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INTRODUCTION 
 

Intestinal ischemia-reperfusion (IR) is a common 

clinical condition characterized by a complex 

mechanism and various therapeutic approaches [1].  

It can be categorized into acute and chronic types. 

Acute intestinal ischemia-reperfusion often results 

from significant blood loss, cardiac arrest, or severe 
infection, while chronic intestinal ischemia-reperfusion 

mainly arises from atherosclerosis [2]. The onset of 

intestinal ischemia-reperfusion stimulates a cascade  

of harmful responses, entailing compromised  

intestinal mucosal barrier function, disrupted intestinal 

microcirculation, and oxidative stress [3]. These 

reactions can lead to serious outcomes like ischemia, 

hypoxia of the intestinal tissue, necrosis, and bleeding. 

Hence, exploring strategies to alleviate IR is critically 

important. 

 
Aging individuals are more prone to ischemia-

reperfusion injury, potentially due to the presence of 

coexisting conditions such as hypertension, diabetes, 
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ABSTRACT 
 

Background: This study combined bioinformatics and experimental verification in a mouse model of intestinal 
ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. 
Methods: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine 
and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein 
interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene 
analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A 
mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment 
comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal 
tissue observation was done via transmission electron microscopy (TEM), histological examination via 
hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and 
Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. 
Results: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor 
pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight 
junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding 
energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol).  
Conclusions: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-
channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-
MyD88 signaling pathway, which is related to senescence. 
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and obesity [4, 5]. However, age itself is intrinsically 

linked to the cardiovascular system as an independent 

risk factor, making prevention and treatment of IR 

from a senescence perspective worth discussing. 

 

Current evidence suggests that butyrate has protective 

effects against intestinal ischemia-reperfusion injury 

(IRI) [6]. In addition to its role in regulating oxygen 

free radical metabolism, butyrate also eases damage to 

the intestinal mucosal barrier and improves intestinal 

microcirculation [7]. Multiple studies have suggested 

that butyrate effectively reduces the oxidative stress 

response induced by intestinal ischemia-reperfusion, 

enhances the functionality of the intestinal mucosal 

barrier, and minimizes injury and necrosis in intestinal 

tissue cells [6, 7]. Butyrate may also increase regional 

blood flow and microcirculation and increase the 

critical expression of intestinal vascular endothelial 

growth factor, thereby augmenting tissue oxygenation 

following intestinal ischemia and reperfusion [8, 9]. 

 

However, debates persist regarding the exact 

mechanism of butyric acid in the context of intestinal 

ischemia-reperfusion. However, larger clinical trials  

are needed to validate its safety and effectiveness and 

provide comprehensive guidelines for its use. It has 

been demonstrated that intestinal ischemia-reperfusion 

activates Toll-like receptor 4 (TLR4), which binds to 

its ligand, triggering downstream signal transduction 

regulated by MyD88 [10, 11]. This cascade then 

activates NF-κB p65 and the transcription of down-

stream genes, coding inflammatory mediators, adhesion 

molecules, and apoptosis regulators, contributing to 

the inflammatory response, apoptosis, and local tissue 

damage [12, 13]. Therefore, inhibition of the TLR4 

signaling pathway could mitigate the negative effects 

of IRI [14]. This research investigated whether 

butyrate treatment affects TLR4 signaling in this 

disease model. 

 

MATERIALS AND METHODS 
 

Analyzing network pharmacological data 

 

The molecular structure file of butyrate was obtained 

from PubChem (https://pubchem.ncbi.nlm.nih.gov/) 

and subsequently uploaded to the target prediction tool 

of the Bioinformatics Analysis Tool for Molecular 

mechANism of Traditional Chinese Medicine (Batman-

TCM) database for the purpose of identifying potential 

targets associated with butyrate [15]. To thoroughly 

investigate the potential drug targets of butyrate,  

the screening process employed an unrestricted  

Score cutoff condition. The GeneCards database 

(https://www.genecards.org/, GeneCards Version 5.16) 

was utilized to search for reported genes associated 

with aging and IRI, using the keywords “intestinal 

ischemia-reperfusion injury” and “senescence” [16]. 

