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INTRODUCTION 
 

Osteosarcoma is a type of cancer that originates from 

the bone cells, specifically in the osteoblasts, which  

are responsible for bone formation [1]. It is the most 

common primary malignant tumor of the bone, typically 

affecting children, adolescents, and young adults. This 

form of cancer has a strong predilection for long bones, 

such as the arms and legs, but it can also occur in  

other bones [2, 3]. The exact cause of osteosarcoma is  

still unclear. However, certain risk factors have been 

identified, including genetic predisposition, previous 

radiation therapy, and certain hereditary conditions [4, 

5]. Osteosarcoma can also occur secondary to other 

bone disorders, such as Paget’s disease [6]. 
 

One of the hallmark features of osteosarcoma is its 

aggressive nature and high potential for metastasis. It 

tends to spread to distant sites, most commonly the 

lungs, before symptoms become apparent. The initial 

symptoms may include localized pain, swelling, and 

limited range of motion in the affected area. The tumor 

can weaken the bone as it grows, leading to fractures or 

pathologic fractures, which occur with minimal trauma. 

Diagnosis of osteosarcoma involves a combination of 

imaging studies, such as X-rays, CT scans, and MRI 

scans, along with a biopsy to confirm the presence  

of malignant cells. Histological examination of the 

biopsy sample helps determine the tumor grade, which 

is essential for assessing the aggressiveness of the 

cancer. Treatment for osteosarcoma often involves a 

multidisciplinary approach. The mainstay of treatment 

is surgical resection of the tumor, which aims to remove 

the tumor along with a margin of healthy tissue to 

reduce the risk of local recurrence [2, 7]. The operation 

may be followed by chemotherapy, administered either 

before or after surgery. Chemotherapy is crucial in 

targeting any microscopic metastases that may be 

present. In some cases, radiation therapy may also be 

used as an adjunct to surgery and chemotherapy. The 

prognosis for osteosarcoma has improved significantly 

over the years, thanks to advances in treatment strategies. 

Factors influencing prognosis include the size and 

location of the tumor, the presence of metastasis, the 

response to chemotherapy, and the patient’s overall 

health. With appropriate treatment, the five-year survival 

rate for localized osteosarcoma is around 60–75%, but  

it decreases to approximately 15–30% if metastasis has 

occurred. 

 

In recent years, there has been a growing interest in 

identifying and validating biomarkers for osteosarcoma. 
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ABSTRACT 
 

Osteosarcoma is a cancer originating in the bone cells, specifically in the osteoblasts. Previous studies mainly 
focused on particular molecules but the whole pathway network. We comprehensively analyzed the 
enrichment score of each signal pathway and identified a novel classification by 20 machine learning 
algorithms. Furthermore, differences in tumor immune infiltration cells and drug sensitivity were compared in 
low and high groups. We identified a model consisting of four signaling pathways that predict the prognosis and 
the immune status of the tumor microenvironment and drug sensitivity in osteosarcoma patients. The novel 
classification may be used in clinical applications to predict prognosis and drug sensitivity. 
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Biomarkers are biological molecules or characteristics 

that can be measured and used to indicate the presence 

or severity of a disease, predict its progression, or 

evaluate the response to treatment. They can be found  

in various biological samples, including blood, tissue, 

and urine, and derived from proteins, genes, or other 

molecules. Several biomarkers have been proposed for 

osteosarcoma, with potential applications in diagnosis, 

prognosis, and treatment response prediction. Some  

of the most promising biomarkers for osteosarcoma. 

Alkaline phosphatase (ALP): Elevated serum ALP  

levels have been associated with a higher tumor burden 

and poorer prognosis in osteosarcoma patients. Pre-

treatment ALP levels may also help predict response  

to chemotherapy [8, 9]. Lactate dehydrogenase (LDH): 

Similar to ALP, increased serum LDH levels have  

been linked to a higher tumor burden and worse 

prognosis in osteosarcoma patients. Pre-treatment LDH 

levels may also help predict chemotherapy response  

[10, 11]. Circulating tumor cells (CTCs): The presence 

of CTCs in the blood of osteosarcoma patients has  

been associated with a higher risk of metastasis, and 

their detection may be useful for monitoring disease 

progression and response to treatment [12–14]. 

MicroRNAs (miRNAs): These small, non-coding RNA 

molecules have been implicated in the regulation  

of various cellular processes, including proliferation, 

differentiation, and apoptosis. Dysregulated miRNA 

expression has been observed in osteosarcoma, and 

specific miRNAs have been proposed as potential 

diagnostic and prognostic biomarkers, as well as 

therapeutic targets [15]. Genetic alterations: Mutations in 

genes such as TP53, RB1, and RECQL4 have been 

associated with an increased risk of osteosarcoma. 

