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INTRODUCTION 
 

Gastric cancer stands out for its high morbidity and 

mortality rates among malignancies [1, 2]. Despite 

advancements in stomach cancer therapies in recent 

decades, current treatment modalities often fall short  

of achieving optimal outcomes, presenting significant 

risks to patients’ health and longevity [3–6]. Hence, a 

www.aging-us.com AGING 2024, Vol. 16, Advance 

Research Paper 

Machine learning for identifying tumor stemness genes 
and developing prognostic model in gastric cancer 
 

Guo-Xing Li1,*, Yun-Peng Chen2,*, You-Yang Hu2,*, Wen-Jing Zhao1, Yun-Yan Lu1, Fu-Jian Wan3, 
Zhi-Jun Wu4, Xiang-Qian Wang1, Qi-Ying Yu1 
 
1Department of Oncology and Central Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, 
Jiangsu 226361, P.R. China 
2Department of Oncology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China 
3Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and 
Technology, Wuhan, Hubei 430081, P.R. China 
4Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226361, P.R. China 
*Equal contribution 
 

Correspondence to: Qi-Ying Yu, Zhi-Jun Wu, Xiang-Qian Wang; email: wust202018601003@163.com, https://orcid.org/0009-
0008-8651-9335; ntzlyyflk@163.com, https://orcid.org/0000-0001-6046-6767; wangxiangqian01@126.com, 
https://orcid.org/0009-0005-0542-7892 
Keywords: gastric cancer, cancer stemness, machine learning, ssGSEA 
Received: October 31, 2023 Accepted: March 13, 2024 Published: April 12, 2024 
 

Copyright: © 2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Gastric cancer presents a formidable challenge, marked by its debilitating nature and often dire prognosis. 
Emerging evidence underscores the pivotal role of tumor stem cells in exacerbating treatment resistance and 
fueling disease recurrence in gastric cancer. Thus, the identification of genes contributing to tumor stemness 
assumes paramount importance. Employing a comprehensive approach encompassing ssGSEA, WGCNA, and 
various machine learning algorithms, this study endeavors to delineate tumor stemness key genes (TSKGs). 
Subsequently, these genes were harnessed to construct a prognostic model, termed the Tumor Stemness Risk 
Genes Prognostic Model (TSRGPM). Through PCA, Cox regression analysis and ROC curve analysis, the efficacy 
of Tumor Stemness Risk Scores (TSRS) in stratifying patient risk profiles was underscored, affirming its ability as 
an independent prognostic indicator. Notably, the TSRS exhibited a significant correlation with lymph node 
metastasis in gastric cancer. Furthermore, leveraging algorithms such as CIBERSORT to dissect immune 
infiltration patterns revealed a notable association between TSRS and monocytes and other cell. Subsequent 
scrutiny of tumor stemness risk genes (TSRGs) culminated in the identification of CDC25A for detailed 
investigation. Bioinformatics analyses unveil CDC25A’s implication in driving the malignant phenotype of 
tumors, with a discernible impact on cell proliferation and DNA replication in gastric cancer. Noteworthy 
validation through in vitro experiments corroborated the bioinformatics findings, elucidating the pivotal role of 
CDC25A expression in modulating tumor stemness in gastric cancer. In summation, the established and 
validated TSRGPM holds promise in prognostication and delineation of potential therapeutic targets, thus 
heralding a pivotal stride towards personalized management of this malignancy. 
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comprehensive understanding of the molecular 

mechanisms underpinning gastric cancer’s pathogenesis 

and progression, coupled with the exploration of 

innovative treatment strategies and reliable prognostic 

indicators, emerges as a pressing imperative. 

 
Gastric cancer exhibits significant heterogeneity, and 

mounting evidence underscores the pivotal role of 

cancer stem cells (CSCs) in driving this diversity [7]. 

This heterogeneity presents formidable challenges for 

current treatment modalities. Within tumors, CSCs 

represent a distinct subpopulation, albeit constituting  

a minority. Possessing stem cell-like characteristics 

including self-renewal, replication, and differentiation 

capabilities [8, 9], CSCs perpetuate tumor progression 

through continual proliferation and differentiation. 

Remarkably, CSCs are intricately linked to key facets of 

gastric cancer pathogenesis, encompassing metastasis, 

drug resistance, and recurrence [10–12]. Consequently, 

precise elucidation of tumor stemness genes and their 

regulatory networks is imperative for accurate prognosis 

and targeted therapeutic interventions in gastric cancer 

management. 