 
Analysis of transcriptomes in single cells 

 

The single-cell RNA sequencing (scRNA-seq)  

dataset GSE190581 was downloaded from the  

Gene Expression Omnibus (GEO) platform (https:// 

www.ncbi.nlm.nih.gov/geo/) [17]. The detection of 

this data set was based on 10X genomics platform, 

and two intestinal tissues damaged by intestinal 

ischemia-reperfusion in mice were detected. For the 

data set GSE190581, the “seruat” package is used for 

scRNA-seq data analysis. The specific process of its 

analysis was as follows: 1) The PercentFeatureSet 

function was used to determine the proportion of 

mitochondrial genes, and correlation analysis was 

used to study the relationship between sequencing 

depth and mitochondrial gene sequence and/or 

intracellular total sequence. 2) Set each gene to be 

expressed in at least 3 cells and 200 genes. 3) The 

number of genes expressed in each cell was more  

than 300 and less than 5000, the mitochondrial 

content was less than 10%, and the UMI of each cell 

was at least 1000. 4) Data are filtered and then 

standardized, features are selected and normalized, 

batch removals are performed, and dimensionality 

reduction clustering is performed. 5) Annotations  

for cells were taken from CellMarker 2.0 (http://bio-

bigdata.hrbmu.edu.cn/CellMarker/). 6) After that, 

FindAllMarkers was used to identify genes whose 

expression differed between different cells. The set 

filter condition for the log fold change (FC) was  

0.25 [18]. 

 

Construction and analysis of the butyrate-IRI target 

network 

 
First, the mouse genes from single-cell transcriptomics 

were transformed into human genes via the msigdbr 

package. Then, based on the four genes related to 

aging and intestinal ischemia‒reperfusion injury 

identified in the GeneCards database, the differentially 

expressed genes were identified via scRNA-seq 

analysis, and the genes of potential drug targets were 

subjected to Venn diagram screening. Finally, the 

drug action and expected IRI targets were identified. 

The common targets were loaded into the STRING 

database, the species was limited to “Homo sapiens”, 

a protein‒protein interaction (PPI) network diagram 

was created, the required minimum interaction score 

was set to a high confidence level of 0.07, and the 

discrete targets were hidden. Then, the PPI network 

diagram was analyzed by using Cytoscape (version 

3.7.0) with the MCODE tool to analyze the targets  

of key nodes. 
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GO and KEGG analysis 

 

To identify the biological functions of butyrate and IRI-

related target genes in gene ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analysis, clusterProfiler, org was used for 

enrichment analysis [19]. Then the analysis adopts the 

org.Hs.eg.db, enrichplot and ggplot2 packages, and the 

critical value standard was P< 0.05 [20]. 

 

Mouse model of intestinal ischemia-reperfusion injury 

 

Thirty male C57BL/6 mice, approximately 8 weeks 

old, were randomly divided into 6 groups from 

Liaoning Changsheng Biotechnology Co., Ltd. (animal 

batch number: SCXK (Liao) 2020-0001), that is, group 

A was the normal group (normal feeding); group B 

was sham operation group (sham); group C was the 

model group (modeling); group D was the control 

group (modeling+equal volume PBS); group E was 

butyrate group 1 (modeling +100 mg/kg butyric  

acid); and group F was butyrate group 2 (modeling 

+300 mg/kg butyric acid). Mice lived in a fixed 

circadian rhythm and were kept in separate cages in a 

temperature-controlled room, and they were allowed 

free access to food and water. The mouse experiment 

in this study was approved by the Ethics Committee  

of The Fourth Hospital of Hebei Medical University 

(2021022). An intestinal I/R injury model was 

generated as described above [21]. The normal group 

was raised routinely without any modeling. In the 

model, control, and butyric acid groups, mice were 

anesthetized with 1% pentobarbital sodium, and the 

right abdominal cavity was exposed. The superior 

mesenteric artery (SMA) was located approximately  

2 mm below the dark region of the right abdomen.  

