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INTRODUCTION 
 

In recent years, breast cancer has eclipsed lung cancer as 

a major health threat to women. Malignant breast cancers 

form in the ductal and lobular areas [1, 2]. Recently, 
more than 20% of newly diagnosed cancers in Chinese 

women are breast cancer [3]. The primary clinical 

intervention among them continues to be pharma-

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

A novel signature incorporating genes related to lipid metabolism 
and immune for prognostic and functional prediction of breast 
cancer 
 

Xiao Zhao1,*, Lvjun Yan3,*, Zailin Yang2, Hui Zhang2, Lingshuang Kong2, Na Zhang2, Yongpeng He2 
 
1Clinical Laboratory, People’s Hospital of Xinjin District, Chengdu 611430, China 
2Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, 
Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 
400030, China 
3Tumor and Hematology Department, University-Town Hospital of Chongqing Medical University, Chongqing 
401331, China 
*Equal contribution and co-first authors 
 
Correspondence to: Lingshuang Kong, Na Zhang, Yongpeng He; email: konglsh1203@163.com, https://orcid.org/0009-0001-
4481-4298; zhangna@cqu.edu.cn, heyongpeng0320@163.com, https://orcid.org/0000-0002-2424-8743 
Keywords: lipid metabolism, immunity, breast cancer, IL18, prognosis, RT-PCR 
Received: January 15, 2024 Accepted: April 10, 2024 Published: May 20, 2024 

 
Copyright: © 2024 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Purpose: Breast cancer prognosis and functioning have not been thoroughly examined in relation to 
immunological and lipid metabolism. However, there is a lack of prognostic and functional analyses of the 
relationship between lipid metabolism and immunity in breast cancer. 
Methods: DEGs in breast cancer were obtained from UCSC database, and lipid metabolism and immune-related 
genes were obtained from GSEA and Immune databases. A predictive signature was constructed using univariate 
Cox and LASSO regression on lipid metabolism and immune-related DEGs. The signature’s prognostic significance 
was assessed using Kaplan-Meier, time-dependent ROC, and risk factor survival scores. Survival prognosis, 
therapeutic relevance, and functional enrichment were used to mine model gene biology. We selected IL18, which 
has never been reported in breast cancer before, in the signature to learn more about its function, potential to 
predict outcome, and immune system role. RT-PCR was performed to verify the true expression level of IL18. 
Results: A total of 136 DEGs associated with breast cancer responses to both immunity and lipid metabolism. 
Nine key genes (CALR, CCL5, CEPT, FTT3, CXCL13, FLT3, IL12B, IL18, and IL24, p < 1.6e−2) of breast cancer were 
identified, and a prognostic was successfully constructed with a good predictive ability. IL18 in the model also 
had good clinical prognostic guidance value and immune regulation and therapeutic potential. Furthermore, 
the expression of IL18 was higher than that in paracancerous tissue. 
Conclusions: A unique predictive signature model could effectively predict the prognosis of breast cancer, 
which can not only achieve survival prediction, but also screen out key genes with important functional 
mechanisms to guide clinical drug experiments. 
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cological therapy, and with the introduction of 

immunomodulatory drug therapy, the treatment resources 

have significantly improved. However, during treatment, 

a sizable portion of breast cancer patients display 

treatment resistance and post-treatment recurrence [4]. 

As a consequence, a detailed understanding of breast 

cancer pathophysiology and survival markers is needed 

to improve postoperative treatment and patient survival 

[5]. 

 

Metabolic reprogramming is a characteristic of malignant 

cell development, according to the “Warburg effect” [6, 

7] Lipids, which are made up of vital components such as 

fatty acids, glycerophospholipids, and sphingolipids, play 

an important function in the human body [8]. A growing 

number of studies show that lipid metabolism is 

involved in a variety of processes, ranging from tumor 

cell genesis to apoptosis. Phosphatidic acid and 

sphingolipids, for example, can operate as second 

messengers and play roles in cell differentiation, 

apoptosis, and cell cycle arrest [9, 10]. According to a 

clinical data meta-analysis [11], the risk of lung cancer is 

frequently associated with a rise in total cholesterol and a 

decrease in triglycerides in patients. Breast cancer cells 

contain a range of membrane lipids, and higher levels of 

endogenous fatty acids, such as palmitate-containing 

phosphatidylcholine, have been linked to tumor 

development and survival [12]. In the meantime, a further 

meta-analysis revealed that dietary dysregulation of the 

cholesterol pathway is linked to an increased risk of 

breast cancer [13]. Breast cancer cells also absorb extra 

cholesterol, which promotes cancer cell growth and 

migration [14, 15]. Immunotherapy has increased breast 

cancer survival; therefore, changes in the tumor immune 

microenvironment affect post-operative treatment. Lipid 

metabolism genes regulate tumor immune systems and 

prognosis. Thus, lipid metabolism pathway markers 

should be examined in relation to immune function and 

breast cancer prognosis. 

 

On this basis, a novel feature model with good 

predictive ability for breast cancer was constructed. 

