (E) The differences of genes in 
19 metabolic pathway pairs between the high- and low-risk groups. Pathological stage, sex, age, and survival status used as patients’ 
annotation. (F) The protein-protein interaction network by STRING website and the software Cytoscape v3.9.1. *P < 0.05, **P < 0.01, ***P < 
0.001. 
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tissues. A total of 26 pathways were dysregulated in 

LUAD, in which 7 metabolic pathways were up-

regulated and 19 metabolic pathways were down-

regulated (Supplementary Figure 3B). Further analyses 

revealed that 22 pathways were significantly variant 

between the high- and low-MPPS groups. The high-

MPPS group had higher metabolic scores in the galactose 

metabolism, fatty acid (FA) elongation, pyrimidine 

metabolism, cysteine and methionine metabolism, one 

carbon pool by folate and aminoacyl-tRNA biosynthesis 

et al. indicating that biomass synthesis and proliferation 

were more active in the high-MPPS group. The low-

MPPS group had higher metabolic scores in the caffeine 

metabolism, valine, leucine and isoleucine degradation, 

selenocompound metabolism and arachidonic acid 

metabolism, etc. (Figure 6C). The correlation of MPPS 

and 31 metabolic pathways was shown in Supplementary 

Figure 3C. By calculating the averages of 19 metabolic 

pathways pairs in each kind of TME cell, we found the 

lung malignant cells had higher level of cysteine and 

methionine metabolism/ganglio series biosynthesis than 

the immune cells, endothelial cells and fibroblasts 

(Figure 6D). The further differential expression analysis 

displayed that there existed obviously differential 

expression in 31 metabolic pathway genes between the 

high- and low-MPPS groups and the protein-protein 

interaction analysis demonstrated that the 76 DEGs had 

complex regulatory network (Figure 6E, 6F). 

 

Evaluation of TME and immunotherapeutic benefits 

in the high- and low-MPPS groups 

 

Considering many immune-related pathways were 

enriched in the low-MPPS group, we evaluated  

the TME components between the high- and low- 

MPPS groups by estimate algorithm. The low-MPPS 

group had higher stromal score, immune score and 

ESTIMATE score than high-MPPS group (Figure 7A). 

The GSVA enrichment analysis was performed to 

evaluate immune filtrating cells and immunologic 

functions. The results showed that low-MPPS group had 

higher immune cells infiltration and immunologic 

functions activation in total including the infiltration  

of activated B cells, activated CD8+ T cells, activated 

dendritic cells, eosinophil and macrophage and the 

immune checkpoint, HLA, T cell co-inhibition or 

stimulation, type II IFN response (Figure 7B, 7C). A 

total of 29 immune checkpoint genes were differentially 

expressed between the high- and low-MPPS groups,  

in which 27 immune checkpoint genes, accounting  

for 93.1% were highly expressed in the low-MPPS 

group (Figure 7D). In addition, a total of 16 (66.7%) 

HLA genes expression were altered and they were all 
upregulated in the low-MPPS group (Figure 7E). The 

cancer–immunity cycle elucidates antitumor immune 

responses and offers an opportunity to understand the 

interactions between cancer and its immune system 

[23]. The low-MPPS group had higher cancer–

immunity cycle scores in cancer antigens presentation, 

priming and activation, CD4+ T cell, dendritic cell,  

B cell, Th17 cell recruiting, and immune cells tumor 

infiltration but lower scores in cancer antigens release 

and eosinophil recruiting than the high-MPPS group 

(Figure 7F). To further investigate the correlation 

between MPPS and immunotherapy efficacy, we 

calculated the TIDE score. The results suggested that 

the low-MPPS group had higher T cell dysfunction 

score than the high-MPPS group (Supplementary  

Figure 4A). LUAD with high-MPPS score was  

more inclined to immune-desert or excluded phenotype 

and LUAD with low-MPPS score was more inclined  

to immune-inflamed phenotype (Supplementary Figure 

4B). Higher immunophenoscore (IPS) was also 

exhibited by patients in the low-MPPS group compared 

with those in the high-MPPS group (Supplementary 

Figure 4C). The above results indicated that patients  

in the low-MPPS group may be more sensitive to 

immunotherapy.  

 

To further validate the speculation, seven independent 

immunotherapy cohorts in the published literatures  

were used to validate immunotherapy efficacy and 

prognosis including advanced urothelial cancer treated 

with atezolizumab, an anti-PD-L1 antibody, melanoma 

treated with anti-CTLA4 and anti-PD-1 therapy, 

metastatic melanoma treated with anti-CTLA4 therapy, 

non-small cell lung cancer (NSCLC) treated with 

nivolumab or pembrolizumab, an anti-PD-1 anti- 

body, NSCLC treated with anti-PD-1/PD-L1 antibody, 

melanoma treated with ACT, Melanoma treated with 

anti-PD-1 antibody. The results showed that the low-

MPPS group had significant survival advantage and 

higher immune response rate compared to the high-

MPPS group in all validation cohorts (Figure 8A–8N). 

The response to anti-PD-1 and anti-CTLA4 therapy was 

calculated using the TIDE website based on TCGA 

cohort. Patients in the low-MPPS group were more 

likely to be responders and benefit from immunotherapy 

(Figure 8O, 8P). 

 

TMB and drug sensitivity analysis 

 

To explore the correlation of MPPS and tumor 

mutation, Spearman correlation analysis was performed 

and significant positive correlation was found between 

MPPS and TMB (R=0.17, P=0.00013) (Figure 9A). 

LUAD patients in the high-MPPS group had higher 

TMB than those in the low-MPPS group (P=0.0038) 

(Figure 9B). By Kaplan-Meier analysis, we found 
LUAD patients with low-MPPS score and high TMB 

had the best survival advantages and LUAD patients 

with high-MPPS score and low TMB had the worst 
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prognosis (P<0.001) (Figure 9C). The distribution of 

somatic mutations in the high- and low-MPPS groups 

was investigated in the TCGA-LUAD cohort. Patients 

in the high-MPPS group displayed significantly higher 

frequencies of somatic mutations compared with those 

in low-MPPS group (93.33% vs 85.81%), especially in 

TP53 (52% vs 39%), TTN (51% vs 35%), MUC16 

(43% vs 36%), RYR2 (37% vs 32%), CSMD3 (41% vs 

 

 
 

Figure 7. TME landscapes of the high- and low-risk groups. (A) The differences of stromal score, immune score and ESTIMATE score 
between the high- and low-risk groups. (B) The differences of infiltrating immune cells between the high- and low-risk groups by single 
sample gene set enrichment analysis (ssGSEA). (C) The differences of immune function between the high- and low-risk groups by ssGSEA.  
(D) The differences of immune checkpoint genes expression between the high- and low-risk groups. (E) The differences of HLA-related genes 
expression between the high- and low-risk groups. (F) The differences of cancer-immunity cycle scores between the high- and low-risk 
groups. *P < 0.05, **P < 0.01, ***P < 0.001. 
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29%) and LRP1B (34% vs 25%). Moreover, missense 

mutation and multi-hit were the main mutation type  

in both high- and low-MPPS groups (Figure 9D,  

9E). To further explore the clinical utility of MPPS in 

precision medicine, we assessed the sensitivity of 137 

chemotherapeutic or targeted therapy drugs in different 

MPPS groups (Figure 9F). The results showed that the 

patients in the high-MPPS groups had lower IC50 

 

 
 