We timed the clamping of the SMA then sutured  

in layers using 4-0 silk thread. After 45 minutes,  

we removed the sutures and the arterial clamp. In  

the sham operation group, the SMA was not clamped, 

but the same operation procedures were carried out. 

Immediately after resuscitation, the mice underwent 

further treatments: the butyrate groups received 

injections of either 100 mg/kg or 300 mg/kg butyrate 

via the SMA, whereas the vehicle group received  

an injection of the same volume of PBS via the  

SMA. The normal group and the model group received 

no injections. During the entire operation, the body 

temperature of the mice was maintained at 37° C using 

a constant temperature blanket. Mice were euthanized 

at 30 min, 24 h, and 72 h post-reperfusion, and small 

intestine samples were collected. Each sample was 

divided into three sections: two were treated with 
either 2% paraformaldehyde or 2.5% glutaraldehyde, 

and the remaining section was dried on filter paper and 

stored at -80° C for testing. 

Transmission electron microscopy 

 

Colon cells were observed for their structural state using 

transmission electron microscopy (TEM). Fixation of 

colon tissue with glutaraldehyde 2.5% was followed by 

three washes in 0.1 M PBS. Infiltrated and buried tissue 

was first fixed with 1% osmium tetroxide for two hours, 

followed by dehydration with 30%, 50%, 70%, 90%, 

95%, and 100% ethanol. Afterwards, 60 nanometer-thin 

slices of colon tissue were cut. After avoiding carbon 

dioxide through the use of 2.6% lead citrate solution, 

the staining effect of colon cells was observed by TEM 

(JEM-1200EX, JEOL, Tokyo, Japan). 

 

Hematoxylin and eosin staining 

 

Hematoxylin and eosin (H&E) staining was performed 

on 5-micron paraffin coronal sections of mouse small 

intestine fixed for 48 hours with 2% paraformaldehyde 

[22]. Glass slide was magnified by 100 times under an 

optical microscope (Nikon, Tokyo, Japan). 

 

Immunohistochemical analysis 

 

A 4 mm section of paraffin-embedded tissue was  

cut into 4 pieces. The chips were dewaxed in xylene 

and dehydrated in ethanol, after which the sections 

were repaired with citrate buffer antigen. Following 

incubation with 3% hydrogen peroxide for 10 minutes, 

the slices were rinsed three times with PBS to inhibit 

endogenous peroxidase activity. A block of 3% BSA 

was applied to the slices, which were then incubated  

at 4° C overnight with the primary antibody. Slices 

were incubated for an hour at room temperature  

with the second antibody conjugated with horseradish 

peroxidase (HRP). The concentrations of both Occludin 

and Claudin-1 were 1:200 (Wanleibio, Shenyang, 

China). IHC was performed with a DAB chromogen 

kit, and images were taken with a Nikon NIS element 

BR optical microscope (Nikon, Tokyo, Japan). ImageJ 

software can be used to analyze all the IHC images. 

All positive and negative cells in each visual field 

were counted, and the percentage of all positive cells 

was calculated. 