 
To preliminarily screen for tumour stemness genes  

in gastric cancer, two methods were employed. The  

first involved utilising the WGCNA algorithm and 

mRNAsi features for module distinction, while the 

second entailed adopting the ssGSEA method to score 

TCGA samples and obtain differential genes using  

the embryonic stem cell gene set as a criterion. The 

objective analysis of both methods yielded promising 

results. The genes acquired from both algorithms are 

intersected, and the resulting genes undergo various 

machine learning screenings to identify TSKGs. The 

machine learning outcomes, as screened by a confusion 

matrix and ROC, were utilised to develop a tumour 

stemness risk prognostic model. Cox’s regression 

analysis was carried out to verify the predictive value  

of the tumour stemness risk score (TSRS). We used 

ssGSEA and other algorithms, including CIBERSORT, 

to examine the correlation between the TSRS and 

tumour immune infiltrating cells. We analysed the 

expression level and tumour stemness index relationship 

and chose CDC25A as our research subject to investigate 

its expression, mutational landscape and functional 

enrichments in gastric cancer. We conducted assays  

on cell activity, cell cycle and immunofluorescence  

to confirm the function of CDC25A in gastric cancer, 

with specific focus on cell proliferation, cell cycle  

and tumour stemness. Our study had, in summary, 

established a reliable prognostic model in tumour 

stemness. The model presented here could strengthen the 

development of targeted therapy for tumour stem cells 

in gastric cancer. Additionally, it provides a theoretical 

basis for precise and personalized patient treatment. 

MATERIALS AND METHODS 
 

Cell culture 
 

The SGC7901 gastric cancer cells utilized in this 

investigation were procured from the Chinese Academy 

of Sciences Cell Bank (Shanghai, China). These cells 

were maintained in RPMI-1640 medium supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin/ 

streptomycin. 
 

Cellular immunofluorescence 
 

Please refer to our previously published literature for 

specific experimental procedures [13]. The antibodies 

CD44 and Ki67 in the experiments were from ABclonal 

(USA). 
 

Flow cytometry for cell cycle detection 
 

The quantification of various cell cycle phases was 

conducted using a cell cycle detection kit (HY-K1071, 

MCE, USA) in accordance with the manufacturer’s 

instructions. Following treatment, cell samples were 

subjected to analysis via flow cytometry using a BD C6 

plus instrument. 
 

Immune infiltration analysis 
 

Tumor purity was assessed using transcriptomic  

profiles of gastric cancer cohorts from TCGA with the 

ESTIMATE algorithm. ImmuneScore, StromalScore, 

and ESTIMATEScore were also compared between the 

low- and high-TSRS groups. ssGSEA was performed to 

analyze 28 immune cells using the GSVA package. We 

then validated these results with pan-cancer immune 

infiltration data and XCELL, CIBERSORT-ABS, EPIC, 

TIMER and etc., algorithms [14]. 
 

Identification of TSKGs 
 

In this analytical segment, two distinct algorithms were 

employed to identify tumor stemness genes within 

gastric cancer, followed by an intersection analysis of 

their results. Initially, the WGCNA algorithm, coupled 

with mRNAsi, was utilized to compute tumor stemness 

gene modules and subsequently extract genes of interest 

from these modules. Subsequently, the second algorithm 

leveraged the MSigDB database to download embryonic 

stem cell genomes, utilizing them as scoring criteria via 

the GSVAR software package to score gastric cancer 

samples sourced from TCGA. Following this, the limma 

package facilitated the classification of samples into 

high and low groups, enabling the identification of 

differentially expressed genes. Finally, the outcomes 

from both algorithmic approaches were subjected to 

intersection analysis using the R package venn. 
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Machine learning 

 
In this segment of the analysis, we applied five 

distinct machine learning algorithms to identify 

TSKGs. The utilized algorithms encompass Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), 

Decision Tree (DT), Logistic Regression (Logit), and 

Random Forest (RF). The top 30 genes, ranked by 

their importance, were visually represented through 

bar charts for each algorithm. Subsequently, the 

efficacy of these results was assessed through 

accuracy testing, employing methodologies such as 

confusion matrices and ROC curves. Noteworthy R 

language packages utilized in this process include 

caret, DALEX, ggplot2, random Forest, kernlab, and 

pROC. 

 
Analyses of mutated landscapes 

 
Mutational landscapes of the CDC25A high and  

low expression groups were mapped by applying  

the website assistant for clinical bioinformatics 

(https://www.aclbi.com/static/index.html#/). 

 
Statistical analysis 

 
The unpaired T-test was used to calculate the  

p-value, and p < 0.05 was considered statistically 

significant. 

 
Availability of supporting data 

 
The data generated during this study are included in 

this article and its supplementary information files are 

available from the corresponding author on reasonable 

request. 

 

RESULTS 
 
ssGSEA and WGCNA were used to screen the tumor 

stemness genes of gastric cancer 

 
mRNAsi serves as a reference standard for  

assessing stemness in tumor samples [15]. Initially, 

we compared the distribution of values between 

cancer and paracancer tissues, as illustrated in 

Supplementary Figure 1A, and observed a significant 

elevation in mRNAsi levels within cancerous tissue. 

