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INTRODUCTION 
 

Prostate cancer ranks among the most prevalent 

cancers affecting men globally [1]. Its risk escalates 

significantly with age, being infrequent in men below 

40 but increasingly prevalent among those over  

65 years old [2]. Despite considerable progress  

in prostate cancer treatment, substantial limitations  

and challenges persist, contingent on cancer stage, 

aggressiveness, and patient variability. Notably, when 
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ABSTRACT 
 

Background: Stratifying patient risk and exploring the tumor microenvironment are critical endeavors in 
prostate cancer research, essential for advancing our understanding and management of this disease. 
Methods: Single-cell sequencing data for prostate cancer were sourced from the pradcellatlas website, while 
bulk transcriptome data were obtained from the TCGA database. Dimensionality reduction cluster analysis was 
employed to investigate heterogeneity in single-cell sequencing data. Gene set enrichment analysis, utilizing 
GO and KEGG pathways, was conducted to explore functional aspects. Weighted gene coexpression network 
analysis (WGCNA) identified key gene modules. Prognostic models were developed using Cox regression and 
LASSO regression techniques, implemented in R software. Validation of key gene expression levels was 
performed via PCR assays. 
Results: Through integrative analysis of single-cell and bulk transcriptome data, key genes implicated in 
prostate cancer pathogenesis were identified. A prognostic model focused on sphingolipid metabolism 
(SRSR) was constructed, comprising five genes: “FUS,” “MARK3,” “CHTOP,” “ILF3,” and “ARIH2.” This model 
effectively stratified patients into high-risk and low-risk groups, with the high-risk cohort exhibiting 
significantly poorer prognoses. Furthermore, distinct differences in the immune microenvironment were 
observed between these groups. Validation of key gene expression, exemplified by ILF3, was confirmed 
through PCR analysis. 
Conclusion: This study contributes to our understanding of the role of sphingolipid metabolism in prostate 
cancer diagnosis and treatment. The identified prognostic model holds promise for improving risk stratification 
and patient outcomes in clinical settings. 
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tumor cells metastasize beyond the prostate, treatment 

options become more restricted. While hormone therapy 

and chemotherapy can help manage the disease, they 

often fall short of a cure, with the cancer eventually 

developing resistance to these treatments. In particular, 

some patients may experience resistance to hormone 

therapy (androgen deprivation therapy), evolving  

into castration-resistant prostate cancer (CRPC) [3]. 

Although new drugs have emerged to address this 

issue, managing CRPC remains arduous, with limited 

treatment choices. Consequently, an urgent imperative 

exists to formulate fresh patient risk stratification 

methodologies, explore the tumor microenvironment 

in prostate cancer patients, and pinpoint novel, precise 

biomarkers. This endeavor aims to facilitate early 

diagnosis, early intervention, and enhanced patient 

prognosis. 

 

Metabolic reprogramming within the tumor micro-

environment represents a complex and pivotal 

phenomenon in cancer biology, exerting influence 

across all facets of cancer progression and behavior 

[4]. A primary role of this metabolic reprogramming  

in the tumor microenvironment revolves around 

facilitating the rapid and unbridled proliferation  

of cancer cells. These cells demand a continuous  

supply of energy and the fundamental constituents 

necessary for DNA, RNA, and protein synthesis. Even 

within environments marked by nutritional constraints, 

cancer cells exhibit metabolic adaptability, enabling 

them to shift their metabolic pathways in favor of 

generating these essential molecules [5]. Cancer cells 

adeptly manipulate their metabolism to elude the 

immune system’s surveillance. Through metabolic 

reprogramming, they modify their nutrient utilization 

and produce immunosuppressive metabolites. This 

results in the creation of an immunosuppressive micro-

environment that impedes the immune system’s ability 

to detect and eradicate cancer cells. Consequently, 

metabolic reprogramming is intricately linked to cancer 

cell invasion and metastasis. Metabolic alterations can 

additionally augment cancer cells’ capacity to degrade 

the extracellular matrix, migrate through tissues, and 

establish secondary tumors in distant organs [6]. 