Additionally, chromosomal abnormalities, such as 

amplifications or deletions, have been identified in 

osteosarcoma tumors and may serve as potential 

prognostic markers [16, 17]. 

 

While these biomarkers promise to improve the 

diagnosis, prognosis, and treatment of osteosarcoma, 

most of them do not predict patient prognosis and drug 

sensitivity. As the tumorigenesis of osteosarcoma is the 

consequence of altering multi-genes and multi-pathways, 

we used multiple machine learning algorithms to 

identify a pathways-related signature associated with  

the prognosis of osteosarcoma. Further analysis revealed 

that the signature can be used as the biomarker of drug 

sensitivity in patients with osteosarcoma. 

 

METHODS 
 

Data acquirement and processing 

 

The Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) program aims to 

identify the molecular alterations that underlie  

juvenile malignancies by multi genomic approaches.  

The transcriptome RNA sequence data from TARGET 

was downloaded by XENA datasets [18]. Our study 

comprised 85 patients with comprehensive clinical 

information (e.g., age, gender, survival status, survival 

time). In order to increase the credibility of the study, we 

conducted a validation with an external dataset from the 

GEO dataset with GSE21257, which includes 53 patients 

[19]. The main workflow is presented in Figure 1. 

 

Gene set variation analysis and prognosis related 

pathways 

 

Previous studies have focused on one aspect of 

sequencing data (e.g., mRNA, miRNA, mutation), 

whereas tumorigenesis is a multigene, multi-signaling 

pathway process. Therefore, we first calculated the 

enrichment scores of multiple signaling pathways for 

each patient by R package of “GSVA” [20]. Prognosis-

related signaling pathways were identified based on 

clinical follow-up information by coxph function of R 

package “survival” [21]. 

 

Machine learning and feature selection 

 

An increasing number of studies have shown that 

machine learning algorithms can be used for feature 

selection and outperform traditional algorithms. In this 

study, we apply 20 algorithms or parameters for feature 

screening. Random survival forests (RSF) were applied 

to extend random forest to the setting of right-censored 

survival data. The R package of “randomForestSRC” 

was used to conduct the random forest algorithms  

[22]. The stochastic gradient boosting strategy was  

used by the R package of “gbm” [23]. The stepCOX 

algorithm consists of two main steps: the first step  

is a proportional COX regression, and the second  

step screens the best COX model by the step function. 

Enet (Elastic Net) is an overlay approach and a  

linear regression model that combines L1 and L2 

regularisation. Elastic Net allows for simultaneous 

feature selection and parameter control, avoiding some 

of the limitations of traditional regularisation methods. 

Enet is implemented through the “glmnet” package 

[24]. CoxBoost fits Cox proportional risk models by 

means of a boost method based on fractional likelihood. 

It is particularly suitable for models with a large number 

of predictors and allows for forced covariates with 

uninitialized parameter [25]. Lasso regression (Least 

absolute shrinkage and selection operator) and Ridge 

regression were conducted using the R package of 

glmnet. plsRcox is used to build a predictive model that 
can predict the survival of a subject based on multiple 

characteristics of the subject. In this model, PLS (Partial 

Least Squares) method and regression method are 
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combined to improve the accuracy of prediction [26]. 

The survivalSVM algorithm integrates survival analysis 

and support vector machines for regression analysis. 

‘Superpc’ is useful for high-dimensional data [27]. 

 
The C-index was employed to determine the 

discriminatory power of various models. In this study, 

var.select function from R package of varSelRF was 

used to determine the variables used for subsequence 

analysis. 

 
Risk stratification analysis 

 

To make the model more straightforward in clinical 

practice, we used a multivariate Cox proportional risk 

model to construct the signature with select features 

identified by the machine learning method. The risk score 

was calculated for each patient. Patients were divided 

into high- or low- groups based on the risk score. 

 

Differences in tumor microenvironment between 

high- and low-risk groups 

 

The tumor microenvironment was enumerated by R 

packages of Xcell [28] and IOBR [29], which had been 

reported to outperform other methods in comparison  

to cytometry immunophenotyping based on the gene 

signature method. 

Drug sensitivity analysis between high- and low-risk 

groups 

 

The relative drug sensitivity was calculated by  

R package of oncoPredict with the function of 

calcPhenotype. oncoPredict predicts sensitivity values 

for a wide range of tumor-related drugs based on 

Genomics of Drug Sensitivity in Cancer with 198 

compounds or drugs. 