After comparing several independent factors, the 

biomarker IL18 was screened out with a variety of 

important research value. In view of the results, we 

firmly believe that IL18 and the other related genes in 

this study have significant potential as prognostic value. 

Besides, this work offers novel immunotherapy and 

breast cancer prognostic insights. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing 

 

Breast cancer and control data were obtained from the 

UCSC public database (https://xenabrowser.net). The 

DesSeq2 package was used to evaluate differential gene 

expression in 1072 breast cancer and 99 paraneoplastic 

control samples. Genes with adjusted P < 0.05 and |logFC| 

≥1 differential thresholds were filtered (Supplementary 

Table 1). GSEA (https://www.gsea-msigdb.org) and the 

ImmPort database (https://www.immport.org) were 

consulted for obtaining the immune pathway gene set and 

lipid metabolism gene set [16, 17] (Supplementary 

Table 2). The datasets were then analyzed using the 

Venn diagram website to identify overlapping genes, 

yielding 136 DEGs associated with breast cancer 

responses to both immunity and lipid metabolism 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). 

Details of the genes associated with lipid metabolism 

and immunity are shown in Supplementary Table 3. In 

addition, the “pheatmap” package was used to construct 

a heatmap. This shows how overlapping genes express 

differently. 

 

Functional annotation and enhancement analyses  

 

For 136 genes that intersected, we carried out KEGG 

pathway analysis and GO enrichment analysis. The 

“enrichplot” and “clusterProfiler” programs were used 

in this work to produce KEGG scatter plots and GO 

enrichment scatter plots of genes that interacted. 

 

Prognostic modeling 

 

The DEGs associated with breast cancer OS were 

selected using univariate Cox regression. Using 

LASSO regression, DEGs associated with OS of 

breast cancer were selected. We used the R tool 

‘glmnet’ to identify independent prognostic markers 

(P < 0.05). The UCSC dataset was sorted 1:1 into 

training and test cohorts to assess independent factors 

affecting OS. The formula for the risk score obtained 

according to the LASSO regression results was as 

follows: 

i1
risk score (Coef Exp )

n

ii=
=   

Where n is the number of prognosis-related genes in the 

model, Coefi the related gene coefficient, and Expi 

represents gene expression. High-risk and low-risk 

groups were identified for the training and test sets, and 

the survival coefficient versus the ROC curve (AUC 

value) indicated the model’s prognostic value. The 

‘forestplot’ tool created a forest plot to show the 

candidate genes’ HR scores (P < 0.05). 

 

Gene expression pattern study 

 
The candidate genes’ PPI protein enrichment network 

was analyzed after investigating the model genes’ 

upstream and downstream interactions using the 
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STRING database (https://string-db.org). Then, the 

UALCAN database (https://ualcan.path.uab.edu) was 

used to compare candidate gene mRNA expression in 

breast cancer’s primary site and normal tissues, as well 

as protein expression levels [18]. SWISS-Model 

(https://swissmodel.expasy.org) also exhibited the 

protein 3D structural prediction model of the candidate 

markers. In addition to demonstrating the protein 

expression pattern of candidate genes through the HPA 

(https://www.proteinatlas.org) database, we tapped the 

subcellular localization results of target genes to 

demonstrate the protein exercise functional regions 

[19]. 

 

Gene function analysis 

 

The ROC curves of single genes in the candidate gene set 

were plotted, and AUC values were calculated through an 

online website (http://bioinformatics.com.cn). In 

addition, the GEPIA2 website (http://gepia2.cancer-

pku.cn) was utilized to mine the OS survival curves of 

the candidate genes. And the OS survival coefficients of 

key genes in pan-cancer species were analyzed in 

conjunction with the Kaplan-Meier Plotter database 

(http://kmplot.com), and only those cancer species with a 

significance level of P < 0.05 were demonstrated. 

Meanwhile, in order to explore the DNA methylation 

levels and functional mechanisms of target genes in 

breast cancer patients, the information on CpG islands of 

DNA methylation sites and the correlation with survival 

prognosis were mined online through the MEXPRESS 

website (https://mexpress.ugent.be/) [20]. Finally, 

combined with CancerSEA (http://biocc.hrbmu.edu.cn/ 

CancerSEA/home.jsp) to decode pan-cancer species 

functional information of key genes at a single-cell 

resolution level [21]. 

 

Correlation between gene expression levels and 

immune mechanisms 

 

The TIMERs algorithm (http://timer.cistrome.org) was 

used to visualize and demonstrate Spearman’s 

correlation between immune infiltration estimates and 

gene expression [22]. In addition, the transcript levels of 

target genes were analyzed in conjunction with the 

TISIDB database (http://cis.hku.hk/TISIDB/index.php) 

to analyze the enrichment levels of immune subtype 

functions in different tumor microenvironments: C1 

(wound healing); C2 (IFN-gamma dominant); C3 

(inflammatory); C4 (lymphocyte depleted); C5 

(immunologically quiet); and C6 (TGF-b dominant). 

Meanwhile, the RNA transcriptome expression level 

comparison was selected through LinkedOmics 
(https://www.linkedomics.org/admin.php) to screen the 

set of genes positively or negatively regulated by the 

target genes as well as the enriched pathways. 