Figure 8. Prediction of immunotherapy by MPPS model. Survival analysis (A) and response to anti-PD-L1 therapy (B) between the 
high- and low-risk groups in advanced urothelial cancer (IMvigor210 cohort). Survival analysis (C) and response to anti-CTLA4 and anti-PD1 
therapy (D) between the high- and low-risk groups in melanoma (GSE91061). Survival analysis (E) and response to anti-CTLA4 therapy  
(F) between the high- and low-risk groups in metastatic melanoma. Survival analysis (G) and response to anti-PD1 therapy (H) between the 
high- and low-risk groups in NSCLC (GSE126044). Survival analysis (I) and response to anti-PD-1/PD-L1 therapy (J) between the high- and low-
risk groups in NSCLC (GSE135222). Survival analysis (K) and response to adoptive T cell therapy (L) between the high- and low-risk groups in 
melanoma. Survival analysis (M) and response to anti-PD-1 therapy (N) between the high- and low-risk groups in melanoma (GSE78220).  
(O) Difference of responder between low- and high-risk group of LUAD in TCGA. (P) Difference of benefits between low- and high-risk group 
of LUAD in TCGA. 
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Figure 9. Tumor mutation burden (TMB) and drug sensitivity analysis. (A) The correlation of MPPS and TMB in TCGA-LUAD samples. 
(B) The differences of TMB between the high- and low-risk groups. (C) The Kaplan–Meier curves show OS differences stratified by TMB and 
MPPS. Visualization of the top 20 gene mutations in high-risk group (D) and low-risk group (E). (F) The sensitivity of 117 drugs between the 
high- and low-risk groups. P < 0.05 was considered as statistical significance. 
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values of 67 drugs, indicating sensitivity. Alternatively, 

the patients in the low-MPPS group were sensitive to 26 

drugs. Together, the results may provide a standard of 

reference for treatment stratification of patients with 

LUAD. 

 

Establishment of a MPPS-based nomogram 

 

To construct a MPPS-based nomogram for convenient 

use, we analyzed the prognostic value of MPPS,  

age, sex, pathological stage and treatment type by 

univariable and multivariable Cox regression analyses 

(Table 1). In the univariable Cox regression analysis, 

age (HR (95%CI): 1.43 (1.056-1.936), P=0.021), stage 

(HR (95%CI): stage II 2.302 (1.590-3.332), P<0.001; 

stage III/IV 3.295 (2.309-4.702), P<0.001) and MPPS 

(HR (95%CI): 1.042 (1.036-1.049), P<0.001) were 

significantly related to LUAD prognosis. After adjusted 

by multivariable Cox regression analysis, MPPS, age 

and pathological stage were identified as independent 

prognostic factors and used to construct a prognostic 

nomogram (HR (95%CI): age 1.45 (1.065-1.975), P = 

0.018; stage II 2.371 (1.637-3.434), P < 0.001; stage 

III/IV 2.537 (1.756-3.667), P < 0.001; MPPS 1.039 

(1.032-1.046), P < 0.001). The prognostic nomogram 

made quantitative predictions of the 1-, 3-, and 5-year 

OS probabilities in patients with LUAD (Figure 10A). 

The calibration curves exhibited a high consistency 

between the predicted and actual 1-, 3-, and 5-year  

OS (Figure 10B). The ROC curves displayed the 

nomogram had higher AUC values than the single 

predictor such as MPPS, age, sex, stage, treatment  

type (1-, 3-, 5-year AUC: 0.793, 0.821, 0.82) (Figure 

10C–10E).  

 

Identification of a MPPS-related gene signature by 

WGCNA and machine learning 

 

To identify MPPS-related modules, WGCNA analysis 

was performed and 21 modules were identified.  

231 genes with gene significance (GS)>0.25, module 

membership (MM)>0.2 and P < 0.05 were considered 

as hub MPPS-related genes. Therefore, the hub genes in 

cyan, tan and turquoise modules met the criterion 

(Figure 11A). Intersecting with GEO genes from 6 GEO 

cohorts and DEGs between TCGA-LUAD and normal 

tissues, 104 hub MPPS-related genes were identified  

for subsequent analysis (Figure 11B). Based on the 

expression profiles of 104 hub MPPS-related genes, 

univariable Cox analysis identified 82 prognostic genes. 

These 82 genes were subjected to our machine learning-

based integrative procedure to develop a consensus 

MPPS-related gene signature. In the TCGA-LUAD 
dataset, we fitted 117 kinds of prediction models via the 

LOOCV framework and further calculated the C-index 

of each model across 6 GEO validation datasets (Figure 

11C). Finally, the 7-gene signature composed of ECT2, 

ANLN, SLC2A1, LDHA, GAPDH, C1QTNF6 and 

KRT8 identified by a combination of Lasso regression 

and survival-SVM had the highest mean C-index in the 

6 validation cohorts (Figure 11D, 11E). A gene-based 

risk score for each patient was calculated by the 

survival-SVM algorithm and divided patients into the 

high- and low-risk group according to the optimal cut-

off value determined by the “survminer” package. To 

validate the prognostic value of the gene signature, we 

performed Kaplan-Meier analysis. The patients in the 

high-risk group had significantly dismal OS and PFS 

compared to the low-risk group in the TCGA-LUAD 

training cohort and six GEO validation cohorts (all P < 

0.05) (Figure 11F). The GEO merge cohort also showed 

the same trend (P < 0.05). In addition, ROC analysis 

measured the discrimination of the gene signature, with 

1-, 3-, 5-year AUCs of 0.697, 0.704, 0.626 in OS of 

TCGA-LUAD; 0.643, 0.615, 0.556 in PFS of TCGA-

LUAD; 0.763, 0.771, 0.686 in OS of GSE3141; 0.861, 

0.676, 0.692 in OS of GSE13213; 0.673, 0.752, 0.777  

in OS of GSE30219; 0.777, 0.727, 0.757 in OS of 

GSE31210; 0.758, 0.718, 0.698 in OS of GSE50081; 

0.684, 0.643, 0.662 in OS of GSE72094; 0.716, 0.689, 

0.699 in OS of GEO merge cohort (Supplementary 

Figure 5A). To further verify the predicting performance 

of the gene signature in the clinical practice, we next 

evaluated the mRNA expression of the 7 genes in a 

clinical cohort of 42 LUAD patients by qRT-PCR. The 

Kaplan-Meier analysis showed the low-risk group had 

better prognosis than the high-risk group (Supplementary 

Figure 5B). The model had high accuracy in predicting 

OS with 1-, 3-, 5-year AUCs of 0.763, 0.725, 0.762  

in the clinical practice (Supplementary Figure 5C). 

Together, the MPPS-related gene signature had robust 

performance in prognostic prediction of LUAD.  

 

Expression, function, prognosis analyses of MPPS-

related gene signature 

 

To investigate the correlation of MPPS and the  

gene risk score, Spearman correlation analysis was 

performed and significantly positive correlation was 

observed with R=0.6 and P < 2.2e-16 (Figure 12A). 

Next, the 7 genes all exhibited obviously higher 

expression in LUAD than normal lung tissue (Figure 

12B). Compared to the low-MPPS group, the high-

MPPS group had significantly upregulated expression 

(Figure 12C). To explore the correlation of 7 genes  

and 31 metabolic pathways, the correlation heatmap 

was drawn (Figure 12D). The result showed that there 

was a positive correlation among the 7 genes expression 

and their expression was positively associated with  
FA elongation, pyrimidine metabolism, cysteine and 

methionine metabolism and one carbon pool by folate 

and negatively associated with valine, leucine and 
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Table 1. The results of univariable and multivariable Cox regression analyses. 

