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INTRODUCTION 
 

Age-related macular degeneration (AMD) is a disease 

that affects the macular region of the retina and results in 

progressive central vision loss [1, 2]. It is estimated that 

by 2040, 288 million people worldwide will be affected 

by AMD, with Asia having the highest number of cases 

(113 million) [3]. Therefore, faster identification of early 

AMD and provision of better treatments are urgently 

needed. 

The main clinical tests commonly used include  

fundus color illumination, optical coherence tomography, 

angiography with optical coherence tomography, and 

fundus angiography [4]. However, accurate diagnosis 

with these diagnostic methods is successful only when 

the pathologic manifestations of AMD are pronounced. 

In contrast, diagnosis based on gene expression is highly 

efficient and accurate. Moreover, senescent alterations in 

multiple retinal and choroidal cell types, encompassing 

the retinal pigment epithelium, microglia, neurons, and 
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ABSTRACT 
 

Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing 
evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which 
cellular senescence leads to AMD remains unclear. 
Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two 
distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions 
associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes 
between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and 
miRNAs. 
We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. 
Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death 
(PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. 
Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic 
mechanisms and therapeutic targets. 
In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic 
model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, 
revealing their differential roles in programmed cell death, disease progression, and immune microenvironments 
within AMD. 
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endothelial cells, occurring concurrently with systemic 

immune aging in both innate and adaptive cells have 

emerged as significant factors contributing to the 

initiation and progression of AMD [5]. Therefore, 

establishing a diagnostic model for AMD based on the 

transcription of cellular senescence-related genes may 

predict AMD in advance and benefit the maintenance  

of patients’ vision. Although there is a consensus on 

AMD-related clinical typing, most of the existing typing 

is based on drusen size and the presence or absence  

of AMD pigmentary abnormalities [6], which has 

limitations for early prevention and treatment of the 

disease. Moreover, most of the current treatments for 

AMD are based on anti-vascular endothelial growth 

factor therapy (anti-VEGF), which does not allow 

individualized treatment for each subtype. Furthermore, 

patients respond differently to anti-VEGF therapy, and 

not all patients achieve or maintain good vision that is 

stable over time [7, 8]. Therefore, it is necessary to find 

new therapeutic targets for AMD. It is also necessary  

to differentiate patients into distinct subtypes based  

on molecular characteristics and to identify subtype-

specific therapeutic targets for personalized treatment. 

 

The first objective of this investigation was to establish a 

diagnostic model for AMD based on the transcriptomic 

profile of cellular senescence-related genes to facilitate 

earlier disease detection and guide treatment across 

subtypes. Through machine learning and statistical 

validation, we established an AMD diagnostic model 

with robust predictive capabilities. Subsequently, we 

identified cellular senescence-associated AMD sub-

types and extensively explored their molecular and 

immunological features through transcriptomic analysis. 

According to the results of unsupervised clustering,  

we identified two distinct AMD subtypes characterized 

by differential levels of cellular senescence gene 

expression. The subtype with elevated cellular sene-

scence levels exhibited a higher degree of immune  

cell infiltration, increased inflammation levels, and 

significant involvement in programmed cell death 

(PCD) and neovascularization processes. Knowledge  

of the heterogeneity of the transcriptional level of  

the disease is used to individualize therapeutic strategies 

for patients. Considering the observed heterogeneity 

between the subtypes, we identified several promising 

therapeutic targets. These findings hold the potential to 

pave the way for individualized treatment approaches 

for patients afflicted with AMD. 
 

MATERIALS AND METHODS 
 

Dataset collection and preprocessing 

 

The detailed analysis process and analysis tools for this 

study are shown in Figure 1. In this study, we used the 

 

 
 

Figure 1. The flowchart of the study design. 
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GSE29801 mRNA expression profile dataset from the 

Gene Expression Omnibus (GEO) database based on 

the GPL4133 platform. The RPE-choroid tissue samples 

were retained, and the retinal tissue samples were 

deleted. A total of 96 samples were collected from the 

control group, and 79 samples were collected from the 

AMD group. The normalizeBetweenArrays function in 

the limma package of R was used for normalization of 

the dataset and background adjustment. 

 

The senescence gene set ‘Senmayo’ was obtained from 

the research conducted by Dominik et al. [9]. This set 

contains 125 senescence-associated genes and is able to 

identify senescent cells across tissues and species with 

high fidelity. 

 

Differential expression analysis of senescence genes 

between AMD patients and healthy control 

individuals 

 

We utilized the limma package in R for differential gene 

expression analysis. The results were visualized through 

volcano plots, focusing on adjusted p-values below 0.05 

for statistical significance. Due to a combination of data 

considerations, we did not limit the logFC values. The 

association between the obtained differential expression 

genes and senescence-related genes is presented using  

a Venn diagram. We refer to genes that are expressed  

in both gene sets as senescence-related differential 

expression genes (SRDEGs). Notably, the expression 

profiles of SRDEGs between the AMD and control 

groups were represented using a heatmap. 

 

Random forest algorithm screening for AMD 

diagnostic markers 

 
The randomForest package in R was used to perform 

the random forest analysis. The point with the lowest 

error rate was taken as the optimal parameter mtry (the 

optimal number of variables in the binary tree in the 

specified node). The variable importance of the output 

results (Gini coefficient method) was measured in the 

process of building the random forest model in terms of 

reducing the precision and decreasing the mean-square 

error. We then screened five differential expression 

genes with the highest importance as risk genes for 

subsequent analysis. 

 
Logistic analysis of the risk genes was performed using 

lrm from the rms program package in R, and the results 

obtained were used to construct the model and plot the 

nomogram. The receiver operating characteristic curve 

(ROC) for the training set was plotted, and the area 

under the ROC curve (AUC) was calculated. External 

validation was performed using the GSE50195 dataset 

as the validation set, which consisted of RPE-choroidal 

tissue samples. The control group had 7 samples, and 

the AMD group had 9 samples. The ROC curve was 

plotted for the validation set subjects, and the AUC was 

calculated. 

 

Subsequently, the accuracy and clinical applicability of 

the nomogram were tested by the calibration curve, 

decision curve analysis (DCA), and clinical impact 

curve (CIC). The GSE50195 dataset serves as a 

validation set for external validation of the nomogram. 

The calibration curve, DCA, and CIC of the validation 

set are plotted. 