Drug sensitivity analysis 

 

In order to explore the target drug information of 

potential genes, this project mined drug information with 

Spearman correlation with candidate gene expression in 

the cancer database (GDSC, https://www.cancerrxgene. 

org/). By combining the GDSC and CTRP tumor cell line 

drug databases, we will explore drugs with positive and 

negative regulatory mechanisms and correlations with 

gene expression levels. 

 

Single-cell database mining of target genes 

 

In order to explore the expression patterns of target 

proteins at the single-cell resolution level, this study 

mined the expression patterns and sites of candidate 

genes in a number of breast cancer single-cell 

datasets by using the single-cell database TISCH 

(http://tisch.comp-genomics.org), as well as evaluat-

ing the risk coefficients of the target genes in pan-

cancer species by combining them with the TCGA 

database (P < 0.05). The interaction factors of target 

genes were also mined in conjunction with single-cell 

datasets. Meanwhile, t-SNE downscaling analysis and 

expression sites of target genes in the mammary 

tissues of the model animal mice were mined online 

by the Tabula Muris database (https://tabula-

muris.ds.czbiohub.org). 

 

Human specimens 

 

Three pairs of breast cancer and paracancerous 

specimens were collected, which were obtained from 

clinical postoperative tissue. After specimen isolation, 

tissue was frozen rapidly in liquid nitrogen and stored in 

a refrigerator at −80°C to prevent degradation. 

 

RT-PCR 

 

Tissue samples were extracted from Trizol reagent 

(Invitrogen, Carlsbad, CA, USA) and reverse transcribed 

to mRNA. The primers are as follows: L18-F: 

GATAGCCAGCCTAGAGGTATGG; IL18-R: CCTTG 

ATGTTATCAGGAGGATTCA; ACTIN-F: CACCATT 

GGCAATGAGCGGTTC; ACTIN-R: AGGTCTTTGC 

GGATGTCCACGT. Samples are tested in biological 

replicates (number of replicates = 3 replicates). 

 

Statistical analyses 

 

R software 4.2.0 was used for data analysis and 

visualization. Comparisons among both groups were 

made with the Wilcoxon rank-sum test, and 
comparisons between two or more groups were 

implemented through the Kruskal-Wallis test. 

Comparisons of categorical variables were conducted 
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utilizing the chi-square test or Fisher’s exact test. The 

differences between survival curves were identified via 

applying the log-rank test. Associations between both 

variables were evaluated with Spearman’s correlation 

test. Statistical significance was set to P < 0.05 

significant. 

 

Data availability 

 

The datasets generated during and/or analyzed during 

the current study are available from the corresponding 

author on reasonable request. 

RESULTS 
 

Acquisition of genes related to lipid metabolism and 

immunology 
 

A total of 7654 genes with substantial expression 

differences were identified. Next, 136 genes with co-

intersecting sets were screened through the Venn 

diagram analysis website (Figure 1A), and a heat map 

was drawn based on the expression differences of the 

gene sets (Figure 1B). The ‘clusterProfiler’ R package 

(Figure 1C, 1D) was used to calculate GO functional

 

 
 

Figure 1. Exploration of immune-related and lipid metabolism-related DEGs. (A) Venn diagram shows the intersection of lipid 

metabolism and immune pathway gene sets with breast cancer DEGs. (B) The heatmap showed the difference of intersection gene 
expression level. (C) Gene ontology (GO) functional annotation. (D) KEGG pathway enrichment analysis of captured gene sets. 
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enrichment and KEGG pathway results to explore the 

functional effects of intersecting gene maps. GO and 

KEGG analyses showed that the genes involved in both 

lipid metabolism and immunity may be involved in the 

regulation of lipopolysaccharide and steroid hormone 

metabolism, as well as changes in cytokine function and 

the TNF signaling pathway in breast cancer patients. 

 

Prognostic marker exploration 

 

The univariate Cox analysis was performed on 136 

genes, and a total of 22 genes related to survival 

selection were identified (significance p < 0.01), and  

the HR level was demonstrated with a forest plot 

(Figure 2A). Immediately after, nine prognostic factors 

with independent influences were filtered out using 

LASSO and Cox (Figure 2B, 2C). Modelled risk score 

calculations were carried out to categorize all breast 

cancer data into low-risk and high-risk groups 

according to the median score. In addition, the TCGA 

dataset was randomly divided into training and 

validation sets in a 5:5 ratio to verify the stability of the 

model from multiple perspectives. Plotting of K-M 

survival curves showed that the total data set, training 

set, as well as test set showed that the high-risk group 

had a worse prognosis than the low-risk group 

(significance p < 0.05) (Figure 2D–2F). Meanwhile, 

ROC curve results showed that the model has a

 

 
 

Figure 2. Construction of a prognostic model for Breast cancer patients based on immune-related and lipid metabolism-
related DEGs. (A) The forest map shows the results of single factor analysis. (B–C) LASSO coefficient profile analysis and cross-validation 
to identify the most useful prognostic genes. (D–F) Kaplan-Meier curves of OS in the TCGA cohort based on risk score. (G–H) The time-
dependent ROC curves for the prognostic signature base on risk score. (I) Construction of Prognostic gene PPI network based on STRING 
database. 
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prognostic value (Figure 2G, 2H). At the same time, the 

nine model screening genes were put through the PPI 

protein interaction network diagram to show the 

upstream and downstream protein interaction 

information, and it can be found that IL18, CXCL13, 

and so on have rich communication response mecha-

nisms (Figure 2I). 