Characteristics 
Univariable analysis Multivariable analysis 

HR (95%CI) P-value HR (95%CI) P-value 

Age     

    <=70 1  1  

    >70 1.430 (1.056-1.936) 0.021 1.450 (1.065-1.975) 0.018 

Sex     

    Female 1    

    Male 0.979 (0.726-1.320) 0.890   

Stage     

    I 1  1  

    II 2.302 (1.590-3.332) <0.001 2.371 (1.637-3.434) <0.001 

    III/IV 3.295 (2.309-4.702) <0.001 2.537 (1.756-3.667) <0.001 

Treatment type     

    Chemotherapy 1    

    Radiotherapy 0.888 (0.658-1.199) 0.438   

Risk score     

    Low 1  1  

    High 1.042 (1.036-1.049) <0.001 1.039 (1.032-1.046) <0.001 

 

 
 

Figure 10. Development and evaluation of a prognostic nomogram. (A) Nomogram composed of MPPS, age, stage to predict 1-, 3-, 

5-year OS probability. (B) Calibration curves of 1-, 3-, 5-year OS by nomogram. 1- (C), 3- (D), 5- (E) year ROC curves of MPPS, nomogram, age, 
sex, stage, and treatment type. 
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Figure 11. Identification of MPPS-related genes by WGCNA and machine learning. (A) Correlation analysis between module 

eigengenes and MPPS by WGCNA. (B) The intersection of WGCNA hub genes, TCGA-DEGs, and GEO genes. (C) The C-index of 117 machine 
learning algorithm combinations via LOOCV framework across all validation datasets. (D, E) Determination of the number of MPPS-related 
genes by the LASSO regression analysis. (F) The Kaplan-Meier analysis of the high- and low-gene risk scores groups stratified by LASSO and 
survival-SVM in the training and validation cohorts. 
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isoleucine degradation, selenocompound metabolism, 

glycerophospholipid metabolism and arachidonic acid 

metabolism. Subsequently, we analyzed the correlation 

between the gene signature and 14 functional states 

across 18 cancers using CancerSEA data. The results 

manifested that the signature was positively related to 

LUAD proliferation, invasion, cell cycle, DNA damage 

and repair (Figure 12E). To investigate the mechanism 

 

 
 

Figure 12. Expression, function, prognosis analyses of MPPS-related gene signature. (A) Correlation of MPPS and gene risk score 
by LASSO and survival-SVM. (B) The differences of the expression of 7 genes between TCGA-LUAD and normal samples. (C) The differences of 
the expression of 7 genes between the high- and low-MPPS groups. (D) The correlation of 7 genes expression and metabolic pathways. (E) 
The correlation of 7 genes expression and 14 biological processes by cancerSEA website. (F) The copy number variation frequency and 
location in chromosomes of the 7 genes. (G) The Kaplan-Meier analysis of the high- and low-expression of the 7 genes. 
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underlying dysregulated expression, the CNV analysis 

was applied. The ECT2, SLC2A1, KRT8, ANLN and 

C1QTNF6 showed widespread CNV amplification. In 

contrast, GAPDH and LDHA had prevalent CNV 

depletion. The locations of CNV alterations of the 7 

MPPS-related genes on chromosomes are shown in 

Figure 12F. Finally, the prognostic value of the 7 MPPS-

related genes was analyzed by Kaplan-Meier curve in  

the TCGA-LUAD cohort (Figure 12G). The upregulation 

of the 7 genes all indicated worse survival (P<0.001). 

Effect of C1QTNF6 on infiltrating immune cells of 

TME 

 

By investigating MPPS-related genes expression in 

specific cells in TME, we found only C1QTNF6 was 

highly expressed in fibroblasts and the other six genes 

were mainly expressed in malignant cells (Figure 13A). 

Moreover, referring to the published literatures, little  

is known about the function of C1QTNF6 compared to 

the other six genes. Consequently, we focused on the 

 

 
 

Figure 13. Effect of C1QTNF6 on infiltrating immune cells of TME. (A) The heatmap of 7 genes expression in different cells by scRNA-

seq. (B) The differences of C1QTNF6 expression among pan-immune cells, endothelial cells, fibroblasts and malignant cells. (C) The heatmap 
of C1QTNF6 expression in TME cells by multiple scRNA-seq datasets. The correlation of C1QTNF6 expression in fibroblasts and immune cells 
infiltration (memory CD8+ T cell (D), NK cell (E), M2 macrophages (F, G), Treg cell (H), fibroblast (I)). (J) qRT-PCR was performed to detect the 
efficiency of C1QTNF6-siRNA transfection. (K) M0 macrophages were stimulated by conditional medium from MRC-5 cells with C1QTNF6 
silencing for 48h. qRT-PCR was performed to detect the expression of PD-L1, M1 and M2 markers. (L) Representatives and summary of M2 
macrophage migration assays induced with MRC-5 cells with or without C1QTNF6 silencing. The data were presented as the mean±SD; n = 3. 
*P < 0.05, **P < 0.01, ***P < 0.001.  
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function of C1QTNF6. The violin plot showed that the 

expression of C1QTNF6 was the highest in fibroblasts, 

followed by endothelial cells, malignant cells and pan-

immune cells (Figure 13B). By comparing multiple 

single-cell datasets, the similar expression trend was 

obtained (Figure 13C). Next, we analyzed the effect  

of C1QTNF6 expression in fibroblasts on infiltrating 

immune cells of TME by scTIME Portal website. 

GZMK+FOS+CD8+ T cells have been identified as 

memory T cells and are prevalent in para-carcinoma 

tissues or normal donors. FCGR3A+ NK cell is a classic 

NK cell cluster and plays important roles in anti-tumor 

immunity. C1QTNF6 expression in fibroblasts was 

dramatically negative relation to the infiltration of 

GZMK+FOS+CD8+ T cells (R=-0.515, P=0.049) and 

FCGR3A+ NK cell (R=-0.485, P=0.012) (Figure 13D, 

13E). SPP1+ACP5+ macrophage and SPP1+CLEC5A+ 

macrophage are biased toward an M2 signature. Their 

infiltrating abundance was significantly positive to 

C1QTNF6 expression in fibroblasts (SPP1+ACP5+ 

macrophage: R=0.699, P<0.001; SPP1+CLEC5A+ 

macrophage: R=0.589, P<0.01) (Figure 13F, 13G). 

CTLA4+CD4+ Tregs are enriched in tumors and 

commonly involved in T cell inhibition across patients 

and tumor types. C1QTNF6 expression in fibroblasts 

was positive related to CTLA4+CD4+ Tregs abundance 

in TME, indicating high C1QTNF6 expression in 

fibroblasts might result in more CTLA4+CD4+ Tregs 

infiltration in TME (R=0.456, P=0.019) (Figure 13H). 

Interestingly, C1QTNF6 expression in fibroblasts was 

also positively associated with fibroblast infiltration in 

TME (R=0.547, P<0.01) (Figure 13I). Subsequently, we 

analyzed the cell communication between fibroblasts 

and immune cells. The results suggested that fibroblasts 

had strong interactions with M2 macrophages including 

C1QC+PLTP+ macrophage, SPP1+ACP5+ macrophage, 

SPP1+CLEC5+ macrophage (Supplementary Figure 6A). 

Furthermore, the ligand-receptor interaction analysis 

suggested that fibroblasts were very likely to interact 

with M2 macrophage through CD74-COPA, CD74-APP 

and CD74-MIF (Supplementary Figure 6B–6D). By 

analyzing the hallmarks enrichment between high and 

low C1QTNF6 expression groups, we found multiple 

pathways related to M2 polarization were enriched  

in high C1QTNF6 expression groups including NF- 

κB signaling pathway, glycolysis, IL6/JAK/STAT3 

signaling pathway, TGF-β signaling pathway, Wnt/β-

catenin signaling pathway, and Hedgehog signaling 

pathway (Supplementary Figure 6E). Consequently, we 

hypothesized that C1QTNF6 expression in fibroblasts 

may affect M2 macrophage polarization or recruitment.  