 

Unsupervised clustering to establish cellular 

senescence-associated AMD subtypes 

 

Based on the expression of 16 SRDEGs, we performed 

unsupervised clustering with 1000 replications using the 

ConsensusClusterPlus package in R. The most suitable 

cluster count was determined by identifying the K value 

associated with the lowest proportion of ambiguously 

clustered pairs [10], as outlined in the literature and the 

reference manual of the R package. 

 

Functional enrichment analysis for differential 

expression genes 

 

Genes showing significant differences between  

different AMD subtypes associated with cellular 

senescence were identified using the limma package  

in R [11]. Specifically, genes with |Log2FC (fold-

change) | > 1 and adjusted p-value < 0.05 were 

considered significantly different. Among these genes, 

some genes were simultaneously expressed in the 

senescence gene set, which we identified as differential 

expression genes (DEGs). 

 

GO and KEGG enrichment analyses of DEGs in the two 

subtypes were performed using Metascape. In addition, 

gene set variation analysis (GSVA) was used to assess 

the biological functions and progression variants of these 

cellular senescence-related genes [12]. The Reactome 

gene set (c2.cp.reactome.v2023.1.Hs.symbols.gmt) was 

downloaded from MSigDB for running GSVA. 

Displaying only the first 20 pathways with adjusted 

p-values < 0.05. GSVA was used to evaluate different 

AMD subtypes based on biological functions associated 

with cellular senescence. 

 

Differential expression analysis of angiogenesis and 

PCD pathways among different subtypes of AMD 

 

We obtained gene sets for angiogenesis, pyroptosis, 

necroptosis, and mitophagy by downloading them from 

MSigDB. The ferroptosis gene set was obtained from 

the FerrDb database [13]. The cuproptosis gene set was 
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extracted from a previous study [14]. Gene differential 

expression analysis was performed using the limma 

package in R and visualized using heatmaps and box 

plots. Adjusted p-values less than 0.05 were considered 

statistically significant. 

 
Immune infiltration analysis 

 

Gene expression data from all samples of both subtypes 

A and B were deconvoluted using the CIBERSORT 

algorithm [15] to calculate the composition of the 22 

immune cell infiltrates. Differences in immune cell 

proportions between the two subtypes were compared 

using the Wilcoxon rank sum test. 

 
Identification of cellular senescence-associated hub 

genes 

 

Weighted gene coexpression network analysis 

(WGCNA) was performed with the WGCNA package 

in R to obtain the coexpression gene modules most 

highly correlated with the differentiation of the two 

subtypes [16]. Coexpression networks were constructed 

using genes from RPE-choroid tissue samples in the 

normalized GSE29801 dataset. First, the cut height was 

set to 140, and we detected and excluded outliers by 

sample clustering. The Pearson coefficients between 

individual genes were calculated to transform them into 

similarity matrices, and the network topology analysis 

was automatically performed by the pick soft threshold 

function of the WGCNA package to select the soft 

threshold β, which can emphasize the strong and weak 

correlations between genes. After determining β, the 

similarity matrix was transformed into an adjacency 

matrix, and then the adjacency matrix was transformed 

into a topological overlap matrix (TOM). Subsequently, 

the minimum number of genes in each module was set 

to 50, and the shear height was 0.2. The coexpressed 

gene modules obtained by the dynamic shear tree  

were merged with similar modules. Finally, the Pearson 

correlation coefficients between gene modules and 

subtypes A and B were calculated, and the modules that 

were highly correlated with the subtypes were selected as 

candidate modules. Intramodule genes were identified 

as module genes related to cellular senescence. The 

relationship between genes and modules was measured 

by calculating the KME value (module eigengene-based 

connectivity), and |kME| > 0.8 was selected to screen 

out important genes. 

 

The STRING database (https://string-db.org/) was used 

to build protein-protein interaction (PPI) networks for 

important genes, and confidence scores higher than  

0.7 were considered significant correlations. The results 

were visualized and analyzed in Cytoscape software. 

The cytoHubba plugin was used to screen the hub genes 

among the upregulated and downregulated genes of 

important genes. The MCC algorithm was considered 

the most effective method to find the hub nodes in the 

coexpression network. The MCC of each node was 

calculated by the plugin cytoHubba in Cytoscape. In 

subtype B, the top ten nodes were regarded as hub 

genes. In subtype A, all the hub nodes were regarded as 

hub genes. 

 

Construction of transcriptional regulatory networks 

of hub genes related to cellular senescence 

 

NetworkAnalyst (https://www.networkanalyst.ca/) is a 

comprehensive network visualization and analysis 

platform for gene expression analysis. The miRNA and 

transcription factor (TF) prediction for hub genes was 

performed using the miRTarBase v8.0 database and the 

JASPAR database, respectively. The TF-hub genes and 

hub gene-miRNA interaction networks were further 

visualized in Cytoscape 3.9.1 software. 

 

Data availability statement 

 

The datasets and source codes used or analyzed during 

the current study are available from the corresponding 

author upon reasonable request. 

 

RESULTS 
 

Differential expression analysis 

 

Differential expression analysis was performed based 

on the microarray dataset GSE29801 to screen for 

senescence-related differential expression genes. We 

deleted duplicate sequences and samples from retinal 

tissues in this dataset and retained samples from RPE-

choroid tissues, yielding a total of 96 samples in the 

control group and 79 samples in the AMD group. Next, 

the limma package in R was used to identify differential 

expression genes between AMD samples and normal 

control samples of this microarray dataset. The result  

is shown in the volcano plot (Figure 2A). Based on  

the adjusted significance threshold of P < 0.05, we 

identified 2712 significantly differential expression 

genes associated with AMD disease. The relationship 

between these differential expression genes and 

senescence genes is shown in the Venn diagram (Figure 

2B), which shows that there are 16 SRDEGs. The 

expression of SRDEGs between the AMD and control 

groups is shown in the heatmap (Figure 2C). 