 

Western blotting 

 

Proteins were extracted from abdominal tissue by lysing 

it in RIPA lysis buffer and benzyl sulfonyl fluoride 

(PMSF) for 5 minutes on ice. Following manufacturer’s 

instructions (Beyotime, China), cytoplasmic proteins 

and nucleic acids are extracted using nuclear and 

cytoplasmic protein extraction kits, respectively. An 
equal amount of protein lysate (30 g per lane) was 

separated by SDS-PAGE on 10% polyacrylamide gel 

and transferred to polyvinylidene fluoride membranes. 
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Overnight at 4° C, we used the primary antibodies 

HMGB1 (cat. no. WL03023, diluted at 1:500, 

Wanleibio), TLR4 (cat. no. WL00196, diluted at 1:500, 

Wanleibio), and MyD88 (cat. no. WL02494, diluted  

at 1:500, Wanleibio). After washing the membrane  

four times with TBST, the membrane was incubated 

with the secondary antibody for four hours at 4° C the 

next day. To quantify the strip strength, Quantity One 

(Bio-Rad, Shanghai, China) was used as a reference. 

We standardized the relative protein levels to the same 

concentration used for the control group. 

 

Molecular docking 

 

The search conditions for UniProt (https:// 

www.uniprot.org/) were limited to humans, and the 

numbers for HMGB1 and TLR4 were P09429 and 

O00206, respectively. Next, the protein number in the 

RCSB PDB (https://www.rcsb.org/) was entered to 

download the corresponding structure. Using PyMOL 

2.4.1, crystal water from proteins was removed,  

and small molecules from the PubChem database  

were subsequently imported into ChemBio3D Ultra 

14.0 software to minimize their energy. Using CB- 

Dock (http://clab.labshare.cn/cb-dock/), the binding site 

was located automatically, the center and size were 

calculated, the docking box size was customized to suit 

the query ligand, and then AutoDock Vina was used for 

molecular docking. To preliminarily assess the binding 

activity of compounds to targets, Vina scores were 

calculated, where lower values indicate more stable 

binding. 

 

Statistical analysis 

 

The mean and standard deviation of the data are 

expressed as the means of two groups. When the 

variance was equal, one-way analysis of variance 

(ANOVA) was used to compare the means of the 

groups, and the Dunnett test was used to confirm the 

equality of the variance. Instead, Brown-Forsyth tests 

are carried out without assuming equal variances. 

Repeated measures ANOVA was used to calculate the 

covariance of the measured data if they conformed to  

a normal distribution. The data were analyzed using 

GraphPad Prism 8.0 and R software (version 4.2.2; 

https://www.r-project.org/). P <0.05 was considered to 

indicate statistical significance in this study. 

 

RESULTS 
 

Target prediction  

 

Butyrate was obtained from PubChem with a 

PubChem CID of 264. According to Batman-TCM, 

under conditions where the Adjusted P-value is less 

than 0.05, 16,382 predicted drug targets were identified 

(Supplementary Table 1). A total of 2766 and 6275 

related genes were screened in GeneCards based on 

intestinal ischemia-reperfusion injury (Supplementary 

Table 2) and senescence (Supplementary Table 3), 

respectively. 

 

Analysis of scRNA-seq  

 

When conditional screening was applied to the single 

cell data set GSE190581, 4086 cells were retained 

(Figure 1A). As a result of setting resolution to 0.3, 20 

cell subsets were obtained, and the different kinds of 

cells were annotated as well as the varying numbers and 

proportions of the cell types (Figure 1B–1D). There are 

five types of cells: Goblet cell (Muc2, Agr2, Fcgbp, 

Zg16), Enteroendocrine cell (Fabp1, Aldob, Apoa4, 

Alpi, Apoa1), Natural killer cell (Gzma), Regulatory T 

(Nrp1), Macrophage (Adgre1, Cd68, Cx3cr1), and Brush 

cell (Dclk1, Trpm5, Lrmp) (Figure 1E, 1F). A total of 

6889 differentially expressed genes (Supplementary 

Table 4) were identified between different cells in the 

data set using Log FC = 0.25 (Figure 2A). 

 

Targets intersecting 

 

The following four parts of genes were intersected: 

the target gene of butyrate structure prediction, the 

genes related to intestinal ischemia-reperfusion injury 

and senescence in GeneCards, and the DEGs in  

the single-cell dataset GSE190581. In this study, a 

total of 458 potential target genes were ultimately 

identified (Figure 2A). 