Tumors frequently contain regions with low oxygen 

levels (hypoxia) due to inadequate blood supply. 

Cancer cells can adapt to such conditions through 

metabolic reprogramming, switching to alternative 

metabolic pathways like glycolysis (the Warburg 

effect). This metabolic shift induces angiogenesis, 

promoting the formation of new blood vessels. 

Furthermore, metabolic reprogramming can confer 

resistance to various cancer treatments, including 
chemotherapy and targeted therapies. Cancer cells  

can develop mechanisms that reduce their reliance  

on specific metabolic pathways targeted by drugs. 

The tumor microenvironment constitutes an intricate 

ecosystem comprising not only cancer cells but  

also a diverse array of stromal cells, such as 

fibroblasts, immune cells, and endothelial cells [7]. 

Metabolic reprogramming in cancer cells can impact 

the metabolism of stromal cells, and conversely, 

stromal cell metabolism can influence cancer cell 

behavior, thus collectively shaping the tumor’s overall 

behavior. This comprehension of metabolic alterations 

within the tumor microenvironment has paved the 

way for the identification of potential therapeutic 

targets. 

 

Researchers are actively investigating drugs  

designed to disrupt specific metabolic pathways  

or restore normalcy to the metabolic milieu within 

cancer cells. Such efforts aim to enhance the efficacy 

of cancer treatments. Moreover, metabolic changes 

within tumors hold substantial potential as diagnostic 

and prognostic biomarkers. The analysis of tumor 

metabolic characteristics can facilitate the classification 

of cancer subtypes, prognosticate patient outcomes, 

and steer personalized treatment strategies. 

 

Sphingolipid metabolism assumes a pivotal  

role within the tumor microenvironment, exerting 

influence over all facets of tumor progression and 

therapeutic responsiveness. Sphingolipids, a lipid 

class encompassing sphingolipins, ceramides, and 

sphingosine-1-phosphate (S1P), actively participate in 

cell signaling, proliferation, survival, and migration 

[8–11]. Ceramide, a prominent sphingolipid, emerges 

as a pro-apoptotic molecule that fosters programmed 

cell death [12]. Elevated ceramide levels can trigger 

apoptosis in cancer cells [13]. Conversely, diminished 

ceramide levels and heightened S1P levels within the 

tumor microenvironment foster cancer cell survival  

by inhibiting apoptosis [14]. Notably, S1P has been 

demonstrated to stimulate angiogenesis, the process of 

generating new blood vessels essential for tumor 

growth and metastasis [15]. S1P effectively promotes 

endothelial cell migration, blood vessel formation, and 

enhances nutrient supply to tumors [16]. Sphingolipids 

also wield influence over the functionality of immune 

cells in the tumor microenvironment [17]. Ceramide 

can prompt apoptosis of immune cells and potentially 

hinder the anti-tumor immune response. In contrast, 

S1P can attract immune cells to the tumor site, thereby 

influencing the balance between immunosuppression 

and activation within the tumor microenvironment. 

Signaling through the sphingosine-1-phosphate recep-

tor (S1PR) can further stimulate the migration and 

invasion of tumor cells. S1P serves as a chemical 
attractant, guiding cancer cells to metastasize into 

blood and lymphatic vessels, thus facilitating their 

dissemination to distant organs [17]. 
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Modifying sphingolipid metabolism can bolster the 

chemotherapy resistance of cancer cells. Elevated 

ceramide levels sensitize cancer cells to apoptosis 

induced by chemotherapy, whereas heightened S1P 

levels bolster drug resistance by fortifying cell 

survival pathways [9]. Sphingolipids exert regulatory 

control over inflammation within the tumor micro-

environment, with ceramides often linked to pro-

inflammatory responses, while S1P may exhibit  

either pro-inflammatory or anti-inflammatory effects 

contingent on the microenvironment. Sphingolipids 

also form components of extracellular vesicles (EVs), 

including exosomes, that partake in intercellular 

communication within the tumor microenvironment. 