 

Random forest algorithm screening for AMD 

diagnostic markers 

 

Based on SRDEGs, a random forest model was  

built. Using a random seed, the number of candidate 
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feature subsets (mtry) was 4, and the number of fixed 

decision trees (ntree) was 1–500. The variation in the 

average out-of-bag estimation error rate with the ntree 

was observed (Figure 3A). The average out-of-bag 

estimation error rate was lowest when the ntree was 

60. Therefore, the number of decision trees at a ntree 

of 60 was selected for this study to obtain the optimal 

model. The importance ranking of the explanatory 

variables was obtained based on the average decrease 

in the Gini coefficient for each risk factor in the model 

(Figure 3B). The top 5 genes used to predict AMD in 

random forest filtered by variable importance 

measures were as follows: CCL8, VEGFA, CXCL10, 

IGFBP1, and AREG. Plot the ROC of the training set 

subjects (Supplementary Figure 1A) and calculate the 

AUC as 1. Plot the ROC of the validation set subjects 

(Supplementary Figure 1B) and calculate the AUC as 

0.770. The model has a better ability to detect and 

diagnose AMD. 

 

Logistic analysis of the hub genes was performed using 

lrm from the rms package in R. The results obtained 

 

 
 

Figure 2. Identification of differential expression cellular senescence genes in AMD. (A) Differential expression volcano plot 

between the AMD and control groups. The red dot indicates up-regulated genes in the AMD group, the blue dot indicates down-regulated 
genes and the grey dot indicates the difference is not significant. (B) The intersection of senescence genes and differential expression genes 
between AMD and the control group. (C) Expression heatmap of SRDEGs in AMD and control sample. Red represents upregulation and blue 
represents downregulation. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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were used to construct the model and plot the 

nomogram. Column line plots were used for predicting 

the probability of AMD. Based on the final regression 

analysis, graphical column line plots constructed from 

the final model included the five risk genes for 

predicting the probability of AMD. The risk factors 

CCL8, VEGFA, CXCL10, IGFBP1, and AREG were 

used to calculate the total score. The value of each 

variable is given a certain score on a scale of quartiles 

from 0 to 100. The total score can be calculated  

by summing the scores for each factor. Then, by 

projecting the total score onto the total score scale axis 

at the bottom, we can predict the probability of AMD 

(Figure 3C). 

 

 
 

Figure 3. A diagnostic model was constructed with SRDEGs. (A) Random forest out-of-bag error curve. (B) Gini importance scores of 

candidate genes. (C) Nomogram of key genes to predict the risk for AMD. The expression of five risk genes, CCL8, VEGFA, CXCL10, IGFBP1, 
and AREG, was used as the axis. A straight line was drawn on the ‘Points’ axis to determine the scores related to these genes. The resulting 
scores were summed and the total score was placed on the ‘Total Points’ axis. A straight line was drawn down the ‘Risk of Disease’ axis to 
obtain the risk of developing AMD. (D) Calibration curve of the diagnostic model. (E) Decision curve analysis of the diagnostic model. (F) 
Clinical impact curve of the diagnostic model. 
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The calibration curve was then used to evaluate the 

predictive power of the nomogram model. The 

calibration curves show that the error between the 

actual risk of AMD and the predicted risk is very 

small, indicating that the nomogram model predicts 

AMD with a high degree of accuracy (Figure 3D). 

Decision curve analysis (DCA) showed that the 

nomogram curve was higher than the gray line, 

suggesting that the clinical benefit of the nomogram 

model was higher at the high-risk threshold of 0–1 

(Figure 3E). To evaluate the clinical effect of the 

nomogram model more intuitively, a clinical impact 

curve was drawn based on the DCA curve. Under the 

high-risk threshold of 0.4–1, the “number of high 

risks” curve was very close to the “number of high 

risks with events” curve, which indicated that the 

nomogram model had extraordinary predictive ability 

(Figure 3F). The calibration curve (Supplementary 

Figure 1C), DCA (Supplementary Figure 1D), and CIC 

(Supplementary Figure 1E) plotted in the external 

validation of the nomogram show that the nomogram 

has good recognition ability. 

 

These results also suggest to some extent that these five 

genes may play a key role in the development of AMD. 

 

Identification of distinct senescent clusters in AMD 

 

Unsupervised hierarchical cluster analysis of the AMD 

disease group samples based on 16 SRDEGs was used 

to examine multiple differential genes for AMD. In  

the CDF (cumulative distribution function), the curve 

(Figure 4A) was smooth and stable when K = 2.  

The delta area (Figure 4B) also shows that it can be 

reliably divided into two clusters. A total of two distinct 

AMD subtypes were identified (Figure 4C), of which  

68 samples belonged to subtype A, and 11 samples 

belonged to subtype B. Principal component analysis 

(PCA) (Figure 4D) indicated that the division of the 

samples into two groups was successful. The two AMD 

subtypes identified were inconsistent with the current 

clinical classification system which focuses mainly on 

patient symptoms (Figure 4E). 

 

In addition, difference analysis was performed 

between subtypes A and B, and 410 DEGs were 

obtained. A total of 296 upregulated genes and 114 

downregulated genes were found in subtype B relative 

to subtype A. We took the intersection set between the 

DEGs and the senescence-related genes and obtained 

27 senescence-related differential expression genes. 

We used the Mann-Whitney U-test (Wilcoxon rank-

sum test) to compare the expression levels of these  
27 genes between subtypes A and B, and histograms 

were plotted for the groups (Figure 4F). As shown in 

the figure, the expression levels of 26 genes, all except 

ANGPT1, were higher in the B subtype, indicating that 

the degree of cellular senescence in the B subtype 

samples was higher. 

 

GO/Kyoto encyclopedia of genes and genomes 

(KEGG) enrichment analysis 

 

Based on the DEGs expression results, Metascape was 

utilized to predict and explore cellular senescence-

related biological functions and pathway enrichment 

between the A and B subtypes using GO and KEGG 

methods. 

 

The upregulated and downregulated genes in the GO 

enrichment analysis are shown in the figures (Figure 

5A). The upregulated genes of DEGs in the B subtype 

were mostly enriched in the inflammatory response, 

bacterial response, cell chemotaxis, and immune 

response. The downregulated genes were mostly 

enriched in the extracellular matrix, eye development, 

epithelial cell differentiation, and cell maturation 

(Figure 5B). KEGG pathway enrichment analysis of the 

upregulated genes is shown in the figures (Figure 5C). 

The upregulated pathways include cytokine-cytokine 

receptor interactions, the TNF signaling pathway, and 

ferroptosis. 

 

Analysis of GSVA enrichment among different 

subtypes 

 

To investigate the biological differences between the 

two subtypes, we used GSVA enrichment analysis to 

explore the Reactome pathways associated with each 

subtype. Compared with type A, type B was mainly 

enriched for signaling pathways such as inflammation 

and programmed cell death (PCD) (Figure 6A). In 

addition, pathways such as dissolution of fibrin clots 

and ovarian tumor domain proteases were found to be 

enriched in type B, suggesting that cellular senescence 

may also be involved in the pathogenesis of tumor-

related diseases. 