 
PPIs 

 

In the STRING database, 458 potential target genes 

were used to construct protein interaction networks.  

In this network, there are 458 nodes and 10628  

edges (Figure 2B). The key genes in the above 

networks were analyzed using the MCODE plug-in in 

Cytoscape. As a result, a key gene network diagram 

comprising 77 nodes and 1078 edges was constructed 

(Supplementary Figure 1). 

 
Functional annotation and pathway enrichment 

analysis 

 

Functional enrichment analysis was performed on 458 

genes in the intersection genes. The biological process 

(BP) enrichment items include positive regulation  

of cytokine production, response to oxidative stress 

and regulation of apoptotic signaling pathway; the 

cellular component (CC) enrichment items include 

cell-substrate junction, focal adhesion and membrane 

microdomain; the molecular function (MF) enrichment 
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items include DNA-binding transcription factor 

binding, ubiquitin-like protein ligase binding and 

ubiquitin protein ligase binding (Figure 2C). In 

addition, KEGG enrichment analysis reveals PI3K- 

Akt signaling pathway, MAPK signaling pathway, and 

Toll-like receptor signaling pathway (Figure 2D). 

 

Intestinal tissue subjected to TEM 

 

Figure 3 shows that the interstitial cells of normal 

Cajal were found in the normal and sham groups of 

stained intestinal tissue. Both groups contain many 

intracellular organelles with complete morphology, 

 
 

Figure 1. Results of single-cell analysis of the GSE190581 dataset. (A) Number of cells before and after quality control. (B) Results of 
subset analysis. (C) Cell annotation results. (D) Percentage of five cell names in GSE190581. (E) Marker expression in five cell types.  
(F) Differential gene expression between cells. 
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such as mitochondria and the Golgi apparatus. 

Interstitial cells of Cajal were protuberant in the 

model group, and mitochondria shriveled, cristae and 

some cytoplasm were lacking. Additionally, Cajal’s 

interstitial cells lost contact with intestinal nerves. 

The butyrate concentration increased with increasing 

sodium butyrate concentration, reducing damage from 

both high and low doses of butyrate.  

H&E staining 

 

H&E staining revealed that the intestinal folds in the 

normal group were circular, semicircular, or spiral and 

that the mucosal surface was covered with numerous 

small intestinal villi (Figure 4). The results in the sham 

operation group were similar to those in the normal 

group. In the model and vehicle groups, there were 

 

 
 

Figure 2. Target gene screening against IRI, PPI of target genes and, functional enrichment analysis of target genes.  
(A) Interacting genes, (B) PPIs, (C) GO analysis, (D) KEGG analysis. 
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scattered epithelial structures in the intestinal villi, cells 

detached at the tips of the villi, and noticeable gaps 

formed. The morphological success of the model was 

evident. Increasing the dosage of butyrate improved the 

epithelial structure of the intestinal villi, but shedding of 

the epithelial layer and desquamation of the epithelium 

and villi still occurred. 

IHC analysis 

 

IHC analysis of Occludin is shown in Figure 5. The 

normal and sham groups exhibited Occludin protein 

expression in the intestinal mucosa, which was evenly 

distributed and prominent in the cell membrane. After 

24 hours, the Occludin protein levels decreased in the 

 

 
 

Figure 3. The results of transmission electron microscopy of intestinal tissue. 

 

 
 

Figure 4. Hematoxylin and eosin staining in this study.  
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model and vehicle groups, and their distributions 

became uneven over time. As the dose of butyrate was 

increased, Occludin protein expression decreased in 

comparison to the vehicle group as well as the model 

group. There was a difference between the Occludin 

levels in the butyrate groups and those in the sham 

group at 24 and 72 hours (P<0.05). 