These vesicles are capable of transferring bioactive 

lipids, including S1P, among cells, thereby influencing 

tumor growth and metastasis [10]. 

 
Presently, targeting sphingolipid metabolism has 

emerged as a prospective therapeutic approach in  

cancer treatment [18–20]. The development of drugs 

capable of modulating sphingolipid levels or disrupting 

sphingolipid signaling pathways holds potential for 

controlling tumor growth and sensitizing cancer cells to 

treatment [11]. In summary, sphingolipid metabolism 

occupies a multifaceted role within the tumor micro-

environment, impacting various facets of tumor 

biology encompassing cell survival, angiogenesis, 

immune modulation, migration, and treatment response. 

A thorough comprehension of these processes at the 

molecular level could furnish invaluable insights for 

the development of novel cancer therapies and the 

improvement of treatment outcomes. 

 
However, the precise significance of sphingolipid 

metabolism within the prostate cancer microenvironment 

remains uncertain. In our study, we conducted multi-

omics analyses, leveraging both single-cell sequencing 

techniques and bulk transcriptome analysis approaches, 

to elucidate the relevance of sphingolipid metabolism  

in prostate cancer. Concurrently, we established an 

associated prognostic model. Our findings hold the 

potential to serve as a reference for evaluating the 

prognosis of prostate cancer. 

 
MATERIALS AND METHODS 

 
Single-cell sequencing data processing 

 
The research made use of the website 

(http://www.pradcellatlas.com/#/) to obtain single-cell 

data related to prostate cancer, comprising a dataset 
encompassing 13 samples of single-cell sequencing  

data [21]. To ensure data quality, several criteria were 

applied: 

1. Genes expressed in fewer than 3 cells were 

excluded. 

2. Cells with gene expression levels falling between 

200 and 5000 were retained. 

3. Cells with less than 10 percent of their 

mitochondrial genes were retained. 

4. Cells with a total gene expression below 50000 

were preserved. 

 
Following these quality control measures, steps were 

taken to mitigate batch effects between samples and 

cells using the “SCT” approach. To reduce the 

dimensionality of the samples, the “dims” parameter 

was set to 20, and the UMAP method was employed. 

The parameters were configured with K.Paam set at 20, 

resolution at 0.4, a random seed of 2023, and the KNN 

method utilized for cell clustering. Cell annotations 

were determined based on marker genes corresponding 

to cell types documented in the published literature. 

 
Bulk transcriptome data processing 

 
The prostate cancer TCGA cohort data were acquired 

from the UCSC Xena website (https://xenabrowser.net/). 

These data underwent a standardized processing 

procedure, which included the alignment of transcriptome 

data with prognostic clinical data. Samples containing 

both types of data were retained for subsequent analysis. 

 
Acquisition of gene set related to sphingolipid 

metabolism 

 
Sphingolipid metabolism-related genes were sourced  

from the GeneCard website (https://www.genecards.org/). 

Genes with scores exceeding 3 were selected for further 

analysis, resulting in the retention of a total of 118 genes. 

 
GO enrichment analysis 

 
The GO database encompasses three components: 

cellular component (CC), molecular function (MF), and 

biological process (BP). To investigate enriched 

biological functions, we utilized the GO database and 

compared the provided gene list with the gene 

distribution within each category of biological 

functions. This step uses the clusterProfiler R package. 

 
KEGG enrichment analysis 

 
We utilized the KEGG database to identify enriched 

pathways associated with the given gene list. This 

involved a matching process where we compared the 
provided gene list with the genes documented in the 

human pathways within the KEGG database. This step 

uses the clusterProfiler R package. 
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Weighted gene coexpression network analysis 

(WGCNA) 

 

In this study, we applied WGCNA (Weighted Gene 

Co-expression Network Analysis) to explore gene  

sets closely associated with sphingolipid metabolism  

in prostate cancer bulk-seq data. To determine the 

appropriate soft threshold, we considered a range  

from 1 to 10 with increments of 1, and from 12 to 20 

with increments of 2, using the “pickSoftThreshold” 

function from the “WGCNA” R package. We set  

the minimum number of genes per module to 150, 

configured a “deepSplit” value of 2 for gene clustering, 

and integrated the analysis with sphingolipid phenotype 

data. 