 

Differential expression of programmed cell death 

and neovascularization among different subtypes 

 

Because the two cellular senescence-associated AMD 

subtypes are strongly associated with programmed cell 

death (PCD), we analyzed the differences in the 

expression levels of genes involved in necroptosis, 

pyroptosis, ferroptosis, cuproptosis, and mitophagy to 

identify the PCD-related expression patterns of the 

different subtypes. In addition, it is common for AMD 

to develop into wet AMD, i.e., neovascular AMD, at a 
later stage of clinical development. Therefore, we also 

performed differential expression analysis of genes 

causing the appearance of angiogenesis among different 
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subtypes. Related heatmaps and box plots are shown in 

the Supplementary Figures 2 and 3. The GSVA score 

was used to assess the expression of genes related to 

the above multiple PCD and angiogenesis pathways 

and other pathways in the two subtypes A and B 

(Figure 6B). As shown in Figure 6C, the differences in 

the expression levels of genes related to senescence, 

ferroptosis, necroptosis, and pyroptosis in the two 

subtypes were significant, and the score of the B 

subtype was higher than that of the A subtype. 

 

 
 

Figure 4. Cellular senescence-related subtypes established by unsupervised clustering. (A) The CDF curves illustrate the cumulative 

distribution functions for varying values of K, with the clustering effectiveness being most reliable when K = 2. (B) Delta area plots for different 
values of K during the clustering process. (C) Clustering heatmap for unsupervised clustering when k = 2. (D) PCA illustrates the classification 
outcomes of the two subtypes. (E) Sankey diagram comparing clinical grouping styles and subtype grouping styles of AMD samples. (F) 
Senescence-related differential expression genes grouping comparison between the two subtypes. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Immune infiltration analysis 

 

We utilized CIBERSORTx to analyze samples from 

both subgroups and derive the proportions of immune 

cell infiltration (Figure 7A). CD8 T cells, resting 

memory CD4 T cells, activated NK cells, monocytes, 

M0 macrophages, M1 macrophages, M2 macrophages, 

and activated mast cells were more abundant in both 

subtypes. There were significant differences in the 

abundances of CD8 T cells, resting NK cells, resting 

mast cells, activated mast cells, eosinophils, and 

neutrophils in the two isoforms (Figure 7B). Among 

 

 
 

Figure 5. Enrichment analysis of differential expression genes between the two subtypes. (A) Gene Ontology (GO) enrichment 

analysis for up-regulated DEGs. (B) GO enrichment analysis for down-regulated DEGs. (C) KEGG analysis for up-regulated DEGs. 
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them, the abundances of CD8 T cells and resting mast 

cells were higher in subtype A, and the abundances  

of activated mast cells and neutrophils were higher  

in subtype B. These findings may indicate that the 

abundance of immune cells of lymphoid lineage is 

higher in subtype A, and the abundance of immune 

cells of myeloid lineage is higher in subtype B. This 

may indicate that subtypes A and B exist in different 

immune environments. 

 

Cellular senescence-related coexpression hub genes 

 

Coexpression networks were constructed using genes 

from RPE-choroid tissue samples normalized in  

the GSE29801 dataset to obtain hub genes between 

different cellular senescence-related isoforms. Thirteen 

coexpression modules were identified based on the 

dynamic shear tree after excluding one outlier sample 

(Figure 8A) and setting the power value to an optimal 

soft threshold of 10 (Figure 8B) (Figure 8C). The 

Brown module (r = 0.75, P = 2e-15) had the largest 

value of differential correlation in subtype B, and the 

turquoise module (r = 0.34, P = 0.002) has the largest 

value in subtype A (Figure 8D). 

 

The relationship between genes and modules was 

measured by calculating the KME value (module 

eigengene-based connectivity). |kME| > 0.8 was chosen 

to screen out 72 important genes in subtype B, and 

construct gene coexpression networks (Figure 8E). We 

constructed a protein-protein interaction (PPI) network 

for hub genes using the STRING database, with a 

confidence score threshold set at 0.7 for significant 

associations. In subtype B, the resulting PPI network,

 

 
 

Figure 6. Gene set variation analysis (GSVA) between the two subtypes. (A) The heatmap illustrates the enrichment patterns of 

two subtypes. (B) Based on GSVA scores, group comparisons of senescence, PCD, and angiogenesis in the two subtypes. (C) Box plot with 
Wilcoxon rank sum test was performed to assess significant statistical differences between subtypes (Abbreviation: ns: not significant; *P < 
0.05; **P < 0.01; ***P < 0.001). Blue indicates subtype A, and yellow indicates subtype B. 
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consisting of 24 nodes and 46 edges, was visualized 

using Cytoscape software, with node sizes proportional 

to their degree (Figure 9A). Hub genes were selected 

from the PPI network by the MCC algorithm utilizing 

the CytoHubba plugin (Figure 9B). Based on the  

MCC score, IL6, CCL2, IL1B, ICAM1, PTGS2, SELE, 

TIMP1, SERPINE1, NFKB1, and CSF3, which were 

ranked in the top ten genes of the scores (Figure 9C), 

were selected as hub genes. 

 

We also chose |kME| > 0.8 to screen out 123 important 

genes in subtype A. In subtype A, the resulting PPI 

network, consisting of two small networks, was 

visualized using Cytoscape software, with node sizes 

proportional to their degree (Figure 10A). Hub genes 

were selected from the PPI network by the MCC 

algorithm utilizing the CytoHubba plugin (Figure 10B). 

All the nodes were regarded as hub genes, including 

RLBP1, RDH5, RDH11, RGR, PRDM16, PPARA, 

BEST1, GPAM and BMP7(Figure 10C). 

 

Prediction of miRNAs and transcription factors 

associated with senescence-related hub genes among 

subtypes 

 

In subtype B, a total of 127 miRNAs and 38 TFs were 

predicted. The TF-hub gene interaction network is 

shown in the figure (Figure 11A). Orange nodes and 

green nodes indicate hub genes and TFs, respectively. 

The graph shows the number of TF node connections.