 

To validate the hypothesis, we constructed MRC-5  
cells with C1QTNF6 silencing by siRNAs. As shown  

in Figure 13J, the specific cells were successfully 

established with high silencing efficiency. After 48h, 

the supernatant was collected, centrifuged and prepared 

as CM. To detect the effects of silencing C1QTNF6 in 

MRC-5 cells on macrophages polarization, we cultured 

M0 macrophages with the mixture of CM and FBS-

containing medium (1:1) for 48h. Compared to the 

control, the group with C1QTNF6 silencing had 

significantly decreased PD-L1 and M2 macrophage-

related genes expression (CD163, CD206). Conversely, 

M1 macrophage-related genes expression (CD80, 

CD86) were obviously increased when C1QTNF6 was 

silenced in MRC-5 (Figure 13K). Furthermore, we 

successfully induced M0 to M2 macrophage by  

IL-4 and IL-13 stimulation (Supplementary Figure  

6F). The macrophage migration assay showed that 

silencing C1QTNF6 in MRC-5 cells could reduce M2 

macrophage migration in vitro (Figure 13L). These 

fundings suggested that C1QTNF6 expression in MRC-

5 cells promoted M2 macrophage polarization and 

recruitment. 

 

Cause effect of C1QTNF6 on lung cancer onset 

 

To evaluate the cause effect of C1QTNF6 on  

lung cancer onset, MR analysis was performed. 340 

eligible SNPs were used as instrumental variables for 

C1QTNF6 and 274 common SNPs was obtained after 

harmonization. The funnel plot and leave-one-out 

sensitivity analysis showed that there was no obviously 

heterogeneous SNPs (Figure 14A and Supplementary 

Figure 7). MR analysis revealed that C1QTNF6 

expression increased the risk of lung cancer (Figure 

14B). Except weighted mode, the other four methods all 

showed the same trend (OR (95%CI): Inverse variance 

weighting (IVW) 1.029 (1.023-1.035) P < 0.001;  

MR Egger 1.015 (1.002-1.028) P =0.029; Weighted 

median 1.017 (1.008-1.027) P < 0.001; Simple mode 

1.084 (1.052-1.117) P < 0.001) (Figure 14C). there  

was no heterogeneity and horizontal pleiotropy (the 

Cochrane’s Q-value > 0.1; MR PRESSO global test  

P = 0.236), indicated that the result of MR analysis was 

credible. Moreover, Steiger filtering further ensured 

directionality with all P-values of SNP less than 0.05. 

However, Bayesian co-localization showed that there 

was no genetic co-localization between C1QTNF6 and 

lung cancer (PP.H4=4.59e-03) (Figure 14D). 
 

DISCUSSION 
 

LUAD is a highly aggressive malignancy with an 

unfavorable prognosis and average 5-year survival rate 

of only 15% [24]. With the rapid development of 

immunotherapy, it has shown great potential in the 

treatment of cancer. However, only about one third  
of patients can benefit from immunotherapy due to 

heterogeneity and adaptive evolution of tumor cells  

[4]. To advance precision medicine, it is necessary to 
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stratify cancer patients into distinct groups according  

to their prognosis and immunotherapy response  

before treatment. With the advances in sequencing 

technology, more and more gene expression-based 

prognostic models have been constructed to predict  

the prognosis and immunotherapy response of cancer 

patients [21, 25, 26]. Unfortunately, the most models 

have not robust performance in other cohorts due to 

sequencing data from different platforms. To overcome 

this obstacle, pairing multiple markers to construct a 

prognostic model was put forward creatively. Metabolic 

reprogramming has been identified as a new hallmark  

of cancer and tightly associated with clinical outcomes 

and immunotherapy efficacy. Tumor cells reprogram 

their metabolism to compete for nutrients with other 

cells in TME, deal with oxidative stress, and reshape an 

immunosuppressive TME to evade the immune system 

[27, 28]. Comprehensively depicting the metabolic 

profile of LUAD is promising to predict the survival 

and immunotherapy efficacy of LUAD patients.  

 

In this study, we assessed 84 metabolic pathways 

involved in 12 kinds of metabolism in LUAD by 

ssGSEA and analyzed the metabolic heterogeneity of 

LUAD. Then, we paired the 84 pathways and 

identified 19 metabolic pathway pairs by univariable, 

LASSO, multivariable Cox regression analysis. Using 

the 19 metabolic pathway pairs, we established a 

MPPS system and stratified LUAD patients into the 

high- and low-MPPS group. The high-MPPS group 

was characterized by high galactose metabolism,  

FA elongation, pyrimidine metabolism, cysteine  

and methionine metabolism, one carbon pool by 

folate and aminoacyl-tRNA biosynthesis. The low-

MPPS group was characterized by dominant caffeine 

metabolism, valine, leucine and isoleucine degra-

dation, selenocompound metabolism and arachidonic 

acid metabolism. Galactose is another important 

carbohydrate and involved in glycosylation, energy 

storage and pentose phosphate pathway directly or 

indirectly [29]. Many tumors preferentially use 

glycolysis for survival and proliferation and have 

metabolic vulnerability to galactose. It has been 

reported that tumor cells with Akt activation will  

be induced cell death in galactose culture [30].  

Thus, LUAD with high galactose metabolism may  

be more adaptative for various energy substances.  

FA biosynthesis includes de novo synthesis and FA 

 

 
 

Figure 14. Mendelian randomization analysis of C1QTNF6 and lung cancer. (A) The funnel plot displayed the distribution of 

instrumental variables for C1QTNF6. (B) Scatter plot showed that C1QTNF6 increased the risk of lung cancer. (C) Forest plot showed the cause 
effect of C1QTNF6 on lung cancer onset. (D) The co-localization analysis of C1QTNF6 and lung cancer.  
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elongation. Elongation of very long-chain fatty  

acid (ELOVL) family enzymes are responsible for 

catalyzing FA elongation. Disruption of FA elongation 

by silencing ELOVL5 can suppress proliferation and 

invasion of renal cell carcinoma [31]. Moreover, 

VLCFA deficiency results in a marked decrease in 

ceramides as well as downstream glucosylceramides 

and sphingomyelins, which impairs mitochondrial 

morphology and renders cancer cells sensitive to 

oxidative stress and cell death [32]. Pyrimidine 

metabolism, one carbon pool by folate and amino-

acyl-tRNA biosynthesis are tightly associated to 

nucleotides biosynthesis and translation, which are 

indispensable for rapid proliferation of malignant cells. 

UBE2T-mediated Akt K63 ubiquitination and Akt/β-

catenin activation accelerate hepatocellular carcinoma 

development by increasing pyrimidine metabolism 

[33]. Combination of pyrimidine synthesis inhibitors 

and other anti-tumor drugs is promising to kill tumor 

cells [34]. Nucleotide synthesis and DNA methylation 

are highly dependent on one carbon pool by folate, 

which supports vital events for growth and survival 

[35]. Methionine and cysteine, two of the most 

representative sulfur amino acids, play a crucial role in 

protein structure, metabolism, immunity, and especially, 

oxidation. They are extremely sensitive to almost all 

forms of reactive oxygen species and protect cells 

from oxidative stress damage [36]. Dietary restriction 

of methionine and cysteine will alter the energetic 

metabolism and enhance the sensitivity of gliomas  

to ferroptosis [37]. These metabolic pathways are 

highly elevated in high-MPPS group and may shape  

a refractory phenotype. Conversely, many anti-tumor 

metabolic pathways were elevated in the low- 

MPPS group. Caffeine can enhance anti-tumor activity 

of anti-PD-1 monoclonal antibody by increasing  

the infiltration of CD4+ and CD8+ T lymphocytes  

and decreasing the infiltration of Treg cells [38].  

The branched-chain amino acids (BCAAs) (valine, 

leucine, and isoleucine) are essential amino acids that 

play important roles in metabolic regulation. The 

accumulation of BCAAs can activate mTOR signaling 

pathway to promote tumor proliferation [39]. Thus, 

degradation of BCAAs may be harmful to tumor 

progression. Se compounds have been demonstrated as 

anticancer agents in vivo and in vitro experiments. 