 

Prognostic marker information mining 

 

In order to visualize the expression of single prognostic 

markers, in this study, the transcriptional data of nine 

prognostic gene mRNAs were studied by the UALCAN 

database(https://ualcan.path.uab.edu), in which the 

transcript levels of CALR, CCL5, CXCL13, FLT3, 

IL12B, IL18, and IL24 were higher than those of 

normal tissues in the primary tumor tissues of breast 

cancer patients in vivo (Figure 3A). In addition, the 

information of genes with protein data was mined  

by the protein expression database (CPTAC) 

(https://www.proteinatlas.org), in which the protein 

levels of CETP, CXCL13, and IL18 were expressed at 

the same level as mRNA (Figure 3B). In addition, 

immunohistochemistry results of tumor sections and 

normal tissue sections showed differential protein 

expression of CXCL13, and IL18 (Figure 3C) 

(https://v17.proteinatlas.org/images/52613/126777_A_4

_2.jpg. https://v17.proteinatlas.org/images/52613/

126780_B_2_4.jpg. https://v17.proteinatlas.org/images/

7772/19616_A_4_7.jpg. https://v17.proteinatlas.org/

images/3980/13571_B_1_4.jpg). And the protein 3D 

predicted structures of prognostic markers were mined 

by SWISS-Model online database (https://swissmodel. 

expasy.org), and the results showed that the protein 

structures of breast cancer prognostic markers all had 

complex folding and spatial structures (Figure 3D). 

 

Prognostic mechanism and drug sensitivity of model 

genes 

 

This study analyzed the link between OS and 9 

prognostic markers using the GEPIA database. We 

identified 5 genes with a significant correlation  

with OS survival prognosis using logrank P < 0.05 

(Figure 4A). On the ROC analysis website 

(https://www.bioinformatics.com.cn), we examined the 

AUC values of the genes contributing to the model. 

CALR and IL18 had AUCs above 0.75, indicating that 

the single index genes in the model had good clinical 

prognostic guidance value (Figure 4B). 

 

In addition, to explore the correlation between 

expression level genes and drug sensitivity (IC50 
value) of potential small-molecule compounds. First, 

the CTRP cell line library results showed that all 

9 genes had potential correlation for targeting small-

molecule compounds, and notably, the expression of 

the IL18 gene responded to enhanced drug sensitivity 

(Figure 4C). Finally, the GDSC cell line correlation 

results similarly showed that the expression levels of 

FLT3 and IL18 were correlative to multiple small-

molecule compound drug sensitivities (Figure 4D). 

Notably, the results from both databases suggest that 

the breast cancer IL18 gene functions as an important 

drug target. 

 

Expression levels and methylation profiles of key 

candidate genes 

 

Based on the TCGA database analysis, the IL18 

expression levels were significantly higher in 11 cancer 

species than in paracancerous tissues, including BRCA, 

CESC, CHOL, ESCA, GBM, KICH, KIRC, KIRP, 

STAD, THCA, and UCEC (Figure 5A). Meanwhile, the 

cBioPortal database demonstrated genomic mutation 

information of the key gene IL18 in different malignant 

tumor tissues (Figure 5B). In addition, this study 

obtained subcellular localization information for IL18 

from the A-431, U-251MG and U-20S osteosarcoma 

cell lines in the HPA database. Immunofluorescence 

results demonstrated that the IL18 protein could be 

expressed in multiple regions, such as the Golgi 

apparatus, Nucleoplasm, and Cytosol (Figure 5C). 

Meanwhile, an unbiased clustering method combined 

with IL18 expression level was used for cell clustering 

and t-SNE dimensionality reduction analysis of mouse 

mammary gland cells, and the results showed that IL18 

expression was mainly in the stromal cell in mouse 

mammary gland tissues (Figure 5D). 

 

In addition, this study also profiled IL18 methylation 

levels, CpG site data, and CpG island associations with 

predictive value using a DNA methylation database. 

The K-M curve of cg0410097 of TSS1500 of IL18 

demonstrated that increased methylation may promote 

breast cancer survival (Figure 5E, 5F). Heatmaps 

showed IL18’s methylated CpG sites (cg09122223, 

cg04100971, cg05687149, cg26534425, cg11304234). 

The results confirmed that IL18 methylation influences 

breast cancer survival. 