 

Construction and validation of the prognostic model 

 

In this study, we divided the TCGA cohort into two 

groups randomly using the “caret” package. Initially, we 

conducted univariate Cox analysis, with a significance 

threshold set at p < 0.05, to identify genes associated 

with prognosis. Subsequently, we utilized LASSO 

regression for further screening and the construction of 

a prognostic model. We then proceeded to perform 

prognostic analysis of the model in three separate sets: 

the training set, the validation set, and the entire cohort, 

to comprehensively evaluate its predictive performance. 

 

Analysis of immune cell infiltration 

 

We utilized the TIMER2 website (http://timer. 

cistrome.org/) to acquire immune cell infiltration data 

from the TCGA database, which had been derived using 

diverse computational techniques. Differences in the 

distribution of immune cells between the high-risk and 

low-risk groups determined by the model were 

subsequently examined. To visualize these distinctions, 

heat maps were employed. Following this, the 

expression levels of immunodetection point genes, 

leukocyte antigens, and tumor necrosis-related genes 

between the two groups were investigated. 

 
Drug sensitivity analysis 

 

The “pRRophetic” package was employed in this  

study to predict the IC50 (half-maximal inhibitory 

concentration) of drugs. This prediction involved a 

comparison between the expression pattern of prostate 

cancer and the training pattern linked to drug responses. 

 
The construction of the nomogram 

 

To evaluate patient outcomes, we utilized the “regplot” 

package to generate nomograms, which are based on 

patient models and clinical data. These nomograms 

provide a comprehensive visualization and assessment 

of patient prognostic information. 

 

The expression of model gene ILF3 in prostate 

cancer was verified by PCR 

 

Five patients with prostate cancer were enrolled 

between January 2022 and December 2022, all of  

whom were diagnosed with prostate cancer by prostate 

biopsy before surgery. After admission, they underwent 

surgery to remove prostate cancer. The tumor tissue was 

divided into an experimental group, and the adjacent 

normal tissue was used as normal control group. The 

expression level of ILF3 was detected by PCR. The 

study was approved by the Ethics Committee of The 

Affiliated Huaian No. 1 People’s Hospital of Nanjing 

Medical University. Tissue-derived total RNA was 

extracted and utilized to synthesize complementary 

DNA (cDNA) following the manufacturer’s instructions 

provided in the PrimeScript™ RT reagent kit with 

gDNA Eraser (TaKaRa, Kusatsu, Japan). Quantitative 

reverse transcription-polymerase chain reaction (qRT-

PCR) was conducted using the AceQ Universal SYBR 

qPCR Master Mix (Vazyme, Nanjing, China) on a 

QuantStudio 7 PCR system (Thermo Fisher Scientific, 

CA, USA). The primer set employed in this study is 

detailed below: 

 

For ILF3: Forward Primer for ILF3: 5′-GAACGTA 

AAACAGCAGGGGC-3′; Reverse Primer for ILF3:  

5′-GTCCATCCACTTCGACCTCC-3′. 

 

For GAPDH: Forward Primer: 5′-ACCCACTCCTCCA 

CCTTTGA-3′; Reverse Primer: 5′-CTGTTGCTGTAG 

CCAAATTCGT-3′. 

 

RESULTS 
 

Single-cell sequencing data analysis of sphingolipid 

metabolism in prostate cancer 

 

Initially, our investigation centered on sphingolipid 

metabolism enrichment at the single-cell level. In 

Figure 1A, 1B, it is evident that following quality 

control and sample integration, we retained 11 tumor 

samples, and there was no noticeable batch effect 

among them. The clustering of tumor samples into 15 

distinct clusters is demonstrated in Figure 1C–1E. We 

categorized these clusters into 5 cell types based on the 

expression of cell type marker genes from previously 

published research. These cell types include Basal and 

Intermediate Cells, Endothelial Cells, Fibroblast Cells, 

Monocytic Cells, and T Cells. 