Subsequently, we conducted an analysis of gastric 

cancer samples from TCGA to identify DEGs, as 

depicted in Supplementary Figure 1B, 1C. WGCNA 

was then employed on the DEGs to delineate the 
module exhibiting the highest positive correlation 

with mRNAsi. During the WGCNA analysis, we set 

the threshold for excluding outlier samples at 12,000 

(Supplementary Figure 2A), established the R2 value 

for achieving a scale-free network at 0.9, and set β to 

3 (Supplementary Figure 2B). The height for merging 

similarity modules was set at 0.35 (Supplementary 

Figure 2C), and the resultant merged modules were 

visualized on a Cluster Dendrogram (Supplementary 

Figure 2D). Subsequently, we identified a positive 

correlation involving nine modules. This correlation 

was then depicted on a heatmap with respect to 

mRNAsi and EREG-mRNAsi (Supplementary Figure 

2E). The blue module was selected for gene extraction, 

yielding 694 genes (Gene Significance = 0.2, Module 

Membership = 0.2). Tumor stem cells represent a 

distinct class with stem cell-like properties. To assess 

and score TCGA samples for stem cell characteristics, 

we utilized the embryonic stem cell dataset from  

the Gene Set Enrichment Analysis (GSEA) database 

and applied the ssGSEA algorithm. Following scoring 

of each sample, the sample population was stratified 

based on the median score, as depicted in Figure 1A. 

The t-Distributed Stochastic Neighbor Embedding 

(tSNE) algorithm was employed to visualize the 

classification results, revealing distinct clustering 

between high and low stemness score groups (Figure 

1B). Additionally, we analyzed the differentially 

expressed genes within the clustered sample groups, 

as presented in Figure 1C. 

 

Machine learning was used to screen the key genes 

of tumor stemness 

 

We conducted a Venn analysis of the tumour stemness 

genes acquired via the algorithms WGCNA and 

ssGSEA, yielding a total of 182 genes (Supplementary 

Figure 3). Machine learning has extensive use in 

identifying significant genes. Therefore, we utilized 

diverse algorithms to identify key genes associated 

with tumour stemness. We categorised 182 genes into 

SVM, KNN, DTS, RF and Logit algorithms. The top 

30 genes of importance were plotted in histograms  

for each algorithm (Figure 2A–2E). Subsequently, we 

evaluated the results from each algorithm to achieve 

better accuracy in identifying tumour stemness genes. 

As demonstrated in Figure 3A–3E, the confusion 

matrix was utilized to calculate the results. The  

SVM confusion matrix displayed values of 2 in  

the tumour diagonal module, indicating the SVM 

algorithm had the lowest error rate among the five 

machine learning algorithms evaluated. To ensure the 

reliability of the findings, we used the ROC curve to 

authenticate our results. The ROC analysis indicated 

that the SVM had an optimal AUC score of 0.990 

(Figure 3F). Based on these results, we chose to 
investigate the role of tumour stem cells in gastric 

cancer using the SVM-calculated results for further 

in-depth study. 
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Construction and evaluation of tumor stemness gene 

prognostic model 

 

Cancer stem cells represent the degree of malignancy 

of tumors and are associated with poor prognosis  

of patients. Therefore, it is of great significance to 

construct a prognostic model related to tumor stemness 

for accurate treatment of patients’ conditions. The 

outcomes obtained by SVM were classified into the 

LASSO algorithm (Figure 4A, 4B). We evaluated  

the model by using the GEO gastric cancer dataset 

GSE84437 as a test dataset to validate the results. 

 

Firstly, gastric cancer samples were classified into  

high and low TSRS groups based on their TSRS. The 

TSRS and survival status of the samples were then 

plotted as scatter plots to assess whether survival 

changed with increasing TSRS. Figure 4C, 4D indicated 

that the number of deaths increased in the high TSRS 

group, suggesting that patients in this group may have 

an unfavorable prognosis. To confirm this hypothesis, 

we conducted a Kaplan-Meier analysis on patients  

with high and low TSRS. The outcomes demonstrated 

that those with higher TSRS suffered significantly 

shorter survival (refer to Figure 4E, 4F). The tSNE  

and PCA findings in the testing and training sets 

indicated that TSRS could effectively differentiate the 

risk of the sample population (refer to Figure 5A–5D). 

Consequently, we suggested that TSRS could function 

as an independent prognostic factor. Next, following 

COX regression analysis, it was discovered that TSRS 

displayed a significant correlation with OS in both the 

training (Figure 6A, 6B) and testing sets (Figure 6C, 6D). 

 

To explore the prognostic significance of TSRS in 

gastric cancer and its clinical implications, an analysis

 

 
 

Figure 1. ssGSEA algorithm was used to identify the differential genes of tumor stemness in TCGA samples. (A) Distribution 

map of high and low score groups of TCGA samples. (B) tSNE was used to analyze the distribution between high and low stemness score 
groups. (C) Volcano plot of differentially expressed genes between high and low stemness score groups. 
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Figure 2. Histogram of the importance of genes in different machine learning algorithms. (A) Histogram of gene importance for 
the DTS machine learning algorithm. (B) Histogram of gene importance for the Logit machine learning algorithm. (C) Histogram of gene 
importance for the SVM machine learning algorithm. (D) Histogram of gene importance for the RF machine learning algorithm. (E) 
Histogram of gene importance for the KNN machine learning algorithm. 