 

Correlation between IL18 and immune mechanism 

 

Since this study is based on the key genes of the 

immune pathway screen, we tried to apply the TIMER2 

algorithm to resolve the association between IL18 

expression level and immune cell infiltration in the 

TME. The results pointed out that IL18 expression level 

might be associated with T cell CD4+, neutrophil, and 
myeloid dendritic cell (DC cell) infiltration, and there 

was no significant correlation with the level of T cell 

CD8+ and macrophage infiltration (P > 0.05) (Figure 
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6A). Then, the distribution of IL18 enrichment in six 

Immune subtypes in pan-cancer species was explored 

on the Tumor and Immune System Interactions Online 

website: C1 (wound healing), C2 (IFN-γ dominance), 

C3 (inflammation), C4 (lymphocyte depletion), C5 

(immunologically quiet), and C6 (TGF-b dominance). 

The cancer types with high Kruskal-Wallis Test  

(-log10pv) values in the pan-cancer species histogram 

were selected, in which BLCA and BRCA had the 

same expression pattern, both expressing C1, C2, C3, 

C4, and C6 (Figure 6B). And the correlation analysis 

of IL18 with immune checkpoint inhibitors at the 

pancancer level showed that the high expression  

of IL18 levels in breast cancer patients might  

be related to CD244, CTLA4, HACVR2, etc. (Figure 

6C). 

 

 
 

Figure 3. Prognostic gene expression levels in Breast cancers. (A) mRNA expression levels of prognostic genes. (B) The expression 

level of prognostic protein was based on CTPAC database. (C) Representative immunohistochemical staining images of prognostic gene 
(https://v17.proteinatlas.org/images/52613/126777_A_4_2.jpg. https://v17.proteinatlas.org/images/52613/126780_B_2_4.jpg. 
https://v17.proteinatlas.org/images/7772/19616_A_4_7.jpg. https://v17.proteinatlas.org/images/3980/13571_B_1_4.jpg). (D) The protein 
3D spatial structure of prognostic factors. 
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The results of the rich immune pathway analysis 

suggest that IL18 in cancer may be involved in 

mobilizing the tumor immune microenvironment 

response and the assessment of the efficacy of 

immunosuppressants and other drugs. 

Prognostic mechanisms of the IL18 in pan-cancer 

species 

 

Based on 21 tumors from the Kaplan-Meier Plotter 

website, the prognostic correlation of the IL18 

 

 
 

Figure 4. The Functional effects of prognostic genes. (A) Kaplan-Meier curves show the survival of single gene OS in prognostic 

model. (B) The ROC analysis of model gene. (C, D) The CTRP and CDSC databases show potential targets for prognostic genes. 
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expression levels in different cancer types was explored. 

K-M survival curves indicated that, among them, breast 

cancer, sarcoma, pancreatic ductal adenocarcinoma, 

thymoma, thyroid carcinoma, uterine corpus endo-

metrial carcinoma, The IL18 expression level had a 

significant correlation with disease prognosis (p < 0.05) 

(Figure 7A). Meanwhile, drawing on the survival 

information of the TCGA database to explore the 

survival prognostic value of IL18 in pan-cancer, it could 

be found that the high expression of the IL18 reduced 

the risk of breast cancer progression (p < 0.05), and it 

was noteworthy that the high expression of IL18 

increased the survival risk of PAAD, LGG, and UVM 

(p < 0.05) (Figure 7B). Then, we mined the functional 

 

 
 

Figure 5. The analysis of biological effects of key gene -IL18. (A) IL18 expression in different cancers and paired normal tissue in the 

TIMER2 database. (B) IL18 gene mutation types in different cancer species. (C) Subcellular localization of IL18 gene in different cancer cell 
lines. (D) The expression information of IL18 at single cell level was analyzed in model animal mouse single cell database. (E, F) DNA 
methylation database showed that methylation levels at different sites of IL18 were correlated with survival and prognosis. 
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differences of IL18 in multiple cancer species at single-

cell resolution in the CancerSEA database. The results 

showed that the report of IL18 in breast cancer was still 

in the early stages, but the bubble map distribution 

could reveal that IL18 was involved in several 

mechanisms, such as apoptosis, DNA repair, DNA 

damage, metastasis, and so on, in patients with uveal 

melanoma (Figure 7C). In summary, it can be found 

that the IL18 expression not only regulates the survival 

and prognosis of many types of cancers but also has 

different functions in different cancer species. 

 

Biological effects of the IL18 at the single-cell level 

 

The TISCH2 database was used to get information 

about the link between IL18 levels in breast cancer cells 

and the area around the tumor. The findings from 

different datasets revealed that the IL18 was mainly 

responsive in myeloid dendritic cells (DC cells) and 

monocyte and macrophage cells (Figure 8A). 

Simultaneous analysis of the EMTAB8107, 

GSE143423, GSE150660, GSE161529, and 

GSE176078 datasets demonstrated interactions between 

proteins of IL18. Several sets of data showed at the 

same time that the genes SPI1, AIF1, LILRB4, 

FCGR2A, C1QA, FCER1G, LST1, and CD68 were 

strongly linked to IL18 (Figure 8B). 

Functional enrichment of IL18 

 

To investigate the potential molecular mechanisms of 

the IL18 in cancer, we established the functional 

enrichment of IL18 through the LinkedOmics website, 

and the volcano plot demonstrated the results of gene 

enrichment of the regulatory network associated with 

IL18 (Figure 8C), in which the heatmap demonstrated 

the sets of differentially expressed genes positively and 

negatively regulated by IL18 (Figure 8D, 8E). 