 

Statistical analysis 

 

All the data were processed by R 4.3.0. Wilcox or 

unpaired Student’s t-test for the continuous variable and 

chi-square test for dichotomous variables were applied 

to determine the statistical significance of differences 

between high- and low-risk groups. Unless otherwise 

noted, 2-sided and p < 0.05 were used to determine 

statistical significance for all tests. 

 

RESULTS 
 

Identification of survival-associated pathways in 

patients 

 

Our study included 85 patients with complete clinical 

information in TARGET datasets and 53 patients in 

GEO dataset were included. 

 

 
 

Figure 1. The main workflow of the study. 
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The TARGET dataset was employed to identify the 

prognosis-related pathways. This analysis determined 

486 pathways as the survival-related signal pathways in 

osteosarcoma. To facilitate subsequent calculations as 

well as to improve the accuracy of the predictions, we 

incorporated the top 20 signaling pathways into the 

machine learning model. 

 

Comparison of multiple machine learning algorithms 

 

The top 20 signaling pathways with the smallest  

p-values were included in the machine learning  

model for evaluation. Variables were screened by 20 

machine learning algorithms (“survivalSVM”, “Ridge”, 

“SuperPC”, “Enet (alpha = 0.1)”, “Enet (alpha = 0.2)”, 

“Enet (alpha = 0.3)”, “Enet (alpha = 0.4)”,0 “Enet (alpha 

= 0.5)”, “CoxBoost”, “Enet (alpha = 0.6)”, “Enet (alpha = 

0.8)”, “Enet (alpha = 0.9)”, “Lasso”, “Enet (alpha = 0.7)”, 

“StepCox (forward)”, “plsRcox”, “StepCox (both)”, 

“StepCox (backward)”, “RSF”, “GBM”. The TARGET 

dataset was severed as train sets, while the GEO was 

treated as the test set. The C-index was used to estimate 

the consistency of the model. The first was random forest 

with C-index up to 0.963, a mean of 0.79 (Figure 2). 

 

Since the c-index value obtained by the random 

distribution forest method is the largest, we apply the 

var.select function meter to get the most important 

signaling pathways. 

 

Identification of key pathways by machine learning 

 

Four pathways (PID IL2 STAT5 PATHWAY, 

REACTOME INTERLEUKIN 7 SIGNALING, 

WHITEHURST PACLITAXEL SENSITIVITY, YANG 

BREAST CANCER ESR1 UP) were identified  

through 20 machine learning. All the 4 pathways had 

been reported to be associated with osteosarcoma. 

 

Risk signature in TARGET and GEO datasets 

 

To facilitate clinical application later, we applied a 

multifactorial Cox proportional risk regression model 

analysis to calculate the coefficients of the four signaling 

pathways. 

 

The risk score was as following: Risk score =  

(−3.08) × (PID_IL2_STAT5_PATHWAY) + (−0.30) × 

(REACTOME_INTERLEUKIN_7_SIGNALING) + 

(−4.74) × (WHITEHURST_PACLITAXEL_ 

SENSITIVITY) + (−2.14) × (YANG_BREAST_ 

CANCER_ESR1_UP). According to the equate, the  

risk score distribution of the TARGET and GEO cohort 

was calculated (Figures 3 and 4). 

 

 
 

Figure 2. The C-index of 20 machine learning algorithms. 
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Each patient with a risk score was divided into a low or 

high group. There was a significant difference in the 

survival of two groups. Patients in the low group had 

favored survival in both cohorts. 

 

ROC of the two datasets was evaluated for 1, 3, and 5 

years. The AUC of TARGET was 0.88, 0.79, and 0.77 

for 1, 3, and 5 years respectively. The area under the 

AUC curve is slightly smaller for the GEO dataset with 

0.68, 0.63, and 0.60 for 1, 3, and 5 years, respectively. 

 

Tumor microenvironment analysis 

 

Tumor immune infiltration cells (aDC, CD4+  

naive T cells, CD8+ Tcm, Class switched memory  

B cells, DC, Fibroblasts, HSC, iDC, Macrophages, 

Macrophages M1, Macrophages M2, Megakaryocytes, 

Monocytes, mv Endothelial cells, Neurons, pDC, Tregs, 

ImmuneScore, StromaScore, Microenvironment Score) 

were revealed for each patient. The Wilcox test was 

used to evaluate the difference of the two groups. To 

our surprise, statistical analysis showed differences 

between two groups of tumor immune infiltrating cells 

(Figure 5). 