 

 
 

Figure 7. Immune infiltration characteristics of the two subtypes. (A) The relative percent of 22 immune cells of the two 

subgroups. (B) The different fractions of immune cells in two AMD subgroups. The scattered dots represent the immune cell fraction. The 
thick lines represent the median value. The bottom and top of the boxes are the 25 and 75 percentiles, respectively. “*” is used to 
represent significant statistical differences between the two subgroups (*P < 0.05; **P < 0.01; ***P < 0.001). 
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The RELA, GATA2, and FOXC1 node connection 

numbers were 6, 4, and 4, respectively, which are 

connected to more hub genes and may play important 

regulatory roles (Figure 11B). The miRNA-hub gene 

interaction network is shown in Figure 11C. The oval 

and diamond nodes represent hub genes and miRNAs, 

respectively. Among them, CSF3 had no miRNA 

prediction. Hsa-miR-155-5p, hsa-miR-26b-5p, hsa-miR-

124-3p, and hsa-miR-146a-5p node connections were 5, 

4, 4, and 4, respectively (Figure 11D), which may play 

an important role in the AMD pathogenesis pathway. 

In subtype A, a total of 100 miRNAs and 31 TFs were 

predicted. The TF-hub gene interaction network is 

shown in the figure (Figure 12A). Orange nodes and 

green nodes indicate hub genes and TFs, respectively. 

Among them, RGR, PRDM1, RDH5, RLBP1, PPARA, 

and RDH11 hub genes interacted in the TF-hub genes 

network. The graph shows the number of TF node 

connections. The STAT3, PPARG, and FOXC1 node 

connection numbers were 3, which are connected to 

more hub genes and may play important regulatory 

roles (Figure 12B). The miRNA-hub gene interaction

 

 
 

Figure 8. Weighted gene co-expression network analysis (WGCNA) identified cell senescence-related hub genes. (A) One 

outlier was cut by setting the cut height at 140. (B) Determine the optimal soft threshold of WGCNA by scale independence and average 
connectivity. (C) Dendrogram and module colors of genes in the WGCNA process. (D) Twelve non-gray modules and their correlation with 
subtypes. (E) The network of the genes in the brown module. 
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network is shown in Figure 12C. The oval and diamond 

nodes represent hub genes and miRNAs, respectively. 

Among them, PPARA, RDH11, RDH5, RLBP1,  

and PRDM16 hub genes interacted in the miRNA-hub 

genes network. Hsa-mir-147a node connections were 3 

(Figure 12D), which may play an important role in the 

AMD pathogenesis pathway. 
 

DISCUSSION 
 

In recent years, the role of cellular senescence in 

diseases has been extensively studied, and it has been 

found to play a significant role in several conditions, 

including AMD. Prior research has identified significant 

morphological changes in RPE cells during the aging 

process, where they increase in size and become 

multinucleated. If the enlarged cells fail to form 

multinucleation, they may undergo collapse [17]. 

 

This suggests that the development of AMD is 

associated with cellular senescence. We attempted to 

construct a diagnostic model for AMD using genes 

related to cellular senescence, as depicted in the random 

forest plot, aiming for a more timely and accurate 

 

 
 

Figure 9. PPI network construction and analysis of subtype B. (A) The PPI network of the 24 hub genes. (B) MCC ranking based on 

the degree of nodes. (C) The top ten genes ranked by MCC, exhibit an increase in MCC scores as indicated by the deepening color. 
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identification of early-stage AMD. In the random 

forest analysis, we obtained five risk genes, namely, 

CCL8, VEGFA, CXCL10, IGFBP1, and AREG, based 

on their GINI importance scores. We utilized these 

genes to establish a diagnostic model. Furthermore, 

our predictive model demonstrated excellent predictive 

capabilities. CCL8 belongs to the CC chemokine 

family and serves as a chemotactic factor. It acts as a 

chemoattractant, recruiting monocytes, lymphocytes, 

eosinophils, and basophils, among others, thereby 

mediating inflammatory host responses [18]. CXCL10 

is a ligand for CXCR3 and is produced in the ganglion 

cell layer (GCL) of the retina after ischemic injury. 

CXCL10, along with CXCR3, recruits microglia, 

monocytes, and activated T cells to the superficial 

retina. These inflammatory cells produce more cyto-

kines and chemokines, further inducing neuronal  

death by activating apoptotic signaling pathways [19–

21]. VEGFA is a growth factor that plays an active 

role in angiogenesis, vasculogenesis, and endothelial 

cell growth. It induces endothelial cell proliferation, 

promotes cell migration, inhibits apoptosis, and induces 

 

 
 

Figure 10. PPI network construction and analysis of subtype A. (A) The PPI network of the 9 hub genes. (B) MCC ranking based on 

the degree of nodes. (C) The genes ranked by MCC, exhibit an increase in MCC scores as indicated by the deepening color. 
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vascular permeability [22]. This is a critical factor in 

the development of neovascularization, which is a key 

reason for the formation of wet age-related macular 

degeneration (AMD) in its later stages. IGFBP1 is a 

member of the insulin-like growth factor binding 

protein family, and this protein plays a crucial role  

in cell migration and metabolism. It may also have 

immunomodulatory effects during the process of 

cellular senescence [23]. This suggests that IGFBP1 

could serve as a new genetic marker for AMD. AREG 

encodes a protein that belongs to the epidermal growth 

factor family. AREG can be secreted by macrophages 

during chronic inflammation and plays a role  

in enhancing the immunosuppressive capacity of 

regulatory T cells [24]. The mechanism maintaining 

retinal immune privilege can be considered layered 

protection. When pathogens breach BRBs, the second 

layer of protection is triggered, inducing retinal cell 

tolerance to invading pathogens and suppressing 

immune cell activation [25]. This suggests that AREG 

may be involved in early retinal immune layered 

protection in AMD inflammation. VEGFA is associated 

 

 
 

Figure 11. Transcription factors-hub genes and miRNA-hub genes regulatory networks in subtype B. (A) TF-hub genes network. 

The orange circles indicate hub genes and the green circles indicate TFs. (B) Ranking TFs based on degree centrality. (C) miRNA-mRNA 
regulatory network. The orange ellipses indicate hub genes and the green rhombuses indicate miRNAs. (D) Ranking miRNAs based on degree 
centrality. The number of adjacent nodes. 
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with disease progression in AMD risk genes, while 

CCL8, CXCL10, IGFBP1, and AREG are related to the 

development of inflammation. These mediators further 

stimulate microglia or macrophages and the tissue 

complement system. Therefore, this diagnostic model 

may be constructed based on the inflammation induced 

by cellular senescence. Further research is needed to 

investigate the detailed mechanisms underlying these 

risk genes and their relationship with AMD. 