 

Figure 6 shows the results of IHC staining for  

Claudin-1. Claudin-1 was clearly distributed on the 

cell membrane in the intestinal mucosa of the normal 

and sham groups. A decrease in Claudin-1 expression 

was observed in the model group and vehicle group, 

and an uneven distribution of the protein was also 

observed. Claudin-1 protein expression increased over 

time in response to increasing butyrate concentrations. 

Compared with those in the sham group, the Claudin-1 

levels in the two groups were different after butyrate 

treatment (P<0.05). 

 

Western blotting 

 

Figure 7 illustrates the varying expression levels of 

HMGB1, TLR4, and MyD88 across each group in  

this study. It was observed that the levels of HMGB1 

protein began to rise at different times post induction of 

the IRI model in mice, with the specific timing varying 

according to the duration. A statistically significant 

difference (P<0.05) was found in HMGB1 protein 

expression between the model group and the vehicle 

group when compared to the sham group. High-dose 

butyrate intervention led to a decrease in HMGB1 

 

 
 

Figure 5. The immunohistochemical analysis of Occludin. It represents a group that differs significantly from the vehicle group with 

the symbol (#). It represents a group that differs significantly from the vehicle group with the symbol (*). 
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protein expression after 30 minutes, which differed 

significantly from the vehicle group (P<0.05).  

This study reveals that butyrate intervention is 

concentration-dependent; higher concentrations of 

butyrate result in a time-dependent decrease in 

HMGB1 expression levels. Unique to this study is  

the observation that TLR4 and MyD88 proteins  

are expressed at similar levels as HMGB1. The 

expression levels of TLR4 and MyD88 proteins 

increased differently following both the model and 

the vehicle interventions. However, these expression 

levels decreased following butyrate intervention.  

A statistically significant difference (P<0.05) was 

noted between high-dose butyrate and vehicle groups 

concerning the expression of TLR4 and MyD88 

proteins. 

Molecular docking 

 

Figure 8 illustrated how lower Vina scores indicated 

stronger and more stable interactions between the 

compound and the receptor. HMGB1 and TLR4 

binding strengths of butyrate were -3.7 kcal/mol and  

-3.8 kcal/mol, respectively (Table 1). This indicated 

HMGB1 and TLR4 had a certain affinity for butyrate. 
 

DISCUSSION 
 

People suffering from ischemic bowel disease  

are usually middle-aged or elderly, with severe  

cases having intestinal obstruction [23]. Because the 

colon has a relatively slow blood flow and poor 

microcirculation system and is more sensitive to 

 

 
 

Figure 6. The immunohistochemical analysis of Claudin-1. It represents a group that differs significantly from the vehicle group with 
the symbol (#). It represents a group that differs significantly from the vehicle group with the symbol (*). 

7969



www.aging-us.com 10 AGING 

autonomic nerve stimulation than the small intestine is, 

the colon is more likely to suffer from ischemia [24]. 

Colon hypoperfusion results in a reduction in colon 

blood flow, which impairs the metabolic function of 

colon cells and leads to acidosis, dysfunction, and 

eventual cell death [24, 25]. Microvascular ischemia-

reperfusion in the colon is responsible for this patho-

physiological mechanism. Additionally, elderly patients 

are susceptible to IRI injury, which is associated with 

their own basic diseases (arteriosclerosis, cerebral 

infarction, coronary heart disease, etc.) [4, 26–28]. The 

study’s enrichment analysis shows that aging is closely 

linked to cytokine production and oxidative stress. 

Aging is associated with increased inflammatory 

activity, as evidenced by higher levels of TNF-α,  

IL-6, cytokine antagonists, and acute phase proteins  

in the body [29]. Oxidative stress can also lead to  

the secretion of inflammatory cytokines [30]. KEGG 

analysis indicates that TLRs signaling pathway plays a 

role in inflammation in both normal aging and diseases 

with cognitive decline [31]. Many drugs targeting anti-

aging focus on the PI3K-Akt [32, 33] and MAPK 

signaling pathways [34, 35]. It is therefore extremely 

important to reduce intestinal IRI with drugs.  