Enrichment of IL18 interaction network genes revealed 

that the IL18 regulatory network mainly functions in 

response to adaptive immune response, lymphocyte 

activation involved in immune response, and natural 

killer cell activation. 

 

When GSEA was used to find the most important 

pathways, it mostly found GO 0002250: adaptive 

immune response pathway (Figure. 8F, 8G). We also 

found that IL18 gene expression was significantly 

correlated with survival, different breast cancer 

subtypes, race and menopausal status using the TCGA 

public database (P < 0.05). (Figure 9A–9D). In 

summary, the IL18 gene is not only involved in multiple 

clinical indications of breast cancer, but also 

participates in the regulation of immune response 

pathways through interacting genes. 

 

 
 

Figure 6. The immune mechanism of IL18. (A) The correlation between IL18 expression level and immune cell infiltration was calculated 

based on TIMER2.0 algorithm. (B) The correlation between IL18 expression and immune subtypes in different cancers. (C) Correlation analysis 
between il-18 and immune checkpoint inhibitor sites. 
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Expression of IL18 in breast cancer and adjacent 

tissues 

 

Verification of gene expression levels is of great value 

in distinguishing cancer from the normal population. 

RT-PCR, as a common means to detect the expression 

level of gene mRNA, can show the transcription level of 

the gene. In this project, RT-PCR experiments were 

used to analyze the transcriptional differences of the 

IL18 gene between breast cancer and adjacent tissues. 

The histogram (Figure 10) showed that the IL18 was 

higher than that in adjacent tissues, and the results were 

consistent with the structure of the Bioinformatics 

Database, which provided evidence for the later 

functional experiments of the IL18. Raw results are 

shown in Supplementary Table 4. 
 

DISCUSSION 
 

The correlation between altered metabolic 

reprogramming and tumor progression is confirmed by 

increasing studies. Lipid metabolism, as an important 

biological pathway, is involved in lipid uptake, 

lipogenesis, and oxidation in cells [23]. Cancer cells 

have been reported to take up energy through altered 

lipid metabolism pathways [24]. Dysregulation of 

 

 
 

Figure 7. Functional enrichment analysis of IL18 in Pan-cancer. (A) Kaplan-Meier curves show the OS survival of IL18 in Pan-cancer. 

(B) The difference in prognostic risk for IL18 in Pan-cancer. (C) The bubble map reveals the biological enrichment of IL18 in Pan-cancer. 
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lipid metabolism in tumor cells leads to the 

accumulation of free FAs, which increases the 

production of cellular ROS, thereby causing oxidative 

stress and promoting the secretion of cytokines in the 

tumor microenvironment [25, 26]. Meanwhile, more 

and more studies on lipid metabolism pathway genes 

have confirmed that they were involved in the 

regulation of tumorigenesis, development, and 

prognosis. For example, fatty acid-binding protein 4 

(FABP4) has been confirmed to be a key factor in the 

provision of fatty acids by ovarian cancer cells [27]. In 

their sequencing investigation of breast cancer groups, 

Wang et al. [28] revealed that ACLY transcript levels in 

tumors were considerably greater than in normal tissues 

and positively linked with Ki67 expression. Lipid 

metabolism is crucial to tumor formation progression 

and mechanism response. However, previous studies 

have mainly focused on the functional study of single 

genes under specific factors and lacked systematic 

screening of prognostic indicators and mining of 

functional effects. Thus, we extensively examined 

breast cancer lipid metabolism-related genes to target 

immune function and find survival-predictive genes. 

 

Relying on the data of breast cancer and paraneoplastic 

samples in the UCSC database, this study combined the 

 

 

 
Figure 8. The Single cell database analysis of IL18. (A, B) Single cell sequencing data from different breast cancers showed the 

expression of IL18 enriched cells and interacting genes. (C–E) The LinkedOmics database shows the IL18 up-regulated and down-regulated 
gene sets. (F, G) Functional effects of IL18 interacting genes were analyzed by GSEA and GO enrichment. 
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Figure 9. Correlation between IL18 expression levels and clinical information. (A) IL18 expression level and breast cancer survival; 

(B) IL18 expression level and breast cancer type; (C) Correlation of IL18 expression level with menopausal status of breast cancer patients. 
(D) The correlation between the expression level of 8 and race was analyzed. (Significant designations are: P < 0.01). 

 

 
 

Figure 10. RT-PCR demonstrated the expression level of IL18 in breast cancer tissues. (A) RT-PCR assay was used to show the 

difference in IL18 transcript levels in a single sample between the experimental and control groups. (B) RT-PCR experiments showing group 
differences in IL18 gene expression levels between tumor and normal groups. One-way ANOVA and Tukey’s Method were used to test 
significance *p < 0.05, **p < 0.01, ***p < 0.001, Abbreviation: ns: not significant. 
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gene sets of lipid metabolism and immune pathways in 

the GSEA and Immune databases for integration and 

screened the genes with bidirectional pathway effects. 

