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INTRODUCTION 
 

Renal cell carcinoma (RCC) constitutes 2% of all 

cancer cases globally, and its incidence is on a  

steady rise [1]. RCC comprises various histological 

subtypes, each presenting a unique set of pathological 

characteristics. Clear cell renal cell carcinoma (ccRCC), 

the most prevalent subtype, accounting for 

approximately 75% of all RCC cases, originates from 

the proximal tubular cells of the nephron [2]. Early 

resection is deemed to be most beneficial for ccRCC 

patients [3]; however, nearly 30% experience recurrence 

or metastasis post-tumor resection [4]. While anti-

angiogenic therapies like Sunitinib and Pazopanib prove 
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ABSTRACT 
 

Background: The relationship between clear cell renal cell carcinoma (ccRCC) and branched-chain amino acids 
(BCAA) metabolism has yet to be thoroughly explored. 
Methods: The BCAA metabolism-related clusters were constructed using non-negative matrix factorization 
(NMF). The features of BCAA metabolism in ccRCC were evaluated by building a prognostic model using least 
absolute shrinkage and selection operator (LASSO) regression algorithm. Real-time quantitative PCR (RT-qPCR) 
was employed to analyze differential expression of branched-chain amino acid transaminase 1 (BCAT1) 
between cancer and paracancer tissues and between different cell lines. Cell counting kit-8, wound healing and 
Transwell chamber assays were conducted to determine changes in proliferative and metastatic abilities of 
A498 and 786-O cells.  
Results: Two BCAA metabolism-related clusters with distinct prognostic and immune infiltration characteristics 
were identified in ccRCC. The BCAA metabolic signature (BMS) was capable of distinguishing immune features, 
tumor mutation burden, responses to immunotherapy, and drug sensitivity among ccRCC patients. RT-qPCR 
revealed overexpression of BCAT1 in ccRCC tissues and cell lines. Additionally, single-gene RNA sequencing 
analysis demonstrated significant enrichment of BCAT1 in macrophages and tumor cells. BCAT1 played tumor-
promoting role in ccRCC and was closely associated with immunosuppressive cells and checkpoints. BCAT1 
promoted ccRCC cell proliferation and metastasis.  
Conclusions: The BMS played a crucial role in determining the prognosis, tumor mutation burden, responses to 
immunotherapy and drug sensitivity of ccRCC patients, as well as the immune cell infiltration features. BCAT1 
was linked to immunosuppressive microenvironments and may offer new sights into ccRCC immunotherapeutic 
targets.  
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to be effective for metastatic RCC, resistance  

and relapse are common issues, with some patients 

showing intrinsic resistance to targeted therapies [5–7]. 

Identifying early prognostic biomarkers is essential for 

optimizing ccRCC treatment. 

 

In situations with nutritional constraints, tumor cells 

exhibit aberrant proliferation, largely driven by 

metabolic reprogramming [8, 9]. Meeting the high 

demand for amino acids is crucial for sustaining tumor 

cell proliferation and growth [10, 11]. Branched-chain 

amino acids (BCAA), including leucine, isoleucine, and 

valine, are essential amino acids obtained solely from 

the diet [12]. Previous studies link the growth and 

metastasis of many malignancies to BCAA metabolism 

[13]. BCAA decomposition provides a carbon source 

for synthesizing molecules, promoting tricarboxylic 

acid cycle metabolism, oxidative phosphorylation, and 

energy supply for tumor cells. Additionally, BCAA 

decomposition products contribute nitrogen for de novo 

synthesis of nucleotides and amino acids. BCAA not 

only serves as protein-derived amino acids but also 

regulates protein synthesis through signaling, impacting 

the nutritional status [14, 15]. Despite the significant 

effects of BCAA metabolism on tumor progression, 

there is a lack of studies analyzing the specific 

mechanism of BCAA decomposition and uptake genes 

in ccRCC. 

 
Branched-chain amino acid transaminase 1 (BCAT1), a 

key gene initiating BCAA catabolism located in the 

cytoplasm, transfers α-amino groups from BCAAs to α-

ketoglutarate, converting BCAAs to the corresponding 

branched α-ketoacids and generating glutamate [16]. 

The study of BCAT1’s role in malignancies is intricate 

due to its tight association with various tumors. In acute 

myeloid leukemia, BCAT1 overexpression promotes 

cancer stem cell proliferation by regulating amino acid 

metabolism [17]. High BCAT1 expression also drives 

metastasis and proliferation in hepatocellular carcinoma 

through activating epithelial-mesenchymal transition 

(EMT) [18]. However, BCAT1 inhibition doesn’t 

uniformly suppress tumor growth, and its ability to 

promote progression and metastasis isn’t universally 

acknowledged. For instance, BCAT1 inhibition in 

pancreatic ductal adenocarcinoma (PDAC) didn’t inhibit 

tumor growth, with lower BCAT1 expression in tumors 

and higher BCAA levels in plasma [19]. These studies 

suggest that BCAT1 is intricately involved in cancer 

progression, but its prognostic value and biological 

mechanism in ccRCC remain unclear. 