 

 
 

Figure 7. Butyrate may protect against IRI via the HMGB1-TLR4-MyD88 signaling pathway. (A) Western blotting results of 
three proteins in different groups. (B) Comparison of Western blotting results of HMGB1 in different groups. (C) Comparison of Western 
blotting results of TLR4 in different groups. (D) Comparison of Western blotting results of MyD88 in different groups. It represents a 
group that differs significantly from the vehicle group with the symbol (#). It represents a group that differs significantly  from the 
vehicle group with the symbol (*). 
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The collection of senescence-related genes and the 

correlation between IRI target genes and butyrate 

have led to the KEGG analysis indicating that 

butyrate is intimately associated with signal pathways 

connected to inflammation and antioxidants. The 

PI3K-Akt signaling pathway, an important pathway 

for maintaining the body’s oxidative homeostasis [36] 

was highlighted. Evidence suggests that liraglutide 

may reduce inflammatory reactions and tissue 

apoptosis in the gut, and also protect intestinal 

immune responses via NF-κB and PI3K-Akt pathways 

[21]. After treatment with Ellagic acid, transcriptome 

analysis revealed that AKT1-specific mRNAs were 

predominantly located in PI3K-AKT signaling path-

ways in IRI mice [37]. Additionally, an oxygen-

glucose deprivation/reoxygenation (OGD/R) model 

was developed to simulate intestinal IRI. Activating 

the PI3K-Akt-p53 signaling pathway, adenosine A1 

receptor agonists could decrease OGD/R damage in 

Caco-2 cells, possibly due to their anti-apoptotic effect 

[38]. Both in vitro and in vivo studies showed a link 

between intestinal IRI and p38 MAPK activation [39], 

 

 
 

Figure 8. Molecular docking of butyrate and two target proteins. (A) Molecular docking between butyrate and HMGB1.  
(B) Molecular docking between butyrate and TLR4. 
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Table 1. Molecular docking results of the targets and butyrate. 

Molecule name Target name PDB ID Score (kcal/mol) Cavity size Centre x Centre y Centre z Size x Size y Size z 

butyrate 
HMGB1 2YRQ -3.7 114 -25 -21 2 15 15 15 

TLR4 2Z62 -3.8 154 17 -14 8 15 15 15 

 

consistent with our bioinformatics research findings. 

Propofol, a p38 MAPK-NF-κB signaling pathway 

inhibitor, can lessen intestinal edema and inflam-

mation, thereby mitigating and treating intestinal IRI 

in rats [40]. Furthermore, 6-gingerol inhibited p38 

MAPK activation and ROS formation in an ischemia-

reperfusion model of rat intestinal ischemia [41].  

Toll-like receptor signaling also plays a crucial role in 

the IRI process. Toll-like receptors (TLRs), known as 

microbial sensors due to their transmembrane nature 

from previous studies, are capable of coordinating  

the body’s defense against infection and detecting 

dead cell products in host tissue. As one of the  

most representative tissue injury states, IRI is likely 

unavoidably linked to a TLR-mediated molecular 

mechanism [42]. TLR2 has been implicated in inducing 

inflammatory mediators, such as TNF-a, causing 

chronic damage to the small intestine during adult IRI 

[43]. Besides sensing and defense functions, TLRs 

also play a significant role in wound repair. For 

instance, the dsRNA-sensing receptor (TLR3) is 

involved in signal transduction and rescue of tissue 

damaged by inflammation [44]. The primary focus  

of this study is the potential involvement of TLR4  

in various IRI-induced inflammatory processes [45]. 