 

Subsequently, we calculated sphingolipid metabolic 

enrichment scores utilizing the “UCell” and “singscore” 
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methods from the “irGSEA” package, using sphingolipid 

metabolic genes. Patients were then divided into high  

and low groups based on the median value of metabolic 

enrichment scores, using the “singscore” method. 

Differential expression analysis was performed, leading 

to the identification of 3014 genes with a significance 

threshold of p < 0.05. As depicted in Figure 1F, 1G, the 

enrichment results from both methods were consistent, 

with sphingolipid metabolism primarily enriched in 

Endothelial Cells and Fibroblast Cells. 

 

Subsequent analysis focused on pathways potentially 

associated with sphingolipid metabolism, as shown  

in Figure 1H, 1I. These pathways predominantly 

encompass RNA synthesis, ribonucleoprotein complex 

synthesis, energy synthesis, heat production, and 

endoplasmic reticulum protein processing of organic 

compound oxidation. 

WGCNA analysis 

 

Following that, we conducted a transcriptome data 

analysis to pinpoint genes linked to sphingolipid 

metabolism. Initially, we determined the sphingolipid 

metabolism enrichment fraction for each prostate cancer 

sample using the ssGSEA method. Subsequently, we 

carried out WGCNA analysis. In Figure 2A, it’s evident 

that when the optimal soft threshold is set to 7, the data 

conforms to a power law distribution, and the Mean 

connectivity shows stability. 

 

In Figure 2B, 2C, the genes were grouped into 11 non-

gray modules, with the green module demonstrating the 

highest correlation with the sphingolipid metabolism 

phenotype (correlation = −0.55 and p < 0.05). A closer 

look at the inter-gene correlations within the green 

module is presented in Figure 2D. Module membership 

 

 
 

Figure 1. Analysis of single-cell sequencing data for prostate cancer. (A, B) Quality control and sample integration. (C–E) The 

dimensionality reduction clustering was performed on all cells. All cells are grouped into 15 clusters. After annotating the different clusters, 
a total of five cell types were obtained. (F, G) A sphingolipid metabolism score was performed. (H, I) Gene enrichment analysis between 
high sphingolipid metabolism score group and low sphingolipid metabolism score group. 
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within the green module was found to be positively 

correlated with Gene significance for body weight 

(correlation = 0.59 and p < 0.05). 

 

Construction and validation of the prognostic model 

 

To identify more robust genes associated with 

sphingolipid metabolism in prostate cancer, we merged 

the 3014 genes obtained from single-cell analysis  

with the 534 genes acquired from WGCNA analysis, 

resulting in a total of 57 genes. For clinical applications, 

we constructed a prognostic model. 

 

In Figure 3A, we conducted a univariate Cox analysis 

with a significance threshold of p < 0.05, and this led 

to retaining a total of 43 genes. Subsequently, we 

employed LASSO regression, as shown in Figure  

3B, 3C, which resulted in the selection of 5 genes  

for the model: “FUS,” “MARK3,” “CHTOP,” “ILF3,” 

and “ARIH2.” The sphingolipid-related risk score 

(SRSRs) was then computed based on the sphingolipid 

metabolism correlation model. 

 

Figure 3D–3F illustrate that in the training cohort, 

validation cohort, and the entire meta cohort, patients 

in the SRSRs_high group exhibited poorer prognosis 

and shorter disease-free survival. Prognostic ROC 

analysis, as depicted in Figure 3G–3I, indicated that 

the model demonstrated good accuracy in assessing 

patient prognosis at 1, 3, and 5 years. 