 

 
 

Figure 3. To verify the reliability of different machine learning algorithms. (A) Confusion matrix of Logit machine learning algorithm. 

(B) Confusion matrix of KNN machine learning algorithm. (C) Confusion matrix of SVM machine learning algorithm. (D) Confusion matrix of 
DTS machine learning algorithm. (E) Confusion matrix of RF machine learning algorithm. (F) The ROC curve of different machine learning. 
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of TSRS distribution across various clinicopathological 

parameters was conducted. Our findings revealed 

notable disparities in the N pathological parameter 

concerning TSRS (Figure 7A). Subsequent assessment 

delineated the specific distribution of TSRS within the 

N pathological parameter (Figure 7B). Remarkably, the 

low TSRS cohort exhibited a predominant proportion  

of No patients (73 patients, 43%), while the high TSRS 

 

 
 

Figure 4. Construction of prognostic model. (A) LASSO coefficient profiles of the genes obtained from the SVM machine learning 
algorithm. (B) Partial likelihood deviance was plotted versus log (Lambda). The vertical dotted line indicates the lambda value with the 
minimum error and the largest lambda value. (C) The distribution of survival status in TCGA cohorts based on TSRS. (D) The distribution of 
survival status in GEO cohorts based on TSRS. (E) The patient samples from TCGA were divided into high and low TSRS groups and the OS of 
the groups were analyzed. (F) OS analysis of high and low TSRS groups from the GEO samples. Abbreviation: LASSO: least absolute 
shrinkage and selection operator. 
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group displayed a higher incidence of N1 patients (55 

patients, 32%). Furthermore, the prognostic efficacy of 

TSRS was evaluated across both the training (Figure 

8A) and test sets (Figure 8B). Leveraging results from 

ROC analysis, a nomogram was constructed to harness 

the prognostic utility of TSRS, facilitating tailored 

treatment recommendations for patients (Figure 8C). 

 

Analysis of tumour immune cell infiltration in 

different TSRS subgroups 

 

The tumor microenvironment (TME) plays a pivotal 

role not only in the initiation of early tumorigenesis and 

distant metastasis but also in its dynamic alterations as 

the tumor progresses [16, 17]. Within this complex 

milieu, cytokines secreted by immune cells associated 

with the tumor promote the survival and differentiation 

of tumor stem cells, among other processes. Conversely, 

tumor stem cells themselves secrete chemokines that 

recruit immune cells to the tumor site [18]. In our study, 

we conducted a comprehensive analysis of immune 

infiltrating cells in TSRS subgroups. 

 

Employing the ESTIMATE algorithm, we first assessed 

tumor purity across different TSRS groups (Figure 9A). 

Subsequently, utilizing ssGSEA, we scrutinized and 

visualized the distribution of 28 immune infiltrating 

cells within both high and low TSRS groups through 

heat map. While no significant variations were observed 

in the distribution of these cells between the two groups, 

there was a discernible preference of immune-infiltrating 

cells within the high TSRS group (Figure 9B). These 

findings further reinforce the outcomes derived from the 

ESTIMATE ImmuneScore analysis. 

 

 
 

Figure 5. Assess the ability of TSRS to differentiate patients in high and low TSRS group. (A) PCA assessed the ability of TSRS to 
differentiate between high and low TSRS groups of patients in the TCGA cohorts. (B) tSNE assessed the ability of TSRS to differentiate 
between high and low TSRS groups of patients in the TCGA cohorts. (C) PCA assessed the ability of TSRS to differentiate between high and 
low TSRS groups of patients in the GEO cohorts. (D) tSNE assessed the ability of TSRS to differentiate between high and low TSRS groups of 
patients in the GEO cohorts. 
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We employed CIBERSORT to quantify immune-

infiltrating cell content, uncovering significant 

associations within the Tumor Stemness-Related 

Signature (TSRS) cohorts. Specifically, T cell CD4+ 

memory resting and monocytes exhibited elevated 

levels in the high TSRS group, while macrophage  

M0 levels were heightened in the low TSRS group 

(Figure 9C, 9D). 

 

To corroborate these findings, we utilized  

data from the pan-cancer database and various 

algorithms. XCELL analysis revealed significant 

correlations between monocytes and T cell CD4+ 

memory resting with TSRS, while macrophage M0 

showed no such association (Supplementary Figure 

4A). Monocytes consistently exhibited an association 

with TSRS across multiple algorithms including 

XCELL, QUANTISEQ, CIBERSORT-ABS, and 

MCPCOUNTER (Supplementary Figure 4A, 4C–4E). 