Firstly, we ran GO and KEGG functional enrichment 

analyses for the intersecting genes and discovered that 

they were mostly engaged in lipopolysaccharide, 

bacterial molecule, and steroid hormone biological 

processes. The KEGG results showed cytokine-

enriched gene sets. KEGG found that the gene set was 

enriched in cytokine receptor interaction, the L-17 

signaling pathway, neuroactive ligand-receptor 

interaction, and other pathways. According to KEGG, 

the gene set mainly responds to the immune response 

mechanism. Immediately after that, the model with 

risk score and survival prognosis was established by 

univariate Cox analysis and LASSO analysis, and nine 

genes with potential prognosis were filtered and 

screened out. The prognostic level of the high-risk 

group was worse than that of the low-risk group (P < 

0.05), as shown by the K-M survival curve. The AUC 

of the ROC curve of the model was also about 0.7, 

which showed that the model’s prognostic features 

were accurate. 

 

Demonstrate the expression levels and individual factor 

functions of the model gene set based on open-access 

databases. We mined the transcript level differences 

between breast cancer in situ tissues and normal tissues 

for nine genes based on the UALCAN database and 

also obtained the protein Log2 spectral count ratio 

values for three of the markers (CETP, IL18, and 

CXCL13) through the CPTAC database, and the 

histograms confirmed that the protein expression level 

differences with mRNA have consistency. In addition, 

immunohistochemistry results were mined for markers 

with protein data, and the results of staining of breast 

cancer tissues and normal breast tissue sections 

revealed significant differences in the expression levels 

of the target proteins (IL18 and CXCL13) in the real 

world. Simultaneous 3D structure prediction analysis 

for the nine proteins reveals that all nine indicators 

have complex structural features. The results of data 

analysis showed that the transcript and protein 

expression levels of CXCL13 and IL18 mRNA in the 

primary cancer tissues of patients with an early stage of 

breast cancer were highly consistent. The HE staining 

results of tissue sections also confirmed that the two 

genes had expression differences, and we hypothesized 

that IL18 and CXCL13 could be used as potential 

predictors to guide early clinical determination. 

Immediately after that, for the screening genes of the 

prognostic model, we mined the prognostic value of 

single gene expression levels for breast cancer through 
the GEPIA2 database. Five genes (CCL5, IL12B, IL24, 

IL18 and RORB) were screened with a significant 

correlation (P < 0.05) with overall survival (OS). 

Meanwhile, analyzing the single-gene ROC curves for 

the model, we found that the AUC values of some 

genes were > 0.7, among which the AUCs of CALR 

and IL18 were > 0.75 (P < 0.05). The results suggest 

that some single genes in the model not only have 

disease expression differences but also have strong 

prognostic guidance value, which can be used as 

potential clinical discriminators and prognostic 

indicators. 

 

Increasing evidence confirms that lipid metabolism 

reprogramming occurs in malignant tumor cells, while 

metabolism-related genes have been reported to have 

drug-targeting functions. For example, the ATP citrate 

lyase (ACLY) gene inhibitor SB-204990 strongly 

inhibited tumor growth in lung, prostate, or ovarian 

cancer xenograft mice [29]. In contrast, intracellular 

FASN is a key lipogenic enzyme that catalyzes 

lipogenesis and mediates the extent of fibrosis [30, 

31]. The FASN inhibitor TVB-2640 has been reported 

to undergo clinical trials targeting patients with solid 

tumors [32]. Based on this, we explored the 

correlation between small molecular compounds and 

candidate genes in tumor cell lines. First the CTRP 

database spearman correlation coefficients showed 

that all 9 prognostic genes possessed correlated small-

molecule compounds; notably, among them, the 

expression level of IL18 had a positive correlation 

with the IC50 sensitivity of dozens of small-molecule 

compounds. Then, we mined the drug information of 

the candidate genes in the GSDC cell line database, 

the results of which similarly showed that the drug 

information of six of the candidate genes, among 

which FLT3 possessed a negative correlation with 

numerous small-molecule drugs, while the GSDC 

database similarly confirmed that the IL18 gene 

possessed positive synergistic effects with small-

molecule compounds. Therefore, we hypothesized 

that FLT3 and IL18 genes in breast cancer patients 

may have important roles in targeting drugs, which 

can provide a basis for later pharmacodynamic 

evaluation and functional studies. 

 

IL18, also known as interferon-γ-inducing factor) 

belongs to one of the members of the IL-1 superfamily 

[33]. IL18 has a variety of biological functions and has 

an important role in anti-inflammatory and anti-tumor 

immunity [34]. The latest study found that the IL-18 

variant library screened for a special type of DR-18 

that would not bind to decoys, and its experimental 

results showed significant efficacy when combined 

with PD-1 inhibitor treatment [35]. It was also 

confirmed that small-cell lung cancer secreted IL18, 
which enhanced the efficacy of CAR-T cell therapy 

targeting DLL3 [36]. The results of the study 

confirmed that IL18 has important prognostic value 

8624



www.aging-us.com 15 AGING 

and a functional mechanism to regulate the immune 

response. Based on this, this project carried out a 

biological analysis of IL18 as the main research gene. 