They can prevent oncogene activation and cancer cell 

differentiation through scavenging of ROS, tumor-

promoting eicosanoids and inducing tumor suppressor 

genes expression [40]. Arachidonic acid metabolism  

is a double-edged sword in tumor initiation and 

progression. On the one hand, arachidonic acid can 

inhibit M2 macrophage polarization and enhance 
ferroptosis sensitivity to suppress tumor progression 

[41, 42]. On the other hand, it promotes stromal  

cell-mediated immunosuppression in NSCLC [43]. 

Consequently, the MPPS system divided LUAD patients 

into distinct metabolic reprogramming subgroups well. 

 

The MPPS system displayed robust performance on 

recognizing LAUD patients’ prognosis whether in 

training cohort or validation cohorts. The high-MPPS 

group had a worse prognosis than the low-MPPS 

group. ROC curves showed the model had high 

accuracy on prediction of prognosis. Comparing to the 

other published models and several clinical features 

(age, sex, stage and treatment type), the MPPS model 

had significantly improved accuracy. Moreover, the 

model was also applicable in the other 32 tumors. 

These results suggest that the MPPS model is 

promising to be applied in the clinical practice. 

 

Increasing evidence demonstrates that metabolic 

reprogramming in TME affects anti-tumor immunity. 

For example, targeting glutamine metabolism increased 

antitumor immunity in mouse models by upregulating 

mitochondrial metabolism of cytotoxic T lymphocytes 

in NSCLC [44, 45]. Treg cells rely on oxidative 

phosphorylation and FA oxidation to support their 

survival and differentiation [46]. Lipid metabolic 

reprogramming can prevent effector T cells senescence 

and enhance immunotherapy efficacy [47]. These also 

reveal that deeply understanding and depicting metabolic 

heterogeneity can favor immunotherapy. However, up 

to now, there is still a lack of comprehensive depiction 

of heterogeneous metabolic landscape in TME. The 

evaluation of 84 metabolic pathways in LUAD revealed 

the metabolic heterogeneity of LUAD in this study. 

Considering the tight association of metabolism and 

immunotherapy, we wondered whether the LUAD 

patients with different MPPS had different responses to 

immunotherapy. Using seven independent immuno-

therapy cohorts, we found that the patients with low-

MPPS scores commonly had higher immunotherapy 

response rates than those with high-MPPS scores. To 

further explore the alteration of immune cells, molecules 

and function, it was revealed that more immune cells 

infiltration, immune-related genes expression, and 

immune function activation were in the low-MPPS 

group, such as activated B cells, activated CD8+ T cells, 

activated dendritic cells, eosinophil and macrophage 

and the immune checkpoint, HLA, T cell co-inhibition 

or stimulation, type II IFN response. The low-MPPS 

group also had higher cancer–immunity cycle scores in 

cancer antigen presentation, priming and activation, 

CD4+ T cell, dendritic cell, B cell, Th17 cell recruiting, 

and immune cells tumor infiltration. These results 

implied that LUAD with the low-MPPS score was 

inclined to be a “hot” TME and LUAD with the high-
MPPS score was a “cold” TME. TIDE score also 

validated the conclusion and T cell dysfunction was 

higher in the low-MPPS group than the high-MPPS 
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group. With the increase of MPPS, the inflamed TME 

was transformed to the excluded TME. TMB is emerging 

as another indicator of immunotherapy except for PD-

L1 expression. The high-MPPS group had higher TMB 

compared to the low-MPPS group. The LUAD patients 

with high TMB and low MPPS had the best prognosis 

and those with low TMB and high MPPS had the worst 

prognosis. Consequently, the bad prognosis of the high-

MPPS group is not likely due to TMB. By identifying 

the sensitivity of 137 chemotherapy drugs, multiple 

drugs sensitive to the high- or low-MPPS group were 

determined, which may be helpful to guide precision 

medicine of LUAD patients.  

 

Although targeting cancer metabolism to improve 

immunotherapy efficacy is highly promising, the 

crosstalk of metabolic pathways between tumor cells 

and immune cells in TME lead to disruption of normal 

metabolic pathways in immune cells by strategies to 

inhibit/alter cancer metabolism [48]. Thus, it is critical 

to target the specific metabolic pathways to kill tumors 

without interfering with or even promoting anti-tumor 

immunity. To identify such pathways, we analyzed  

the metabolic pathway pair in different kinds of cells  

by scRNA-seq data. Interestingly, the average value  

of cysteine and methionine metabolism/ganglio series 

biosynthesis is significantly elevated in malignant cells 

than the other cells including immune cells, fibroblasts, 

endothelial cells. Many previous studies have reported 

that tumor cells are highly dependent on cysteine and 

methionine metabolism than normal cells and they are 

promising targetable weaknesses of cancer cells [49]. 

Ganglio series biosynthesis are also tightly related to 

some malignant phenotypes such as metastasis [50]. As 

a result, this metabolic pathway pair may be promising 

to be a metabolic target in LUAD therapy. 

 

The previous studies mostly choose the modeling 

algorithms to identify the hub genes based on their 

knowledge limitations and preferences. To overcome 

this shortcoming, we firstly identified the MPPS-related 

hub gene module by WGCNA and then, integrated  

117 machine learning algorithms to further recognize 

the prognostic signature. Finally, seven genes were 

identified, in which C1QTNF6 caught our attention due 

to its specific expression in fibroblast. Some studies 

have suggested that silencing C1QTNF6 in LUAD cells 

can suppress the proliferation, migration and invasion of 

LUAD cells [51]. C1QTNF6 is a prognostic indicator 

for poor survival across many cancers including LUAD 

and one of the most relative genes of TAM [52, 53]. 

However, there is still little knowledge about the 

function of C1QTNF6 in tumors.  
 

By analyzing multiple scRNA-seq datasets, we found 

C1QTNF6 expression was mainly focused on fibroblast 

and its expression in fibroblast was positively related  

to the infiltration of M2 macrophages, Treg cells, and 

negatively related to the infiltration of memory CD8+ T 

cells, NK cells. Moreover, there existed strong interaction 

between M2 macrophages and fibroblast by intercellular 

communication analysis. In vitro experiments also 

validated that the CM from fibroblastC1QTNF6-/- would 

promote the transformation of M0 into M1 but not M2 

macrophage, decrease PD-L1 expression, and reduce 

M2 macrophage migration. Hallmarks enrichment 

analysis showed that NF-κB signaling pathway, 

glycolysis, IL6/JAK/STAT3 signaling pathway, TGF-β 

signaling pathway, Wnt/β-catenin signaling pathway, 

and Hedgehog signaling pathway were enriched in high 

C1QTNF6 expression group, which were reported to 

participate in M2 macrophage polarization. Inhibition of 

autophagic degradation of RELA will rescue activity of 

NF-κB signaling pathway and shape the phenotype of 

hepatoma-polarized M2 macrophages [54]. Activation 

of IL6/JAK/STAT3 signaling pathway in macrophages 

can promote M2 polarization and PD-L1 expression [55, 

56]. A large amount of lactate produced by glycolysis 

induces M2 macrophage polarization and promotes the 

invasion of pituitary adenoma [57]. Mesenchymal stem 

cells can induce M2 polarization phenotype via secreting 

TGF-β to activate Akt/FoxO1 pathway in LPS-

stimulated macrophages [58]. It is also reported that 

crosstalk between hepatic tumor cells and macrophages 

by Wnt/β-catenin signaling pathway can promote M2 

polarization [59]. FOXM1 can induce M2 polarization 

through SEMA3C/NRP2/Hedgehog signaling [60].  