The TLR4 receptor plays a key role in the production 

of prostaglandin E2 (PGE2) upon intestinal ischemia 

and reperfusion induced by Cox-2 [46], and under 

macrophage stimulation, TLR4 also induces the 

secretion of various cytokines [47]. In rats with 

intestinal ischemia-reperfusion injuries and OGD 

ischemia-reperfusion injuries, dexamethasone alleviated 

the injury. This protective effect may be associated 

with anti-inflammatory effects and the inhibition of 

TLR4-MyD88-NF-κB signaling pathways [48]. The 

Changqing mixture is believed to prevent IRI through 

the TLR4-NF-κB pathway [49]. All these studies 

indicate the crucial role of TLR4 in regulating IRI. 

 

Some articles have reported that butyrate exhibits 

therapeutic effects on ischemia-reperfusion injury (IRI), 

as well as detailing its molecular mechanisms. Butyrate 

intervention improved intestinal injury in a rat model  

of IRI and reduced the levels of inflammatory factors 

and leukocyte infiltration. Moreover, butyrate aids in 

maintaining intestinal barrier integrity by increasing the 

expression of tight junction proteins and minimizing 

endotoxin translocation [6, 8, 50, 51]. In rats with  

IRI induced by renal transplantation, butyrate amplified 

intracellular oxidative stress and inflammation to mitigate 

IRI [51]. However, the precise mechanism through 

which sodium butyrate impacts IRI remains unclear. 

Bioinformatics and animal experiments conducted in 

this study confirmed that sodium butyrate did not 

delineate signals related to HMGB1-TLR4 and IRI 

target genes. In mice models with IRI, injections of 

anti-HMGB1 and anti-MyD88 inhibited the expression 

of HMGB1 and MyD88, reducing serum inflammatory 

cytokines [52]. This antibody injection also decreased 

lung and small intestine tissue damage in the intestinal 

IRI mouse model compared to the control group. 

Consistent with the results from the previous study, 

post-butyrate intervention, levels of HMGB1 and 

MyD88 in IRI were found to be lower than those in  

the model group. Neonatal mouse models of necrotizing 

enterocolitis exhibited reduced levels of HMGB1, TLR4, 

and inflammatory cytokines after butyrate pretreatment 

[7]. Moreover, the interplay between HMGB1-TLR4-

MyD88 and ischemia-reperfusion signaling pathways 

has been studied [53, 54]. Propofol pretreatment 

alleviated IRI-induced lung injury in pigs by inhibiting 

the HMGB1-TLR4-PKR signaling pathway [55]. Given 

the interactions among HMGB1, TLR4, and MyD88 

identified in previous research, this study analyzed the 

effects of butyrate intervention on their proteins. The 

findings indicated that butyrate also reduced intestinal 

damage after IRI through the HMGB1-TLR4- MyD88 

signaling pathway. 

 

Due to time and energy constraints, we only studied 

butyrate’s effect on the HMGB1-TLR4-MyD88 signal 

pathway in IRI. Our research is limited to in vitro 

animal experiments and requires more experiments and 

clinical validation. Additionally, the small sample size 

of single cell data used and the information of other 

public data which was limited in this study highlight  

the need for more data collection in the future. Further 

experiments are necessary to support our research. 
 

CONCLUSIONS 
 

IRI can damage intestinal tissues and trigger 

inflammatory response and oxidative stress, but 

butyrate can effectively counteract these effects. 

Furthermore, butyrate inhibits the HMGB1-TLR4-

MyD88 signaling pathway in intestinal tissue, which  

is beneficial for preventing and treating IRI-induced 

intestinal tissue injury. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. PPIs network of potential key genes. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Target screening of butyrate in the bioinformatics analysis tool for molecular 
mechANism of traditional Chinese medicine. 

 

Supplementary Table 2. Target screening of intestinal ischemia-reperfusion injury in the GeneCards database. 

 

Supplementary Table 3. Target screening of senescence in the GeneCards database. 

 

Supplementary Table 4. Results of differentially expressed genes in single cell transcriptome analysis. 
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