 
This study identified two BCAA metabolism-related 

clusters with distinct prognostic and immune features 

based on the expression profiles of BCAA metabolism-

related genes (BMGs). The BCAA metabolic signature 

(BMS) was constructed and validated to predict 

ccRCC patient prognosis using data from public 

databases. We analyzed the model’s correlation with 

mutation, immune invasion, immunotherapy, tumor 

microenvironment, and drug sensitivity. Additionally, 

we explored the clinical characteristics, biological 

pathways, and features of BCAT1, a crucial gene in 

BCAA metabolism. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

Transcriptomic data and clinical information for ccRCC 

were sourced from The Cancer Genome Atlas (TCGA) 

and Gene Expression Omnibus (GEO) databases. 

Eighteen BMGs were compiled from pertinent reviews 

and studies [12, 19, 20]. Datasets E-MTAB-1980 and 

GSE22541 were used for objective evaluation, while 

GSE17895, GSE40435, GSE53737, and GSE73731 

were employed for validating the association of clinico-

pathological characteristics with BCAT1 expression. 

The Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) database provided protein expression data  

of candidate genes. Real-time quantitative PCR (RT-

qPCR) assessed BCAT1 expression in ccRCC, the 

primers applied for BCAT1 were displayed as follows: 

“Forward: TGGCAAAACGTCTTCAGGAGG; Reverse: 

AGCTTGACTTAGTGGCTTTGG”. The primers applied 

for actin were displayed as follows: “Forward: AGCG 

AGCATCCCCCAAAGTT; Reverse: GGGCACGAA 

GGCTCATCATT”.  

 

The GSE131685, GSE152938, and GSE171306 

provided the single-cell sequencing datasets. They 

contained 4 ccRCC and 4 normal samples, totaling 

64926 cells. Single-cell data were analyzed using  

the R package Seurat. The precise procedure was to 

first eliminate low-quality cells based on the criteria 

that the percentage of mitochondrial gene expression 

was less than 20, and that the number of expressed 

genes was greater than 100 but fewer than 6000. 

Additionally, we eliminate low-expressed genes based 

on the requirement that they be expressed in at  

least 100 cells. In the end, we had 50201 cells and 

17304 genes. Then, to integrate the data and eliminate 

the batch effect, the FindIntegrationAnchors (where 

the reduction parameter was set to “rpca”) and 

IntegrateData function were conducted. To reduce the 

data’s dimensionality, the functions RunPCA and 

RunUMAP were conducted. The top 30 principal 

components and the top 2000 highly variable genes 

were utilized throughout. Finally, we set the resolution 

parameter to 1.5 and used the FindNeighbors and 

FindClusters functions to cluster and group the cells. 

We defined cell subpopulations using classical marker 
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genes collected from the literature [21, 22]. The criteria 

of differential analysis in singe-cell analysis were set  

as adj.P-value< 0.001 and |log fold charge (FC)|> 1. 

 

Construction of BCAA metabolism-related clusters 

and bioinformatics analysis 

 

Univariate cox regression analysis identified BMGs 

associated with prognosis. Then, based on the 

expression profiles of significant BMGs analyzed by 

univariate cox analysis, BCAA metabolism-related 

clusters were established using the non-negative matrix 

factorization (NMF) algorithm. Kaplan-Meier (KM) 

survival analysis determined the difference in overall 

survival (OS) between clusters. Differentially expressed 

genes (DEGs) were selected based on |log FC|> 2  

and adj.P-value< 0.001. Gene Ontology (GO) functional 

enrichment and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses were conducted on 

DEGs. Gene Set Variation Analysis (GSVA) enrichment 

analysis was performed using the R package GSVA and 

the gene set “c2.cp.kegg.v7.4.symbols” from MSigDB.  

 

Establishment of BCAA metabolic prognostic 

signature  

 
Significant BMGs from univariate cox analysis 

underwent least absolute shrinkage and selector 

operation (LASSO) analysis to construct a prognostic 

gene signature. The BMS formula was derived through 

linear combination of gene expression weighted 

regression coefficients. Patients were stratified into 

high- and low-BMS groups based on the median  

BMS. Time-dependent receiver operating characteristic 

(ROC) curve and KM survival curve assessed BMS 

prognostic accuracy. Univariate and multivariate cox 

regression analyses evaluated the independence of 

BMS from other clinical phenotypes. Datasets E-

MTAB-1980 and GSE22541 served as an objective 

evaluation cohort for BMS accuracy and stability. 

 
Evaluation of the immunogenomic landscape 

 

Mainstream algorithms assessed immune infiltration 

scores, ssGSEA package gauged immune functional 

pathway enrichment, and Estimation of Stromal  

and Immune cells in Malignant Tumor tissues using 

Expression data (ESTIMATE) analysis quantified  

the immune scenario in the tumor microenvironment 

(TME). The tracking tumor immunophenotype  

(TIP, http://biocc.hrbmu.edu.cn/TIP/) tool evaluated 

standardized immune activity scores during the  

cancer immune cycle. Sensitivity to PD-1 and CTLA4 

inhibitors was analyzed using immunotherapy sensi-

tivity data from the Cancer Immunochromatography 

Database (TCIA, https://tcia.at/). 