The results indicated that C1QTNF6 may be tightly 

associated with M2 polarization. Lin et al. reported that 

after silencing C1QTNF6, the enrichment of cytokine-

cytokine receptor interaction pathways was reduced  

in LUAD cell by RNA sequencing, which indicated  

that C1QTNF6 may participate in cytokine-cytokine 

receptor interaction pathways directly or indirectly [61]. 

Consequently, C1QTNF6 expression in fibroblast may 

promote M2 macrophage polarization and migration by 

regulating cytokine-cytokine receptor interaction. 

 

Mendelian randomization (MR) is as a valuable tool  

for inferring causal relationships between exposure  

and outcome by leveraging Genome wide association 

study (GWAS) data. The result of MR suggested  

that C1QTNF6 expression had the increased risk of  

lung cancer although there was no evidence of co-

localization. The MR result was consistent with the 

expression and prognosis of C1QTNF6 in LUAD.  

 

There are still some limitations in our study. Although 

we identified two distinct metabolic subtypes with 
significantly different prognosis and immunotherapy 

efficacy, some immunotherapy cohorts were from the 

studies about urothelial cancer or melanoma and more 
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LUAD-related immunotherapy cohorts are needed to 

validate our conclusion. The drug sensitivity needs 

further validation by IC50 assays. Although we 

identified the potential metabolic pathways associated 

with prognosis, the targetable molecules for the 

pathways remain to be explored. The underlying 

mechanism that C1QTNF6 regulated M2 macrophage 

polarization and migration remains to be elucidated. 

Moreover, the relationships of C1QTNF6 and the other 

immune cells need further exploration. The conclusion 

of MR needs further experimental validation. The above 

insufficient will be the focus of our future study. 

 

CONCLUSIONS 
 

Based on 84 metabolic pathways, we constructed a 

MPPS model to accurately predict the prognosis and 

immunotherapy efficacy of LUAD patients. Targeting 

C1QTNF6, a MPPS-related gene, is promising to 

suppress M2 macrophage polarization and migration. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

Gene expression data of LUAD and corresponding 

clinical characteristics were respectively retrieved  

from The Cancer Genome Atlas (TCGA) (HTseq-

fragments per kilobase million, HTseq-FPKM) 

(https://cancergenome.nih.gov/) and Gene-Expression 

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 

databases. Patients without prognostic information or 

survival time = 0 were excluded. Then 500 LUAD  

cases from TCGA database and 1009 LUAD cases from 

GEO database were retrieved as the training cohort  

and validation cohort (GSE3141: 58 cases; GSE13213: 

117 cases; GSE30219: 83 cases; GSE31210: 226 cases; 

GSE50081: 127 cases; GSE72094: 398 cases). The 

demographic was shown in Supplementary Table 1. The 

ComBat method from the ‘SVA’ R package was used  

to remove the batch effects among different GEO 

datasets. Pan-cancer mRNA expression profiles and 

prognostic information were obtained from UCSC  

Xena website (https://xenabrowser.net/datapages/). The 

somatic mutation and copy number variation (CNV)  

of TCGA-LUAD were also curated from TCGA 

database. Eighty-four metabolic pathway gene sets were 

extracted from the KEGG database. The abbreviations 

of 84 metabolic pathways were listed in Supplementary 

Table 2. In addition, 42 LUAD tissues were collected 

from the Department of Thoracic Surgery, Shandong 

Provincial Hospital. The prognostic information was 

also followed up.  
 

Seven immunotherapeutic cohorts were acquired to 

validate the prediction of immunotherapy efficacy using 

the MPPS model: advanced urothelial cancer treated with 

atezolizumab, an anti-PD-L1 antibody (IMvigor210 

cohort) [62]; melanoma treated with anti-CTLA4  

and anti-PD-1 therapy (GSE91061) [63]; metastatic 

melanoma treated with anti-CTLA4 therapy [64]; 

NSCLC treated with nivolumab or pembrolizumab,  

an anti-PD-1 antibody (GSE126044) [65]; NSCLC 

treated with anti-PD-1/PD-L1 antibody (GSE135222) 

[66]; melanoma treated with adoptive T cell therapy 

(ACT) (GSE100797) [67]; Melanoma treated with anti-

PD-1 antibody (GSE78220). The response and benefit 

of TCGA cohort were calculated based on the Tumor 

Immune Dysfunction and Exclusion (TIDE) website 

(http://tide.dfci.harvard.edu/) by integrating TIDE score, 

interferon gamma (INFG), microsatellite instability 

(MSI) score, CD274, Merck18, CD8, myeloid-derived 

suppressor cells (MDSC), cancer associated fibroblast 

(CAF) and tumor-associated macrophages (TAM) M2.  

 
To generate eQTL instruments for C1QTNF6,  

genetic variants located within 1000 kb on either  

side of the coding sequence (in cis) that are robustly 

associated with gene expression were extracted using 

eQTLs summary statistics obtained from the eQTLGen 

Consortium (https://www.eqtlgen.org/cis-eqtls.html). 

The data were established based on 26,609 blood 

samples of Europeans [68]. Lung cancer GWAS data 

(ieu-a-987) were obtained from the Transdisciplinary 

Research in Cancer of the Lung (TRICL). The GWAS 

data included 29,863 cases and 55,586 controls from 

European. 

 
Estimation of metabolic pathways heterogeneity in 

LUAD 

 
The levels of 84 metabolic pathways were estimated  

in each sample by ssGSEA. Then the metabolic 

differences of LUAD and normal samples were 

analyzed by “limma” package. An unsupervised 

consensus clustering according to 84 metabolic 

pathways scores was performed to identify distinct 

LUAD metabolic subtypes, which were showed by the 

principal component analysis (PCA). The metabolic 

profiles of TME cells including endothelial cells, 

malignant cells, cancer-associated fibroblasts (CAFs) 

and pan-immune cells were compared using single-cell 

RNA sequencing data (GSE111907).  

 
Development and evaluation of a MPPS system  

 
Pairwise comparisons of the 84 metabolic pathways’ 

scores in the training cohort were performed. The 

algorithm presented a scoring system in which the score 
of the metabolic pathway-pair was recorded as 1 if the 

expression level of the first metabolic pathway’s score 

was higher than that of the second; otherwise, it was 
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recorded as 0, resulting in the construction of a 0 or 1 

matrix. A metabolic pathway pair was deleted if the 

proportion of 0 or 1 was more than 80% or less than 20% 

of the samples in the training cohort. The abbreviations 

of the qualified metabolic pathway pairs were listed in 

Supplementary Table 2. Next, the qualified metabolic 

pathway pairs were enrolled for univariable, LASSO and 

multivariable Cox regression analysis to construct a 

MPPS system. The MPPS was calculated as follows: 

 

1

( )

* ( )

n

i

MPPS Coef metabolic pathway pair i

Value metabolic pathway pair i

=

=
 

 

According to the optimal cut-off point of MPPS 

determined by the ‘survminer’ package, LUAD patients 

were stratified into the high- and low-MPPS groups. 

The optimal cut-off points were determined separately 

in the training and validation cohorts. The survival rates 

of the high- and low-MPPS groups were compared  

by Kaplan-Meier method in the training cohort and 

validation cohorts. Receiver operating characteristic 

(ROC) curves, generated by the “timeROC” package 

and “Aalen” weighting method, and C-index were used 

to detect the accuracy of MPPS. Univariable and 

multivariable Cox regression analyses were used to 

detect the prognostic roles of the clinical characteristics 

and MPPS. The independent prognostic factors were 

combined to develop a predicting nomogram by R 

package “rms”. The calibration curve was used to detect 

the consistency of the nomogram. The optimal cut-off 

value was calculated separately for each cancer, when 

we evaluated the performance of MPPS in pan-cancer. 