 

Currently, existing treatment strategies for AMD 

involve anti-VEGF therapy. However, anti-VEGF 

strategies may not halt the progression of geographic 

atrophy, which can lead to vision loss over time. This 

suggests that targeting a single pathway alone may  

not be sufficient to prevent disease progression, and 

specific treatment approaches tailored to different 

subtypes are more likely to be effective [26]. We have 

been exploring alternative and more effective treatment 

approaches tailored to different subtypes of AMD at the 

transcriptome level. Group analysis of 27 senescence-

related differential expression genes revealed that 

subtype B exhibited a higher degree of cellular 

senescence. Furthermore, based on GO, KEGG, and 

 

 
 

Figure 12. Transcription factors-hub genes and miRNA-hub genes regulatory networks in subtype A. (A) TF-hub genes 

network. The orange circles indicate hub genes and the green circles indicate TFs. (B) Ranking TFs based on degree centrality. (C) miRNA-
mRNA regulatory network. The orange ellipses indicate hub genes and the green rhombuses indicate miRNAs. (D) Ranking miRNAs based 
on degree centrality. The number of adjacent nodes. 
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GSVA enrichment analyses, subtype B showed 

significant upregulation in terms of inflammatory 

responses, immune reactions, and programmed cell 

death, while it exhibited significant downregulation  

in components and biological functions related to 

maintaining normal cell functions, such as extra-

cellular matrix, eye development, and epithelial  

cell differentiation. We conducted a more in-depth 

investigation into intergroup comparisons and found 

that the levels of cellular senescence and gene 

expression related to programmed cell death, including 

necroptosis, ferroptosis, and pyroptosis, were signi-

ficantly higher in subtype B than in subtype A. This 

may further explain the pathogenesis of subtype B 

AMD, and treatment approaches targeting cellular 

senescence and programmed cell death pathways could 

offer greater benefits to subtype B patients. 

 

To further explore the pathogenic mechanisms of the 

A and B subtypes and the heterogeneity between them, 

we performed WGCNA. We selected coexpression 

gene modules that best differentiate the functional 

differences between the two subtypes. The brown 

module showed the highest correlation and exhibited a 

positive correlation within the B subtype. The turquoise 

module showed the highest correlation and exhibited  

a positive correlation within the A subtype. To focus 

on the core biological functions of the coexpression 

module, we conducted a PPI analysis to investigate 

interactions between proteins and further identified 

functional hub genes within the network. Our analysis 

revealed that these module hub genes are widely 

associated with inflammatory responses and immunity. 

This indicates that the B subtype exhibits higher levels 

of immune system activation and infiltration than the 

A subtype. 

 

To further explore the regulatory network among  

the module genes and intervene in the inflammatory 

progression of the B subtype, which exhibits a higher 

level of immune activation, we conducted transcription 

factor and miRNA regulatory network analyses on  

the hub genes. In the transcription factor regulatory 

network analysis, we identified widespread regulation of 

hub gene expression by NF-κB, FOXC1, and GATA2. 

These findings suggest their potential involvement in the 

immune infiltration and progression of the B subtype 

and highlight their potential as target molecules for 

precision therapy in the B subtype. RELA (RELA Proto-

Oncogene, NF-KB Subunit) is a protein-coding gene. 

Research has revealed that in animal models and human 

AMD, NF-κB and STAT-1 may form a complex that 

jointly regulates LCN-2 expression in the retina, thereby 
stimulating an inflammatory response. The AKT2/ 

NF-κB/LCN-2 signaling axis represents a potential 

therapeutic target for AMD [27]. Recent advancements 

suggest that kinases controlling NF-κB activation,  

such as the IKK complex, possess dual independent 

functions, as they also regulate cell death checkpoints 

[28]. Therefore, NF-κB may emerge as an effective 

therapeutic target for B-subtype AMD. FOXC1 belongs 

to the forkhead family of transcription factors and  

is characterized by a unique DNA-binding forkhead 

domain. This gene has been shown to participate in  

the regulation of embryonic and ocular development. 

Mutations in this particular gene give rise to a range of 

glaucoma manifestations, including primary congenital 

glaucoma, autosomal dominant iridogoniodysgenesis 

anomaly, and Axenfeld-Rieger anomaly. Currently, there 

is limited research on the transcriptional regulatory  

role of FOXC1 in AMD, but a study [29] has indicated 

its significant role in corneal epithelial development. 

Lack of FOXC1 may result in disruption of the corneal 

epithelium. Research on the function of this gene has 

primarily focused on its antiangiogenic effects in  

the corneal stroma [30–32]. Further investigation is 

required to elucidate the mechanisms by which FOXC1 

functions in AMD. GATA2 is an activator of VEGFR2 

transcription [33], and knocking down GATA2 using 

siRNA reduces the activity of the VEGFR2 promoter. 

This suggests that transcriptional regulation by GATA2 

may be a contributing factor to the elevated expression 

of VEGFA, which in turn induces neovascularization  

in wet AMD. Controlling the regulation of GATA2  

may offer a potential avenue for the treatment of wet 

AMD. 

 

TFs (transcription factors) play a role in promoting  

or inhibiting transcription at the pretranscriptional  

stage [34], while miRNAs exert important regulatory 

functions at the posttranscriptional level [35]. Specific 

miRNA genetic markers may have utility in predicting 

the prognosis of AMD [36]. In the constructed hub 

gene-miRNA network, hsa-mir-155-5p, hsa-mir-26b-5p, 

and hsa-mir-124-3p were the miRNAs with the highest 

number of connections to hub genes. HSA-miR-155-5P 

is a miRNA that is overexpressed in retinal specimens 

of patients with advanced age-related macular de-

generation (AAMD). Research by Jorgensen et al.  