 

Notably, macrophage M2 displayed a significant 

association with TSRS according to outcomes  

from the XCELL, QUANTISEQ, and CIBERSORT-

ABS algorithms. Conversely, in TIMER and EPIC  

analyses, only macrophages and T-cell CD4+ were 

linked with TSRS, without identifying specific cellular 

subpopulations (Supplementary Figure 4B, 4F). These 

comprehensive analyses shed light on the intricate 

interplay between immune cell compositions and TSRS, 

offering valuable insights into tumor microenvironment 

dynamics. 

 

Immune checkpoints play a critical role in regulating 

immune responses, ensuring autoimmune tolerance,  

and moderating the duration and intensity of immune 

reactions within tumor tissues. Consequently, we delved 

into the expression patterns of immune checkpoints 

across different subgroups of TSRS. As depicted in 

Supplementary Figure 5, all immune checkpoint genes 

exhibited heightened expression levels in the high TSRS 

group. These included genes associated with immune 

evasion, exhaustion, and suppression, alongside those 

activating immune cell cytotoxicity. These findings 

suggest robust activation of immune cells within the 

high TSRS subgroup, potentially predisposing them to 

immune exhaustion. 

 

 
 

Figure 6. Assessment of the independent prognostic role of TSRS. (A, B) Univariate and Multivariate Cox analysis of TSRS and 

clinical characteristics in TCGA. (C, D) Univariate and Multivariate Cox analysis of TSRS and clinical characteristics in GEO. 
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Expression analysis of CDC25A in gastric cancer 

and its relationship with malignant phenotype 

 

To probe the functional role of TSRGs, we conducted  

an analysis examining their expression and correlation 

with mRNAsi. The scatter plot unveiled a notably 

stronger correlation between CDC25A and the tumor 

stemness index compared to ASCL2 (Figure 10A, 10B). 

Moreover, the distribution patterns of stemness scores 

and gene expression underscored CDC25A’s closer 

association with escalating levels of mRNAsi compared 

to ASCL2 (Figure 10C, 10D). Consequently, CDC25A 

emerged as the prime candidate for further investigation. 

 

CDC25A expression exhibited a noteworthy 

upregulation in tumor tissue samples, as depicted  

in Figure 11A, 11B. Additionally, clinical heatmap 

analysis indicated a significant gender-based disparity 

in CDC25A expression, as illustrated in Figure 11C. 

Subsequent analysis revealed a marked elevation in 

CDC25A expression among female patients, as depicted 

in Figure 11D. Given the presence of mutations in 

multiple genes within cancer cells, somatic mutations in 

CDC25A were investigated, revealing the presence of 

five mutations - one nonsense and four missense - in 

gastric cancer cells, as shown in Figure 12A. Further 

evaluation of CDC25A’s mutation status within the 

high and low expression groups uncovered a high 

prevalence of mutations in TP53 and other oncogenes 

among the high expression group of CDC25A, as 

illustrated in Figure 12B. This finding suggests a 

potential association between the malignant phenotype 

of the tumor and the heightened expression of 

CDC25A. 

 

 
 

Figure 7. Distribution of TSRS in different pathological parameters. (A) Clinical heat map of clinicopathological parameters and 
TSRS. (B) Clinical heat map of N and TSRS. 
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To elucidate the specific biological role of CDC25A 

within gastric cancer pathways, we conducted an 

enrichment analysis. Initially, we utilized the median 

expression value of CDC25A to identify differential 

genes in gastric cancer samples, as depicted in Figure 

13A, 13B. Subsequent pathway enrichment analysis 

unveiled CDC25A’s involvement in the regulation of 

cell cycle and cell division in gastric cancer, as shown 

in Figure 13C. Functional enrichment analysis further 

underscored CDC25A’s regulatory role in critical 

cellular processes such as mitosis, sister chromatid 

segregation, spindle assembly, and DNA replication, 

indicative of the self-renewal and replication abilities  

of tumor stem cells, as depicted in Figure 13D. 

 

To validate these findings, we assessed the co-expression 

of genes with CDC25A CDC25A (Figure 14A). Notably, 

cell proliferation markers PCNA and MKI67 exhibited 

significant correlations with CDC25A, as depicted in 

Figure 14B, 14C. Furthermore, proteins OCR1 and 

ORC6, pivotal for DNA replication, demonstrated a high 

correlation with CDC25A expression, as shown in Figure 

14D, 14E. Lastly, we conducted a correlation analysis to 

explore the relationship between CDC25A expression 

and signaling pathways associated with the cell cycle and 

proliferation. The results indicated a strong and positive 

association between CDC25A expression and DNA 

replication, tumor proliferation, G2M checkpoint, and 

MYC signaling pathways, as depicted in Supplementary 

Figure 6A–6D. 