 

Enrichment analysis and functional annotation 

 

GO and KEGG pathway analyses were performed  

to investigate the variation in biological processes 

between high- and low-MPPS groups. The results  

of GO annotation were displayed by an online  

tool bioinformatics (https://bioinformatics.com.cn/). 

The Hallmark gene set was used to explore the 

distinction in various biological signatures between the 

high- and low-MPPS groups. The CancerSea website 

(http://biocc.hrbmu.edu.cn/CancerSEA/) was used to 

investigate 14 biological processes of multiple genes 

across various cancers. 

 

Protein-protein interaction (PPI) network 

 

The differentially expressed genes (DEGs) involved in 

MPPS between high- and low MPPS groups were input 

in STRING website (https://string-db.org/). PPI network 

was constructed with a minimum confidence score >0.4 

and visualized by the software Cytoscape v3.9.1. 

TME landscape analyses  

 

Immune score, stromal score and ESTIMATE  

score were calculated using the ESTIMATE algorithm 

[69]. Immune cells infiltration and functions were 

evaluated by ssGSEA [70]. Expression of various 

immune checkpoint genes and HLA-related genes  

was compared between different MPPS scores groups. 

The cancer-immunity cycle scores of TCGA-LUAD 

samples were downloaded from the TIP database 

(http://biocc.hrbmu.edu.cn/TIP/) [71]. The discrepancy 

of the cancer-immunity cycle scores between the high- 

and low-MPPS groups was compared. The differences 

of MPPS scores among immune-inflamed, excluded 

and desert phenotypes had been analyzed [62]. 

 
Tumor mutation burden (TMB) and drug sensitivity 

analyses 

 

The “maftools” R package was employed to  

explore the mutation frequency in different MPPS 

subgroups [72]. Then, the correlation between MPSS 

and TMB was analyzed. Subsequently, we evaluated  

the synergistic effect of TMB and MPPS score on 

prognostic stratification. A total of 137 drugs sensitivity 

in different MPPS groups was analyzed by R package 

“pRRophetic” and visualized in the form of parliament 

plot by Hiplot Pro (https://hiplot.com.cn) [73]. 

 
WGCNA 

 
Co-expression gene networks of TCGA-LUAD were 

constructed using the WGCNA package. The unsigned 

network was selected. An appropriate soft threshold  

β was calculated to meet the criteria for the scale-free 

network. The optimal β was 4. Then, the weighted 

adjacency matrix was converted into a topological over-

lap matrix (TOM), and the corresponding dissimilarity 

was generated (1- TOM). Finally, the dynamic tree  

cut algorithm was used to identify the modules, and 80 

was selected as the minimum number of genes for each 

module. The modules with the correlation coefficient  

R > 0.2, P-value < 0.05 were regarded as the key 

modules, and the genes with GS > 0.25, MM > 0.2 were 

regarded as key genes. These genes intersected by 

TCGA DEGs and GEO genes were used as candidate 

genes for subsequent analysis. 

 
Hub genes identified from machine learning-based 

integrative approaches 

 
Ten machine learning algorithms and 117 algorithm 

combinations were utilized to identify hub genes related 
to MPPS with high accuracy and stability performance 

on prognostic prediction. The integrative algorithms 

included random survival forest (RSF), stepwise Cox, 
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elastic network (Enet), Lasso, Ridge, CoxBoost, partial 

least squares regression for Cox (plsRcox), generalised 

boosted regression modelling (GBM), supervised 

principal components (SuperPC), and survival support 

vector machine (survival-SVM). The procedure was  

as follows: (a) Univariable Cox regression analysis  

was used to screened out prognostic genes from the 

candidate genes; (b) Next, 117 algorithm combinations 

were performed on the prognostic genes to identified 

hub genes based on the leave-one-out cross-validation 

(LOOCV) framework in the TCGA-LUAD cohort;  

(c) All hub genes derived from 117 algorithm combi-

nations were validated in six independent validation  

cohorts (GSE13213, GSE31210, GSE3141, GSE30219, 

GSE50081, GSE72094); (d) The hub genes with the 

highest average C-index across all validation cohorts 

were considered optimal. 

 

scRNA-seq analysis 

 

GSE111907 was retrieved to evaluate the metabolic 

pathway levels and hub genes expression in malignant, 

pan-immune cells, endothelial and fibroblast cells. The 

hub genes expression in various cell subtypes of TME 

was explored by TISCH2 website (http://tisch.comp-

genomics.org/). GSE127465 was used to analyze 

intercellular communication and correlation of hub 

gene expression and immune cells infiltration using 

scTIME Portal website (http://sctime.sklehabc.com/ 

unicellular/home).  

 

RNA extracting and real-time PCR 

 

Total RNA was extracted from LUAD frozen tumor 

tissues and cells using the AG RNAex Pro Reagent 

(Accurate Biotechnology (Hunan) Co., Ltd., China). 

The mRNA (500 ng) was converted into cDNA  

using Evo MMLVRT Master Mix kit (Accurate 

Biotechnology (Hunan) Co., Ltd., China). Then, cDNA 

was amplified with SYBR Premix Ex Tap kit (Accurate 

Biotechnology (Hunan) Co., Ltd., China). The mRNA 

levels were assayed by qRT-PCR using the Roche 

LightCycler® 480 system. 2-ΔΔCt method was used  

to obtain relative quantitation (RQ) values, with 18S 

rRNA as endogenous control. The sequences of the 

primers were listed in Supplementary Table 3. 

 
Cell culture and transfections 

 
THP-1 cell was purchased from the Procell,  

Wuhan, China. MRC-5 cell was a gift from Shufang 

Chen (Shandong Provincial Hospital). MRC-5 cell  

was cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) (HyClone, USA), and THP-1 cell was cultured 

in RPMI H1640 (HyClone, USA), supplemented with 

10% fetal bovine serum (FBS) (BI, Israel) in a 

humidified atmosphere of 5% CO2 and 37° C according 

to protocol. C1QTNF6 siRNAs (Huzhou Hippo 

Biotechnology Co., Ltd., Zhejiang Province, China) 

were transfected into cells using jetPRIME (Polyplus-

transfection, Illkirch, France) according to the manual. 

The sequences of C1QTNF6 siRNAs were as follows.  

 
siC1QTNF6#1: 

sense (5’-3’): GGAAUUACAAGGAGACGUA(dT) 

(dT) 

antisense (5’-3’): UACGUCUCCUUGUAAUUCC(dT) 

(dT) 

siC1QTNF6#2: 

sense (5’-3’): GGGUCUUUGUGAACCUUGA(dT) 

(dT) 

antisense (5’-3’): UCAAGGUUCACAAAGACCC(dT) 

(dT) 

 

Preparation of conditioned medium (CM) 

 

MRC-5 cells were transfected with C1QTNF6 siRNAs for 

48h. The medium was replaced using serum-free medium 

and cells were cultured for additional 24h. Next, the 

supernatant was centrifuged at 300×g for 5 min and 

collected to induce TAM polarization and migration. 

 

Polarization of THP-1 cells 

 

To explore the effects of C1QTNF6 expression of 

MRC-5 on macrophage polarization, THP-1 cells were 

induced to M0 macrophage by phorbol 12-myristate 13-

acetate (PMA) stimulation for 24h in six-well plates. 

Then, 2 ml mixture of CM and FBS-containing medium 

(1:1) was added for 48h. Finally, the total RNA was 

extracted and the M1- or M2-related markers were 

detected by qRT-PCR. 

 

Macrophage migration assay  

 

THP-1 cells were induced to M0 state under PMA 

stimulation. Then, the M0 macrophages were polarized 

into M2 macrophages via IL4 and IL13 stimulation. 