 

 
 

Figure 2. Weighted gene coexpression network analysis. (A) When the optimal soft threshold is 7, the data conform to the power 

law distribution, and the Mean connectivity tends to be stable. (B, C) Genes clusters. They were clustered into 11 non-gray modules, of 
which the green module was most correlated with the sphingolipid metabolism phenotype. (D) Correlation of green modules. 
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The expression of model genes in different cell types 

and pseudo-time series analysis 

 

We proceeded with the analysis of the expression 

distribution of the five genes comprising the model at  

the single-cell level. As shown in Figure 4A–4E, these 

five genes predominantly exhibit expression in Fibroblast 

Cells. Consequently, we isolated the Fibroblast Cells and 

conducted a pseudo-time series analysis. 

 

In Figure 5A–5D, the color scale indicates the 

differentiation stages, with darker blue representing 

early cell differentiation and darker red indicating late 

differentiation. There are five cell differentiation states 

in total, with cluster 12 primarily in differentiation 

states 1, 2, and 3, while cluster 11 primarily occupies 

state 1, and state 4 contains both cluster 11 and cluster 

12. Additionally, we observed that Fibroblast Cells  

with high sphingolipid enrichment scores exhibited 

more advanced differentiation. 

 

As displayed in Figure 5E, the expression of the FUS 

gene gradually down-regulates as Fibroblast Cells 

undergo differentiation. 

 

 
 

Figure 3. Construction and validation of the prognostic model. (A) Univariate Cox analysis to obtain the prognosis-related genes. 

(B, C) LASSO regression to construct the prognostic model. (D–F) Survival analysis in the training cohort, validation cohort and the entire 
meta cohort. (G–I) The prognostic ROC analysis in the training cohort, validation cohort and the entire meta cohort. 
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Immune cell infiltration and drug sensitivity analysis 

 

We proceeded to investigate the disparities in immune 

cell infiltration between the two groups defined by  

the model. As depicted in Figure 6A, the SRSRs_high 

group exhibited a higher level of immune infiltration 

by T cells and NK cells. In Figure 6B, 6C, it was 

observed that most leukocyte antigen genes, immune 

checkpoint genes, and tumor necrosis genes were 

highly expressed in the SRSRs_high group, including 

 

 
 

Figure 4. Expression localization of 5 model genes in different cell types. (A) ARIH2. (B) CHTOP. (C) FUS. (D) ILF3. (E) MARK3. 

 

 
 

Figure 5. Pseudo-time series analysis. (A) Darker blue indicates early cell differentiation, while darker red indicates late differentiation. 

(B) Different cell differentiation states in total. (C) Different clusters. (D) The relation between sphingolipid enrichment score and cell 
differentiation. (E) The expression of FUS genes is gradually down-regulated as Fibroblast Cells differentiate. 
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genes like BTLA, CD80, PDCD1, CXCL10, and HLA-

DQA2. However, some genes such as CD44 and CALR 

were underexpressed in the SRSRs_high group. 

 

To enhance the potential for more effective patient 

treatment, we predicted potentially beneficial drugs. 

Figure 6D–6G illustrates that Doxorubicin, Gemcitabine, 

Methotrexate, and Pyrimethamine had lower IC50 values 

in patients within the SRSRs_high group compared to 

those in the SRSRs_low group, suggesting that these 

drugs may be more suitable for treating patients in the 

SRSRs_high group. 

 

 
 

Figure 6. Immune cell infiltration and drug sensitivity analysis. (A) Immune cell infiltration landscape between SRSRs_high group 

and SRSRs_low group. (B, C) The expression level of leukocyte antigen genes, immune checkpoint genes and tumor necrosis genes between 
SRSRs_high group and SRSRs_low group. (D–G) Drug sensitivity analysis. 
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Construction of the nomogram 

 

To enhance the prediction of patient prognosis, we 

developed a nomogram. Figure 7A provides the 1, 3, 

and 5-year recurrence or mortality rates for patients  

in the TCGA database, which were 0.0475, 0.14,  

and 0.203, respectively. Figure 7B, 7C illustrate that  

the prognostic ROC curve analysis demonstrated the 

effectiveness of the nomogram in predicting patient 

prognosis, with an AUC consistently around 0.8. This 

performance surpassed that of other clinical indicators. 