 

CDC25A possesses the capability to regulate the 

proliferation of cells and the stemness of tumours 

 

In light of the bioinformatic analyses conducted, in  

vitro studies were carried out to verify the effects of 

 

 
 

Figure 8. Assessment of prognostic accuracy of TSRS as well as nomogram construction. (A) ROC curve analysis in TCGA. (B) ROC 

curve analysis in GEO. (C) A nomogram constructed using TSRS and other parameters. 

6464



www.aging-us.com 11 AGING 

CDC25A on gastric cancer cell proliferation, cell cycle, 

and tumor stemness. The CCK8 experimental findings 

indicated that suppressing CDC25A expression led to a 

noteworthy decline in the viability of gastric cancer 

cells by 0.4467 ± 0.1209 at 48 h (Figure 15A). The  

cell cycle results indicated that inhibiting CDC25A 

expression led to an increase in the proportion of  

cells in the G0/1 phase and a decrease in the number  

of cells in the S phase, while the proportion of cells  

in the G2 phase remained unchanged (Figure 15B).  

Co-expression analysis unveiled a significant positive 

correlation between CDC25A and MKI67. This finding 

was substantiated by our immunofluorescence results, 

demonstrating a marked decrease in MKI67 expression 

subsequent to CDC25A inhibition. (Figure 15C). To 

explore the impact of CDC25A on tumor stemness within 

gastric cancer, we selected CD44 as a well-established 

marker for cancer stemness investigation. As illustrated 

in Figure 15D, inhibition of CDC25A expression  

led to a notable decrease in CD44 expression. These 

experimental findings provide compelling evidence that 

CDC25A possesses the capacity to modulate both cell 

proliferation and tumor stemness in the gastric cancer. 

DISCUSSION 
 

Patients diagnosed with gastric cancer have a bleak 

prognosis, while the underlying pathomechanisms of 

the disease are yet to be fully understood. Recent 

investigations underscore the pivotal role of tumor 

stem cells in confounding therapeutic endeavors aimed 

at combating the disease. Leveraging the power of high-

throughput sequencing and microarray technology, we 

embarked on a comprehensive exploration of tumor 

stemness key genes in gastric cancer, employing 

advanced bioinformatics and machine learning 

methodologies. Subsequent meticulous analysis and 

validation of these genes in vitro shed light on  

their biological functions within the gastric cancer 

milieu. By elucidating the precise connection between 

tumor stemness and prognosis in gastric cancer, this 

study offers invaluable insights poised to inform 

therapeutic strategies and prognostic assessments in 

clinical practice. 
 

In this study, we initially screened gastric cancer tumor 

stemness genes using ssGSEA and WGCNA jointly. 

 

 
 

Figure 9. Immune infiltration analysis of different TSRS groups. (A) ESTIMATE analysis of high and low TSRS groups. (B) ssGSEA analysis 

of high and low TSRS group. (C) Histogram of different immune cell content in each sample. (D) Comparison of the content of different immune 
cells in high and low TSRS groups. 
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Figure 10. Analysis of the relationship between TSRGs and tumor stemness. (A) Scatter plot displaying the correlation between 

ASCL2 and the tumour stemness index. (B) Scatter plot displaying the correlation between CDC25A and the tumour stemness index. (C) 
Heat map of ASCL2 expression distribution versus tumor stemness score of corresponding samples. (D) Heat map of CDC25A expression 
distribution versus tumor stemness score of corresponding samples. 

 

 
 

Figure 11. Analysis of CDC25A expression in gastric cancer. (A) Paired expression analysis of CDC25A in gastric cancer. (B) Analysis of 

CDC25A expression in gastric cancer. (C) Clinical heatmap of CDC25A expression in gastric cancer. (D) Differences in CDC25A expression 
between genders. 
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Next, we screened TSKGs by applying various machine 

learning algorithms. These machine learning results 

were reviewed for accuracy and reliability. Finally, we 

selected the results of SVM screening to identify 

tumor stemness risk genes and construct a TSRGPM. 

 

ASCL2 is a member of a family of transcription 

factors that play a role in several aspects of tumours. 

Most reports on its regulation of tumour stemness have 

appeared in colon cancer and in gliomas. For example, 

Wang, Li-Hong et al. reported that ASCL2 can control 

the tumour stemness phenotype of glioma cells by 

regulating the expression of ATG9 protein in glioma 

cells [19]. It has also been reported that ASCL2  

is highly expressed in mismatch repair-sufficient or 

microsatellite-stabilised colon cancers and can maintain 

the stemness of colon cancer tumour cells and activate 

cancer-associated fibroblasts through the activity of 

transcription factors, thereby inducing an immune-

rejecting microenvironment to inhibit the infiltration 

of immune cells [20]. CDC25A belongs to the CDC25 

phosphatase family and is required for progression 

from the G1 phase to the S phase. Our experimental 

results consistently demonstrate that inhibiting the 

expression of CDC25A results in a decrease in the 

percentage of cells in the S phase during cell cycle 

experiments. Additionally, CDC25A contributes to  

the development of pancreatic cancer, colon cancer, 

hepatocellular carcinoma, and other cancers [21–24]. 