20,000 M2 macrophages were plated in the upper 

chamber in the serum-free medium. The lower 

chambers were filled with 600 μl mixture of CM and 

FBS-containing medium (1:1). After 48h, the non-

migrated cells in the upper chambers were removed and 

the migrated cells were stained with crystal violet for 30 

min. The images were observed by microscope and the 

numbers of migrated cells were calculated by Image J. 

 

Instrumental variable selection and Mendelian 

randomization 
 

Only SNPs of C1QTNF6 cis-eQTL satisfying the 

following criteria were included as strong instrumental 
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variables: (i) showed genome-wide significant 

association (P < 5 × 10 −8); (ii) showed independent 

association [linkage disequilibrium (LD) clumping  

r2 < 0.1; kb=500]; (iii) F-statistic > 10; (iv) not a 

palindromic SNP. Finally, 320 SNPs were identified  

as strong instrumental variables for C1QTNF6. For the 

MR analysis, the IVW method is the primary method. 

In addition, MR Egger, weighted median, simple mode 

and weighted mode methods were also used to detect 

the cause effect by R package “TwoSampleMR”. 

Leave-one-out sensitivity analysis was performed to 

evaluate the influence of each SNP on the outcome. 

Heterogeneity and potential horizontal pleiotropy  

were assessed by the Cochrane’s Q-value and MR-

PRESSO global test. Steiger filtering was used to  

detect the directionality of the association between 

C1QTNF6 and lung cancer. Bayesian co-localization 

analyses were used to assess the probability that two 

traits share the same causal variant using the ‘coloc’ 

package (https://github.com/chr1swallace/coloc) with 

default arguments [68]. All SNPs within 1 Mb up  

and down stream of the leading SNPs were retrieved  

for colocalization analysis to analyze the posterior 

probability of H4 (PP.H4) PP.H4 > 80% was defined  

as having evidence of co-localization. 

 
Statistical analyses 

 
The statistical analysis of this study was performed 

using R v4.1.3, GSEA v4.2.3, GraphPad Prism 8  

and SPSS v26. For quantitative data, the statistical 

significance of normally distributed variables was 

estimated by the Student’s t-test, and non-normally 

distributed variables were analyzed using the Wilcoxon 

rank sum test. When comparing between more than two 

groups, the Kruskal-Wallis test and one-way analysis of 

variance as non-parametric and parametric methods 

were made, respectively. Statistical significance was set 

at P < 0.05 unless otherwise stated. False discovery rate 

(FDR) was used to adjust P-value. 

 
Data availability statement 

 
The datasets presented in this study can be found in 

online repositories. The names of the repositories and 

accession numbers have been listed in the article. 
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Supplementary Figure 1. Differences of metabolic pathway pairs, survival time and status between the high- and low-MPPS 
groups. (A) Differences of 19 metabolic pathway pairs between the high- and low-MPPS groups. (B) The risk plot of MMPS indicated that as 

MMPS increased, OS time decreased while mortality rose. 
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Supplementary Figure 2. The correlation of MPPS and clinical traits, and its performance in clinical subgroups. Differences of 

MPPS between different ages (A), sexes (B), survival status (C), stages (D), T stages (E), N stages (F), and M stages (G). (H) Sankey diagram 
showed the relationship of MPPS groups, survival status, age, sex, and stage. The Kaplan-Meier survival curves of the high- and low-MPPS 
groups in different clinical subgroups. Age <= 70 (I), Age > 70 (J), Male (K), Female (L), Stage I+II (M), Stage III+IV (N), N0 stage (O), N1+N2+N3 
stage (P). 
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Supplementary Figure 3. The hallmarks enrichment and metabolic pathways variation between the high- and low-MPPS 
groups. (A) The hallmarks enrichment between the high- and low-MPPS groups. (B) The differences of metabolic pathways between TCGA-

LUAD and normal tissues. (C) The correlation heatmap of MPPS and metabolic pathways. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

 
 

Supplementary Figure 4. TIDE scores and IPS of the high- and low-MPPS groups. (A) T cell dysfunction scores of the high- and low-
MPPS groups. (B) MPPS of desert, excluded, inflamed immune phenotypes. (C) IPS of the high- and low-MPPS groups. 
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Supplementary Figure 5. Evaluation of MPPS-related gene signature. (A) The 1-, 3-, 5-year ROC curves of MPPS-related gene 

signature in the training and validation cohorts. (B) The Kaplan-Meier survival curves of the high- and low-gene risk score groups in 42 LUAD 
patients by qRT-PCR. (C) The 1-, 3-, 5-year ROC curves of OS of 42 LUAD patients predicted by MPPS-related gene signature. 
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Supplementary Figure 6. Intercellular communications between fibroblasts and immune cells in LUAD TME. (A) Intercellular 
communications network of fibroblasts and immune cells in LUAD TME. (B–D) The ligand-receptor interaction between fibroblasts and M2 
macrophages. (E) The hallmarks enrichment between the high- and low-C1QTNF6 expression groups in TCGA-LUAD. (F) M2 macrophage 
markers expression of induced M0 and M2 macrophages by qRT-PCR. 
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Supplementary Figure 7. Leave-one-out sensitivity analysis of instrumental variables for C1QTNF6. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The clinical information data of 
LAUD patients from TCGA and GEO databases.  

Variables 
Discovery cohort Validation cohort 

TCGA (500) GEO (1009) 

Gender   

Male 230 (54.00%) 471 (46.70%) 

Female 270 (46.00%) 480 (47.60%) 

NA - 58 (5.70%) 

Age at Diagnosis   

Mean (SD) 65.26 (10.05) 64.62 (10.11) 

Median Survival Time   

OS, Days (IQR) 654.50 (707) 1114 (1172) 

Survival Event   

Alive 318 (63.60%) 686 (68.00%) 

Dead 182 (36.40%) 323 (32.00%) 

Stage   

I 266 (53.20%) 593 (58.80%) 

II 119 (23.80%) 173 (17.10%) 

III 81 (16.20%) 82 (8.10%) 

IV 26 (5.20%) 15 (1.50%) 

NA 8 (1.60%) 146 (14.50%) 

SD, standard deviation; IQR, inter-quartile range. 

 

Supplementary Table 2. The abbreviations and matched full names of metabolic pathways and metabolic 
pathway pairs. 

 
Supplementary Table 3. The list of primers used in this study. 

Gene Forward primer (5'-3') Reverse primer (5'-3') 

C1QTNF6 CACCATCCTGAAGGGTGACA AGACCCTTTCGAAGAGCAGC 

ECT2 ACCCCTAACAGCAATCGCAA CAAGACTTTGGGGTGTCTCCA 

SLC2A1 TGGCATCAACGCTGTCTTCT CTAGCGCGATGGTCATGAGT 

ANLN CGCCTCAGACTCCTGGTTTT GCTCCAGCAGTTTCTCCGTA 

GAPDH GGGAGCCAAAAGGGTCATCA GCATGGACTGTGGTCATGAGT 

LDHA GCCGTCTTAATTTGGTCCAGC ACTCCATACAGGCACACTGG 

KRT8 ATCAACAACCTTAGGCGGCA AGCTCCCGGATCTCCTCTTC 

CD80 ATCACCATCCAAGTGTCCATACCTC AGAAACATTGTGACCACAGGACAG 

CD86 TGGCCTAGGGTACAGGCAACA GCCCAGATAGAAGTGGCTCCAG 

CD163 AAAAAGCCACAACAGGTCGC CTTAAAGGCTGAACTCACTGGG 

CD206 GGGGAAAGGTTACCCTGGTG TCAAGGAAGGGTCGGATCGT 

CD274 TCCTTGGCGATTATTTCCATGTC GCCGACTACAAGCGAATTAC 

18S(rRNA) AAACGGCTACCACATCCAAG CCTCCAATGGATCCTCGTTA 
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