 

Drug sensitivity analysis between high- and low-risk 

groups 

 

The relative drug sensitivity value was calculated for 

each patient based on Genomics of Drug Sensitivity  

in Cancer (GDSC) with 198 compounds or drugs. All 

the drug sensitivity values were shown in 

Supplementary Table 1. Figure 6 showed the presentive 

drugs for osteosarcoma patients. Patients in the high-

risk group had more sensitivity in Wnt-C59, 

Vincristine, and Epirubicin (Figure 6). 

 

 
 

Figure 3. The risk signature of TARGET datasets. (A) Top 20 survival-related pathways with lowest p-value. Risk score (B) and survival 

time (C) distribution of TARGET. (D) The enrichment score of 4 pathways. (E) Survival analysis of two groups. (F) The ROC of the model. 
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DISCUSSION 
 

Osteosarcoma is a type of bone cancer originating  

in the bone formation cells. It is the most common 

primary bone cancer affecting children and young 

adults. Research has shown that genetic factors play  

a significant role in the development and progression  

of osteosarcoma. It is characterized by the rapid and 

aggressive growth of malignant cells that produce 

immature bone. Understanding the signaling pathways 

involved in osteosarcoma development and progression 

is crucial for identifying potential therapeutic targets 

and developing more effective treatments. Previous 

study had revealed some of the key osteosarcoma-

related signaling pathways. For example, P53 and RB1 

tumor suppressor pathways: Mutations in the TP53 and 

 

 

 
Figure 4. The risk signature of GEO datasets. Risk score (A) and survival time (B) distribution of TARGET. (C) The enrichment score of 4 

pathways. (D) Survival analysis of two groups. (E) The ROC of the model. 
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RB1 genes are frequently observed in osteosarcoma. 

These genes encode the p53 and retinoblastoma  

(Rb) proteins, respectively, which regulate cell cycle 

progression and apoptosis as tumor suppressors. Loss 

of function of these proteins due to genetic alterations 

leads to uncontrolled cell proliferation and contributes 

to osteosarcoma development. Wnt/β-catenin signaling 

pathway: The Wnt/β-catenin signaling pathway 

involves in various cellular processes, including cell 

proliferation, differentiation, and migration. Aberrant 

activation of this pathway has been implicated in 

osteosarcoma tumorigenesis. In osteosarcoma, increased 

expression of Wnt ligands and receptors, as well as 

genetic alterations in key pathway components, such 

as β-catenin and APC, can result in the stabilization 

and nuclear translocation of β-catenin, promoting  

the transcription of target genes associated with cell 

proliferation and survival [30, 31]. Notch signaling 

pathway: The Notch signaling pathway is another 

crucial regulator of cell fate determination and tissue 

 

 
 

Figure 5. Differences of tumor immune infiltrating cells in osteosarcoma between two groups. 

 

 
 

Figure 6. Difference of three drugs’ sensitivity of osteosarcoma. (A) Wnt-C59. (B) Vincristine. (C) Epirubicin. 
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homeostasis. Dysregulation of Notch signaling has  

been observed in various cancers, including osteosarcoma. 

In osteosarcoma, upregulation of Notch receptors and 

ligands, as well as mutations in pathway components, can 

lead to increased Notch signaling activity, promoting  

cell proliferation, survival, and metastasis. Hedgehog 

signaling pathway: The Hedgehog signaling pathway is 

involved in embryonic development and tissue patterning. 

Aberrant activation of this pathway has been implicated in 

several cancers, including osteosarcoma. In osteosarcoma, 

overexpression of Hedgehog ligands and receptors, as 

well as mutations in pathway components, such as SMO 

and PTCH1, can result in increased Hedgehog signaling 

activity, promoting tumor growth and metastasis. 

 

Considering that tumorigenesis is a process in which 

multiple signaling pathways are involved, we calculated 

the enrichment scores of the signaling pathways by each 

patient. In this study, considering that tumorigenesis 

involves multiple signaling pathways, we calculated  

the enrichment scores of the signaling pathways by  

each patient. We identified 486 signal pathways that 

related to prognosis. The four most important signaling 

pathways (PID IL2 STAT5 PATHWAY, REACTOME 

INTERLEUKIN 7 SIGNALING, WHITEHURST 

PACLITAXEL SENSITIVITY, YANG BREAST 

CANCER ESR1 UP) were screened by 20 machine 

learning algorithms. 