Pan-cancer mRNA transcript level mining showed that 

IL18 has significant differences in its expression levels 

in a number of different types of malignant tumors. 

Additionally, DNA mutation information showed that 

IL18’s DNA mutation types are also different in these 

different types of tumors. Our subcellular localization 

results based on the HPA Breast Cancer Database 

showed that the IL18 response feedback occurred at 

the Golgi apparatus, Nucleoplasm, and Cytosol sites of 

cells. It is worth noting that the RT-PCR results also 

confirmed that the real-world IL18 expression level 

difference was consistent with the results of 

bioinformatics database. And the genetic down- 

regulation analysis of single-cell data from model 

animal mice pointed out that the IL18 gene was mainly 

expressed in stromal cells in normal breast tissues. 

 

The expression pattern of IL18 indirectly indicates that 

this protein exercises important functional interaction 

mechanisms. In addition, we mined the OS analysis 

results of IL18 in pan-cancer by the K-M database, 

took the significance P < 0.05 as the filtering criterion, 

and filtered out a total of 5 malignant tumors with a 

correlation with the expression of IL18, except breast 

cancer. Meanwhile, combined with the information 

from TCGA patients’ survival data, it was clearly 

indicated that IL18 expression not only reduced the 

risk coefficients of BRCA, DLBC, and MESO but also 

increased the survival risk of patients with PAAD, 

LGG, and UVM. Meanwhile, for the functional study 

of IL18, it was found that the functional study of IL18 

in breast cancer is still unclear, but past research 

reports pointed out that IL18 may be involved in the 

regulation of the uveal melanoma process, such as 

apoptosis, DNA repair, DNA damage, metastasis, and 

many other functional mechanisms. In summary, the 

IL18 gene not only has a screening value for cancer 

survival and prognosis, but its gene expression is 

involved in regulating multiple stages of cancer 

development. 

 

After that, earlier research has shown that IL18 

expression is linked to making cells more sensitive to 

drugs that weaken the immune system and to immune 

signaling responses to tumor immunosuppressants. For 

example, recent studies have indicated that DR-18, an 

isoform of IL18, enhances the efficacy of the immuno-

suppressant PD-1. In view of the close relationship 

between the lipid metabolism gene IL18 and immune 

mechanisms, we analyzed IL18 expression and the 

infiltration levels of T cell CD4+, T cell CD8+, 

neutrophil, DC cell, and macrophage by the TIMER2 

algorithm, and the infiltration prognosis values 

indicated that IL18 expression might affect the T cell 

CD4+, neutrophil, and DC cell infiltration levels. We 

also mined the correlation of IL18 with immune 

subtypes of multiple cancers, in which cancer types 

with significant Kruskal-Wallis Test PV values were 

selected, e.g., IL18 was associated with C1 (wound 

healing), C2 (IFN-γ predominance), C3 (inflammation), 

C4 (lymphocyte depletion), and C6 (TGF-b 

predominance) in breast cancer. Meanwhile, we mined 

the immunosuppressant information related to IL18 in 

pan-cancer species and found that IL18 expression 

might be associated with breast cancer immuno-

suppressant (BTLA, CD244, CTLA4, CD96, etc.) drug 

sensitivity. Therefore, we hypothesized that IL18 

expression not only affects the level of immune cell 

infiltration in the tumor microenvironment, but also has 

potential immunosuppressant synergistic and targeting 

effects. 

 

In addition, this project mined the functional effects 

of the target gene, IL18, at the single-cell level. 

Several single-cell transcriptome data showed that 

IL18 was mainly localized in DC cells, as well as 

monocytes and macrophages. By integrating the set 

of genes positively and negatively regulated by IL18, 

GO analysis showed that IL18-related genes were 

mainly involved in adaptive immune response, and 

KEGG enrichment also showed that IL18 was mainly 

involved in adaptive immune response, lymphocyte 

activation involved immune response, and other 

functionalities. KEGG enrichment also showed that 

IL18 regulates adaptive immune response, 

lymphocyte activation involved immune response, 

and other multi-functions. The exact location of IL18 

on a single cell level showed that its expression in 

breast cancer patients was mostly focused on the 

immune system. The functional enrichment of its 

protein interaction genes also showed that this gene 

changed the immune response in the tumor 

microenvironment. 

 

CONCLUSION 
 

In this project, we estimated 136 genes that are involved 

in both lipid metabolism and immunology in breast 

cancer. And we developed a breast cancer 

characterization model that combines genes (CALR, 

CCL5, CXCL13, FLT3, IL12B, IL18) related to lipid 

metabolism and immune function. Meanwhile, the 

survival prognosis and functional mechanisms of the 

model gene as well as the key gene IL18, which has an 

important biological function in malignant tumors, were 

mined. This discovery can help improve the prognosis 

of breast cancer and the validation and development of 

drug therapy. 
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Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. DEGs with adjusted P < 0.05 and |logFC|≥1. 
 

Supplementary Table 2. Immune pathway gene set and lipid metabolism gene set from GSEA and Import. 
 

Supplementary Table 3. Genes associated with lipid metabolism and immunity. 
 

Supplementary Table 4. Raw result from RT-PCR. 
 

8629