Moreover, using the nomogram for clinical decision-

making would be most advantageous for patients. 

 

PCR assay to verify the expression of ILF3 in 

prostate cancer tissues 

 

Figure 8 presents the results of PCR verification of 

ILF3 expression in prostate cancer tissues and normal 

controls. The results indicated a significant upregulation  

 

 
 

Figure 7. Construction of the nomogram. (A) The 1-, 3-, and 5-year recurrence or mortality rates for patients TCGA-HC-A8D0 in the 

TCGA database were 0.0475, 0.14, and 0.203. (B) Prognostic ROC curve analysis. (C) Clinical decision benefit curve. 
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of ILF3 in prostate cancer tissues (*p < 0.05), 

suggesting its potential relevance in the context of 

prostate cancer. 
 

DISCUSSION 
 

Our groundbreaking study integrates single-cell 

sequencing data with bulk transcriptome data to 

elucidate the significance of sphingoid metabolism  

in prostate cancer comprehensively. Through this 

innovative approach, we’ve unveiled the multi- 

faceted roles of sphingoid metabolism, demonstrating 

its capacity for prognostic prediction, immune 

assessment, and drug sensitivity estimation in  

prostate cancer. Our investigation began with a  

deep dive into single-cell heterogeneity, followed by 

the identification of key sphingolipid metabolism-

associated genes. This was complemented by bulk 

transcriptome analysis, leading to the development of 

a prognostic model comprising five crucial genes. 

Notably, our study explores the heterogeneity of  

gene expression in different cell types and states and 

investigates immune infiltration variations, highlighting 

the potential for immunotherapy. Furthermore, our 

findings suggest specific drugs, such as Doxorubicin, 

Gemcitabine, Methotrexate, and Pyrimethamine, as 

more effective for the high-risk group. Lastly, we 

constructed a predictive nomogram for prostate cancer 

patient prognosis. Overall, our research advances our 

understanding of prostate cancer biology and the role 

of sphingolipid metabolism, offering insights into 

diagnosis, treatment, and potential combined drug 

therapies. 

Sphingolipid metabolism has emerged as a critical 

factor in cancer biology, offering valuable insights and 

therapeutic potential. Key sphingolipids like ceramides 

and sphingosine-1-phosphate (S1P) play contrasting 

roles as pro-apoptotic and pro-survival signaling 

molecules, respectively, influencing the fate of cancer 

cells. Dysregulation of sphingolipid metabolism is a 

common occurrence in various cancers and is linked  

to drug resistance. Researchers are actively exploring 

sphingolipid-related pathways as potential avenues for 

cancer therapy, including sphingosine kinase inhibitors 

and strategies to boost ceramide levels [22]. This 

evolving field holds promise for personalized cancer 

treatments and improved patient outcomes, underlining 

its current and future significance in cancer research. 

 

Moreover, several bioinformatic analyses have shed 

light on the role of sphingolipid metabolism in cancer. 

For instance, Meshcheryakova et al. investigated the 

significance of sphingolipid metabolism in epithelial 

ovarian cancer, constructing survival models involving 

specific genes [23]. They also identified a novel 

network linking sphingolipids, lysophospholipids, and 

immune checkpoints, contributing to our understanding 

of tumor immune heterogeneity and disease outcomes. 

Similarly, Zhang et al. used various algorithms and 

RNA-seq data to pinpoint crucial genes in sphingo- 

lipid metabolism in lung adenocarcinoma, potentially 

opening new therapeutic avenues [24]. Our study, a 

pioneering effort, reveals the heterogeneity of sphingoid 

metabolism in prostate cancer and establishes a 

prognostic model, providing valuable tools for patient 

stratification and early intervention in prostate cancer. 

 

 
 

Figure 8. PCR test. ILF3 was highly expressed in prostate cancer tissues (*p < 0.05). 
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