 

PID IL2 STAT5 PATHWAY, namely IL2 signaling 

events mediated by STAT5, was involved in multi-

biological processes, including cell proliferation and 

stemness maintenance, etc., [32–34]. REACTOME 

INTERLEUKIN 7 SIGNALING mainly affects B cell, 

T cell, and NK cell growth, survival, and differentiation 

[35–38] and takes part in the drug sensitivity of 

osteosarcoma [39]. WHITEHURST PACLITAXEL 

SENSITIVITY affects drug sensitivity in osteosarcoma. 

Studies had shown paclitaxel inhibited the proliferation 

and promoted apoptosis [40]. 

 

These four signaling pathways are directly or indirectly 

associated with osteosarcoma biological behavior, 

suggesting that our approach is proper. To facilitate 

application in clinical practice, we constructed a 

multifactorial COX regression model using the four 

signaling pathways screened. The risk score of all the 

patients was calculated by the model. Each patient with 

a risk score was divided into low or high groups. There 

was a significant difference in the survival of two 

groups. Patients in the low group had favored survival 

in osteosarcoma. 

 
The AUC of TARGET was 0.88, 0.79, and 0.77 for 1, 3, 

and 5 years, respectively, which suggested the model 

had good predictive value. 

The tumor microenvironment can influence various 

tumor biological behaviors, especially immune cells 

within the tumor microenvironment. Therefore, we 

analyzed differences in tumor immune cells between the 

two groups according to the model. To our surprise,  

all tumor immune infiltration cells (aDC, CD4+ naive T 

cells, CD8+ Tcm, Class switched memory B cells, DC, 

Fibroblasts, HSC, iDC, Macrophages, Macrophages 

M1, Macrophages M2, Megakaryocytes, Monocytes, mv 

Endothelial cells, Neurons, pDC, Tregs, ImmuneScore, 

StromaScore, Microenvironment Score) were statistically 

different between the two groups. This result suggests  

a significant difference in the immune status of patients 

in the high- and low- risk groups, which means that our 

signature can not only predict the prognosis of patients 

but also the immune status of osteosarcoma patients, 

which has the potential value to be applied to predict the 

immune status of patients. 

 

Furthermore, we analyzed drug sensitivity analysis 

between high and low risk groups. One hundred ninety-

eight compounds or drug values were calculated based 

on the GDSC database. This result showed the model 

identified in the study can predict drug sensitivity. 

 

Machine learning is revolutionizing the field of  

medical diagnosis and treatment, and it is also playing 

an increasingly important role in the diagnosis and 

treatment of bone cancer, specifically osteosarcoma. 

Osteosarcoma is a type of bone cancer that commonly 

affects children and adolescents, and early diagnosis is 

crucial for effective treatment and improved patient 

outcomes. In this context, machine learning algorithms 

have proved valuable tools in aiding the diagnosis and 

treatment of osteosarcoma. 

 

One of the primary applications of machine learning  

in osteosarcoma is prognosis prediction in medical  

data analysis. Medical data, such as transcriptome,  

X-rays, magnetic resonance imaging (MRI), and 

computed tomography (CT) scans, play a crucial role in 

identifying tumors and evaluating their characteristics 

and prognosis. However, accurately interpreting these 

data can be a challenging task for clinicians. In this 

study, we used 20 machine learning algorithms to 

construct a prognostic prediction model with good 

prediction performance based on the enrichment score 

of pathways. Another area where machine learning is 

making a significant impact is in treatment planning. 

Osteosarcoma treatment decisions often involve a 

multidisciplinary team, including surgeons, oncologists, 

and radiation therapists. Machine learning algorithms 

can assist in analyzing patient data, such as medical 
history, genetic information, and treatment responses,  

to predict optimal treatment plans. By leveraging data 

from past cases and clinical trials, machine learning 
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models can provide personalized treatment recommend-

dations based on individual patient profiles. These 

models can consider various factors, including tumor 

characteristics, patient age, overall health, and treatment 

response rates, to guide the selection of appropriate 

therapies. This can increase the chances of successful 

treatment outcomes while minimizing potential side 

effects. Predictive treatment options were not addressed 

in this study, and we will explore this aspect of research 

in depth in future studies as well. 

 
In summary, we identified a model consisting of four 

signaling pathways that not only predicts the prognosis 

of osteosarcoma patients but also the immune status of 

the tumor microenvironment as well as drug sensitivity. 

However, there are some limitations. For example, more 

datasets were needed to validate the signature and more 

experiments were needed to test those results. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Drug sensitivity analysis of osteosarcoma. 
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