 

The TSRS derived from our constructed model 

exhibited a remarkable ability to discern between 

patients’ risk profiles and survival outcomes. Notably,  

a pronounced discrepancy in overall survival (OS) 

emerged between the high and low TSRS groups,  

with the latter indicative of potentially extended OS 

durations. Encouragingly, both Cox regression and 

ROC analyses substantiated the robust prognostic utility

 

 
 

Figure 12. Mutational landscape of CDC25A. (A) Mutation sites and types of CDC25A gene. (B) Mutational landscape of CDC25A high 

and low expression groups in gastric cancer. 
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of TSRS. Through a comprehensive assessment 

integrating TSRS with various clinicopathological 

characteristics, we uncovered a notable disparity in 

TSRS grading concerning lymph node metastatic 

parameters (N). Consequently, a meticulous statistical 

scrutiny of TSRS distribution across distinct N grades 

was undertaken. Intriguingly, our findings unveiled a 

predominance of patients with high TSRS scores within 

the N1 grading, juxtaposed with a larger contingent  

of patients exhibiting low TSRS scores in the N0 

category. Given the pivotal role of tumor stemness in 

driving cancer metastasis, our clinical heatmap analysis 

strikingly underscores the association between elevated 

TSRS scores and heightened incidence of lymph node 

metastasis in gastric cancer, affirming the clinical 

relevance of our findings. The precision and reliability 

of TSRS in delineating patient risk profiles were further 

underscored by these compelling observations. 

In addition to the structural support of the tumour 

microenvironment for tumour development, the  

TME may also create favourable conditions for the 

formation and maintenance of the CSCs niche and 

regulate the self-renewal and other stem cell-like 

properties of CSCs. Therefore, we also analysed the 

relationship between TSRS and immune infiltrating 

cells. It is noteworthy that, taken together, several 

different algorithms show that the tumour immune 

infiltrating cells positively associated with TSRS 

include M2-type macrophages. Tumor-associated 

macrophages account for about 50% of the tumours in 

TME and predominantly exhibit an M2 phenotype, 

regulating tumour growth, migration and angiogenesis 

by producing a plethora of growth factors, cytokines 

and ECM remodelling molecules (e.g., CCL2, 

CXCL12, CXCR4, TGF-β, VEGF, PDGF, COX-2, and 

metalloproteinases), which contribute to the progression 

 

 
 

Figure 13. Enrichment analysis of CDC25A in gastric cancer. (A) Heat map of differential genes in the CDC25A high and low 

expression groups. (B) Differential gene volcano map of CDC25A high and low expression groups. (C) KEGG enrichment analysis of CDC25A. 
(D) GO enrichment analysis of CDC25A. 
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Figure 14. Co-expression analysis of CDC25A in gastric cancer. (A) Co-expressed genes of CDC25A. (B) Co-expression relationship 

between PCNA and CDC25A. (C) Co-expression relationship between MKI67 and CDC25A. (D) Co-expression relationship between ORC1 and 
CDC25A. (E) Co-expression relationship between ORC6 and CDC25A. 

 

 
 

Figure 15. The effects of CDC25A expression on the proliferation, cell cycle and tumor stemness of gastric cancer cells were 
verified in vitro. (A) CCK8 assay to detect changes in gastric cancer cell viability after knockdown of CDC25A. (B) Flow cell cycle assay was 

performed to detect the changes in the percentage of cells in each cycle of gastric cancer cells after knockdown of CDC25A. (C) Cellular 
immunofluorescence assay to detect changes in MKI67 expression after CDC25A knockdown. (D) Cellular immunofluorescence assay to 
detect changes in CD44 expression after CDC25A knockdown. 
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of almost all tumours [25]. In various cancer types, 