[37] suggests that the progression of AAMD may result 

from immune and inflammatory response dysregulation 

associated with RPE damage, which is related to 

changes in MHC (major histocompatibility complex) 

and the complement system. The potential regulatory 

role of HSA-miR-155-5P miRNA in the immune 

response of AAMD is implicated through its interaction 

with MHC II targets. This evidence suggests an 

increased immune reactivity of HLA class II in retinal 

specimens of AMD patients, and HLA class II antigens 
are components of drusen [38]. This implies that HSA-

miR-155-5P may play a potential role in the occurrence 

and development of AMD and could be further explored 
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as a therapeutic target. Previous studies have suggested 

that HSA-miR-146A-5P may serve as a genetic marker 

for AAMD. In specimens from individuals without eye 

disease, the expression of this miRNA in the choroidal 

RPE is nearly 100 times higher than its expression  

in the neural retina [39]. Overexpression of HSA- 

miR-146A-5P in retinal specimens of AAMD is 2.1  

to 6.3 times higher than that in age-matched control 

specimens without AAMD [40]. HSA-miR-146A-5P 

has a conserved, high-affinity, polymorphic seed pairing 

site in the 3′UTR of CFH, making it the strongest and 

most consistent among AAMD-associated genes [36]. 

Therefore, HSA-miR-146A-5P may play an important 

role in the pathogenesis of AMD and could be a 

significant target for future treatments. According to 

previous research, miR-26 has been identified as a novel 

factor in regulating the survival of rod photoreceptors 

and is involved in processes related to cell proliferation 

and apoptosis [41]. However, mechanistic evidence  

of miR-26b-5p in AMD is still limited. Mendes-Silva  

et al. reviewed miRNAs implicated in shared biological 

pathways between Alzheimer’s disease and depression 

[42]. From this review, it is known that miR-26b is 

involved in various signaling pathways, including the 

transforming growth factor beta receptor signaling 

pathway, T-cell receptor signaling pathway, epidermal 

growth factor receptor signaling pathway, intracellular 

protein transport, nerve growth factor receptor signaling 

pathway, neurotrophin signaling pathway, and cellular 

component disassembly involved in the apoptotic 

process. These pathways may be associated with 

immune mediation, inflammation, and cell apoptosis in 

the pathogenesis of AMD. Further research on miR-26b 

holds the potential to uncover the mechanisms 

underlying AMD. The mechanistic evidence for miR-

124 in AMD is still limited. Given that both AMD  

and Alzheimer’s disease (AD) are neurodegenerative 

diseases and that amyloid-beta (Aβ) aggregates can be 

found in the retinas of AMD patients, it is possible to 

determine potential pathways for AMD through the 

study of AD [43]. Previous research has reported 

abnormal expression of miR-124 in the brains of AD 

patients [44, 45] and suggested that it may increase Aβ 

production by regulating the expression of BACE1 

and/or amyloid precursor protein (APP) [46]. It has 

been confirmed that Aβ can upregulate the expression 

of miR-124 in the brains of TG2576 mice. The  

high expression of miR-124 in AMD may be related  

to the presence of Aβ deposits in drusen bodies in  

AMD patients [47]. Additionally, in vitro and in vivo 

experiments conducted by Marisetty AL et al. suggest 

that the miR-124 pathway regulates cell apoptosis [48]. 

This may imply that miR-124 is associated with 
apoptosis in RPE cells in AMD, making the miR-124 

regulatory pathway a potential therapeutic target for  

B-subtype AMD. However, further research is needed 

to elucidate the specific mechanisms by which miR-124 

functions in the context of AMD development. 

 

In the A-subtype transcription factor regulatory network 

analysis, PPARG and STAT3 were associated with the 

transcription of RGR, RDH5, and RDH11 visual cycle-

related genes. Previous studies have shown that the 

retinal pigment epithelium (RPE) interacts closely with 

photoreceptors to recycle retinal pigments and essential 

lipids and to exchange nutrients in the blood [49]. In 

AMD, the RPE is dysfunctional and the homeostatic 

processes of Bruch’s membrane degradation and 

rebuilding are disrupted. This results in the metabolic 

deposition that promotes the increase in Bruch’s 

membrane thickness [50]. Transcription of visual cycle 

genes such as RPE65, RGR, RDH5, and RDH11  

has been shown to increase with age in the RPE. One of 

the age-related visual cycle genes, RDH5, has been 

identified as one of the 15 putative causative genes  

for advanced AMD; an SNP at the RDH5 locus 

(rs3138141) identified in the AMD GWAS affects the 

expression of this gene in the RPE [51]. The correlation 

between STAT3 and visual cycle-related genes such as 

RGR, RDH5, and RDH11 is still unknown, and we 

speculate that the deposition of lipofuscin with aging 

leads to retinal stress, which may be expected to be  

a new target for the treatment of subtype an AMD  

by activating the transcriptional regulation of visual 

cycle-related genes such as RGR, RDH5, and RDH11 

by STAT3 transcription factors. Its specific mechanism 

needs to be further investigated. 

 

The exact transcriptional mechanism of PPARG  

with RGR, RDH5, RDH11, and other visual cycle-

related genes is still unknown. Peroxisome proliferator-

activated receptor gamma (PPARgamma) is a member 

of the ligand-activated transcription factor nuclear 

receptor family, and after PPARs are activated by 

ligand binding, they form a heterodimer with retinal X 

receptor (RXR), The formed PPARγ/RXR heterodimer 

binds to the PPAR response element (PPRE) upstream 

of the promoter of the target gene and promotes or 

represses transcription of the target gene. The specific 

regulatory mechanism requires further investigation. 

 

RLBP1 (retinaldehyde binding protein 1) is a protein-

coding gene involved in the regeneration of active  

11-cis-retinol and 11-cis-retinaldehyde, which are 

important components of the “visual cycle”. FOXC1, a 

gene belonging to the forkhead family of transcription 

factors, regulates the development of the nervous 

system by influencing the synthesis of retinoic acid  

by affecting the expression of the Rdh10 gene [52]. 
FOXC1 may be a key component of the retinaldehyde 

binding protein (RLBP). FOXC1 may be an important 

regulator of cell viability and resistance to oxidative 
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stress in the eye [53]. Its exact regulatory relationship 

with RDH11 and RLBP1 remains unknown. PRDM16 

transcriptionally regulates the differentiation function of 

brown adipose tissue (BAT), which consumes chemical 

energy exclusively as heat in response to cold or over-

feeding. Drusen has been shown to contain acute phase 

proteins, C-reactive proteins, complement components, 

complement inhibitors, apolipoproteins, lipids, and many 

other proteins [54]. There is still no well-established 

study to illustrate the relationship between FOXC1 and 

retinal visual cycle-related genes and PRDM16 in 

AMD. We speculate that during the development of 

AMD, RPE dysfunction and elevated levels of FOXC1 

transcription factors may regulate the expression levels 

of PRDM16, RDH11, and RLBP1 in response to retinal 

oxidative stress. 