CSCs can promote macrophage recruitment through 

different molecular mechanisms [26]. For example, in 

glioblastoma and cholangiocarcinoma, CSCs can also 

recruit macrophages by specifically secreting POSTN 

that binds to the macrophage surface receptor integrin 

αvβ3 [27, 28]. CSCs not only promote macrophage 

recruitment, but also influence macrophage polari-

sation status. CSCs preferentially express and secrete 

the Wnt-induced signaling protein 1 (WISP1) and 

maintain M2 macrophage survival by activating the 

integrin α6β1/AKT pathway on macrophages via the 

paracrine pathway. Similarly, Liao et al. [29] further 

demonstrated that WISP1 was associated with the 

polarisation and maintenance of M2-type TAMs in 

various types of tumours, revealing that the regulation 

of M2-type TAMs by WISP1 in different tumours may 

be a universal phenomenon. Similarly, in ovarian 

cancer [30], bladder cancer [31], glioblastoma [32] and 

breast cancer [33], IL-6 and IL-10 secreted by CSCs 

converted TAMs to M2 phenotype. In addition to 

secreting factors, CSCs also regulate macrophage 

polarisation through exosome release. Like normal 

stem cells, CSCs exist in a cellular ecotope composed 

of multiple cell types, such as immune cells, MSCs, 

endothelial cells, and CAFs, which collectively 

provide a unique microenvironment that protects and 

promotes the function of CSCs through the secretion 

of a variety of cytokines to promote tumourigenesis, 

angiogenesis, invasion, metastasis, and drug resistance 

[34]. TAMs, as CSCs important immune cells in the 

ecological niche, can regulate the maintenance of 

CSCs and their ecological niche through the following 

signalling pathways and cytokines. IL-6 regulates 

tumour proliferation and differentiation mainly by 

mediating the IL-6/STAT3 signaling pathway. IL-6 

secreted by TAMs promotes the transformation  

of non-CSCs to CSCs and the self-renewal of  

CSCs through the activation of STAT3. TAMs can  

promote tumour migration, invasion, and malignant 

progression by paracrine TGF-β. Ye et al. [35] found 

that macrophages enhanced the invasion of glioma 

stem cell-like cells through the TGF-β1 signalling 

pathway. In addition, epithelial-mesenchymal transition 

(EMT) is an important process that enables cancer 

cells to acquire CSCs-like characteristics and maintain 

CSCs stemness. M2-type TAMs induce EMT in 

hepatocellular carcinoma cells through secretion of 

TGF-β1, which results in higher invasive capacity  

and enhanced CSCs characteristics. 

 
In the final phase of our investigation, CDC25A 

emerged as a focal point for in-depth exploration 

through in vitro experimentation, aimed at corroborating 

its impact on gastric cancer cells and tumor stemness. 

Remarkably, our findings revealed that the suppression 

of CDC25A expression in gastric cancer cells  

elicited a notable reduction in cellular viability and 

proliferation. Additionally, inhibition of CDC25A 

expression precipitated a discernible alteration in cell 

cycle dynamics, characterized by a decrease in the 

proportion of cells traversing the S-phase coupled with 

a concomitant increase in cells arrested at the G0/1 

phase. These observations underscore the pivotal role  

of CDC25A in modulating the malignant behavior of 

gastric cancer cells, thereby offering promising avenues 

for targeted therapeutic interventions. 

 

While our study successfully validated the efficacy  

of the established risk-prognostic model, certain 

limitations warrant acknowledgment. Specifically, the 

validation of patient distribution in the high TSRS 

group within the N1 classification remains unverified 

due to constraints in obtaining clinical samples. 

Moreover, a comprehensive array of molecular and 

animal experiments is imperative to elucidate the 

intricate molecular mechanisms governing the role of 

TSRGs in tumor stemness regulation. This imperative 

shall guide the central focus and trajectory of our future 

research endeavors. 

 

In summary, our investigation has yielded a robust 

TSRGPM, wherein TSRS emerges as a potent 

prognostic indicator effectively stratifying patients’  

risk profile. The elucidation of this risk model alongside 

the identification of associated risk genes furnishes  

a solid theoretical foundation for the implementation  

of precise individualized treatment strategies and the 

pursuit of novel therapeutic targets, thereby fostering 

advancements in the clinical management of gastric 

cancer. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Differences in mRNAsi and gene expression. (A) Differences in mRNAsi between normal and tumor 

tissues in gastric cancer. (B) Volcano map of differentially expressed genes. (C) The top 50 differentially expressed genes in gastric cancer 
disease presented as a gene expression heat map. P < 0.05. 
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Supplementary Figure 2. Identification of cancer stemness index-related modules by WGCNA. (A) Samples above the red line 

were removed because they were considered as the deflection of gene expression. (B) This represents the correlation coefficient R2 and 
mean connectivity in the scale-free network. (C) Calculate similarity between modules and merge modules with high similarity. (D) 
Hierarchical clustering of gene modules. (E) Heatmap of the correlation ship between gene modules and cancer stemness index. 

 

 

Supplementary Figure 3. Venn plot of genes from WGCNA versus genes from ssGSEA. 
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Supplementary Figure 4. Different algorithms for immune infiltration analysis show the relationship between TSRS and 
immune cells. (A) Result of XCELL algorithm; (B) MCPCOUNTER algorithm results; (C) Result of EPIC algorithm; (D) Result of CIBERSORT-

ABS algorithm; (E) Result of QUANTISEQ algorithm; (F) Result of TIMER algorithm. 

 

 
 

Supplementary Figure 5. The expression of immune checkpoint genes in high and low TSRS groups. 
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Supplementary Figure 6. Relationship between CDC25A expression and different signalling pathways. (A) Relationship between 

CDC25A expression and DNA replication signalling pathway. (B) Relationship between CDC25A expression and tumour proliferation signalling 
pathway. (C) Relationship between CDC25A expression and the G2/M cycle checkpoint signalling pathway. (D) Relationship between CDC25A 
expression and the MYC signalling pathway. 
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