 

In the analysis of the subtype A miRNA  

regulatory network, hsa-miR-147a showed a correlation 

with PPAPA, RLBP1, and RDH11, and its specific 

mechanism of action is still unknown in AMD.  

Hsa-miR-147a may play a regulatory role in retinal 

inflammatory response, and oxidative stress process by 

inducing macrophage activation. 

 

AMD has been studied by several institutions using the 

GSE29801 dataset through bioinformatics technology 

studies. By combining data from the GSE29801  

and GSE135092 datasets, Dhanach et al. performed 

differential expression analysis and KEGG enrichment 

analysis, which revealed the two most significant and 

relevant biological processes in macular RPE/choroid 

tissue samples in AMD, namely the neuroactive ligand-

receptor interaction pathway and the extracellular 

matrix-receptor interaction pathway. In addition, the 

protein-protein interaction (PPI) network identified two 

key genes involved in the control of cell proliferation/ 

differentiation processes, HDAC1 and CDK1. Overall, 

this analysis provides new insights to expand the 

investigation of AMD pathogenesis by increasing  

the number of molecular determinants and functional 

pathways supporting AMD-associated RPE/choroid 

dysfunction [55]. Daoxin et al. selected RPE-choroid 

tissue samples from the GSE29801 dataset differentially 

expressed genes from normal and AMD patients and 

performed GO and KEGG enrichment analysis. The 

key modules and modular genes with the strongest 

association with AMD were screened by weighted gene 

co-expression network analysis (WGCNA). Based on 

the modular genes, the SVM machine-learning disease 

prediction model was finally constructed, and the 

disease signature genes constructed for the model were 

associated with abnormal glucose metabolism and 
immune cell infiltration. It may become a promising 

new target for targeted therapy of AMD [56]. Yu  

et al. identified differentially expressed mRNAs from 

GSE50195 and GSE29801, respectively, and based on 

literature review, Starbase database analysis, and RNA 

hybridization analysis, the authors obtained miRNA-

mRNA pairs and circRNA-miRNA pairs. By combining 

these pairs, the authors constructed circRNA-miRNA 

networks. Using protein-protein network analysis, the 

MCODE algorithm, and the highest degree of circRNA 

nodes, the regulatory axis of hsa_circRNA7329/ 

hsa-miR-9/SCD was identified, which may regulate 

SCD via hsa-miR-9 to promote macrophage-mediated 

inflammation and pathological angiogenesis, leading 

to the development of AMD. However, potential 

details require further investigation [57]. Zhiyue  

et al. analyzed the differentially expressed genes  

in AMD using GSE125564 and GSE29801 datasets. 

The upregulated differentially expressed genes were 

found to be mainly enriched in biological processes 

such as DNA replication, nucleoplasm, extracellular 

extracellular bodies, and calcineurin binding. In 

addition, dry AMD DRGs were mainly enriched in 

membrane components and blood-aqueous barrier 

(BAB) formation, which may shed light on the 

pathogenesis [58]. The uniqueness of our article is  

that we synthesized the RPE-choroid sample genes  

in the GSE29801 gene set with the senescence gene  

set “Senmayo”, and the clinical prediction model 

constructed at the cellular senescence level with the 

investigation of the pathogenesis of AMD provides 

potential new therapeutic targets for the treatment of 

AMD. 

 

Although our study had a comprehensive analytical 

process, it still has some limitations. First, in our study, 

we searched for several therapeutic targets against 

subtype B AMD, we found RELA at the transcription 

factor level, and we found hsa-mir-155-5p at the miRNA 

level, but we still need to consider robust functional 

experiments to validate its pathogenic mechanism and 

therapeutic possibilities as a therapeutic target, and our 

group will follow up the experimental studies to further 

explore the pathogenesis of AMD and therapeutic 

targets. Second, the dataset is based on a retrospective 

analysis of public databases, and prospective studies are 

needed to investigate the pathogenesis of AMD and 

evaluate the predicted efficacy of therapeutic targets 

against subtype B in the future. 

 

In summary, we constructed a diagnostic model for 

AMD based on the transcriptomic profile of cellular 

senescence-related genes. We classified AMD patients 

into two subtypes, A and B, based on their levels  

of cellular senescence. These two subtypes exhibit 

distinct immune microenvironments and biological 
characteristics. Through the analysis of transcription 

factor and miRNA regulatory networks, we identified 

potential regulatory mechanisms that may contribute  
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to the phenotypic features of the B subtype. 

Furthermore, targeting these specific targets based  

on their regulatory pathways offers the potential to 

mediate the high cellular senescence levels and PCD-

related features influenced by them in AMD. This 

provides valuable insights into the pathogenesis of 

AMD and potential avenues for future treatments. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The external validation of the diagnostic model. (A) The receiver operating characteristic curve (ROC) for 

the training set, AUC = 1. (B) The ROC for the validation set, AUC = 0.770. (C) Calibration curve of the validation set. (D) Decision curve 
analysis of the validation set. (E) Clinical impact curve of the validation set. 
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Supplementary Figure 2. Differential expression of subtypes A and B on multiple programmed death pathways.  (A) Box plot 

of differential expression of A and B subtypes in Necroptosis. (B) Heatmap of differential expression of A and B subtypes in Necroptosis. 
(C) Box plot of differential expression of A and B subtypes in Pyroptosis. (D) Heatmap of differential expression of A and B subtypes in 
Pyroptosis. (E) Box plot of differential expression of A and B subtypes in Ferroptosis. (F) Heatmap of differential expression of A and B 
subtypes in Ferroptosis. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Supplementary Figure 3. Differential expression of subtypes A and B on multiple programmed death pathways and 
angiogenesis. (A) Box plot of differential expression of A and B subtypes in Cuproptosis. (B) Heatmap of differential expression of A and B 
subtypes in Cuproptosis. (C) Box plot of differential expression of A and B subtypes in Mitophagy. (D) Heatmap of differential expression of 
A and B subtypes in Mitophagy. (E) Box plot of differential expression of A and B subtypes in Angiogenesis. (F) Heatmap of differential 
expression of A and B subtypes in Angiogenesis. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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