Mutation and drug sensitivity analysis 

 
The R package “maftools” analyzed somatic 

mutations, and tumor mutational burden (TMB) 

expression differences were assessed. KM curve 

evaluated survival differences between mutation and 

BMS combination. Six commonly used medications  

in ccRCC were evaluated for their half maximum 

inhibitory concentration (IC50) using the R package 

“pRRophetic” in the targeted treatment drug analysis. 

 
Western blot assay 

 
Total proteins were extracted from the RCC cell  

lines, WB assay was performed after the detection  

of protein concentration. 20 μg of samples were 

separated on a 10% SDS-PAGE gel, then transferred  

to a PVDF membrane and blocked for 1 hour at  

room temperature. The membranes were incubated 

with primary antibodies (BCAT1 concentration, 0.5 

µg/mL; GAPDH dilution rate, 1:500; Abcam, UK)  

at 4° C overnight. The next day, the membranes  

were incubated with the secondary antibody (Abcam; 

dilution rate, 1:2000) at 24° C for 1 h. Signals of 

targeted proteins were detected using an enhanced 

chemiluminescence detection system. 

 
Cell culture and cell transfection 

 
Two human ccRCC cell lines (A498, 786-O)  

were purchased from the cell bank of the Chinese 

Academy of Sciences (Shanghai, China). All cells 

were cultured in RPMI 1640 medium (Thermo Fisher 

Scientific, Inc., USA) supplemented with 10% fetal 

bovine serum (FBS; Thermo Fisher Scientific, Inc.)  

at a constant temperature of 37° C in a humidified 

atmosphere containing 5% CO2. 

 
Lentiviral shRNA plasmids that target BCAT1 together 

with the nonspecific control shRNA were obtained from 

Dharmacon (Shanghai, China). Transfection of plasmid 

and shRNA was performed with Lipo3000 following 

the manufacturer’s instructions. 

 
Cell counting kit-8 (CCK8) assay 

 
Briefly, A498 and 786-O cells after different 

interventions were incubated in 96-well plates 

(2x10^3), supplemented with 200 µL culture medium 

and conditioned in 37° C with 5% CO2. On days  

1, 2, 3, 4 and 5, 20 μL CCK-8 solution was added into  

each well, and incubation was performed for 2 h. 

Absorbance was measured at an optical density of 450 

nm using a Microplate reader (Bio-Rad Laboratories, 

Inc., USA).  

http://biocc.hrbmu.edu.cn/TIP/
https://tcia.at/
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Transwell assay 

 

A498 and 786-O cells (with an incubation density  

of 2x10^5) were incubated in the upper chambers 

(Corning, USA). For the invasion assay, the upper 

chambers were pre-coated with Matrigel (BD 

Biosciences, USA). Culture medium without and with 

10% FBS was added into the upper and lower 

chambers, respectively. After 12 h, non-migrated cells 

were wiped out while migrated or invaded CRC  

cells were fixed, stained and counted using an inverted 

microscope. 

 

Wound-healing assay 

 

Cell migration was assessed by performing a wound 

healing assay. Briefly, A498 and 786-O cells were 

transfected with BCAT1. Approximately 2x10^6 cells 

were seeded into 6-well plates and cultured for  

24 h. Then, a yellow plastic pipette tip was used to 

create a wound by scraping the cells. Cell migration  

was monitored under a Nicon Eclipse microscope and 

photographed at 100×. 

 

RESULTS 
 
Genetic variation prognoses of BMGs in ccRCC 

 
To investigate the influence of BCAA on ccRCC 

progression, we analyzed mutation spectrum and  

copy number variations (CNVs) in BMGs across 336 

samples. Only 21 samples (6.25%) exhibited mutations, 

with NOTCH2 having the highest mutation rate 

(Supplementary Figure 1A). CNV change analysis 

identified 18 genes with high frequency, predominantly 

showing copy number loss. MYC, NOTCH2, and 

SCL7A8 exhibited higher expansion increments, while 

ACADSB and NOTCH1 mainly experienced copy 

number loss (Supplementary Figure 1B). Differential 

mRNA expression analysis revealed 14 differentially 

expressed BMGs (P < 0.05), with 8 down-regulated  

and 6 up-regulated genes (Supplementary Figure 1C). 

Most differentially expressed BMGs exhibited prevalent 

CNVs (Supplementary Figure 1D). The comprehensive 

regulatory network illustrated interactions, associations, 

and prognostic value of the 18 BMGs (Supplementary 

Figure 1F). 

 
Prognostic and biological characteristics of BCAA 

metabolism-related clusters 

 
Univariate cox regression analysis of 18 BMGs guided 
the clustering of ccRCC patients into clusters A and B 

using the NMF algorithm (Figure 1A, 1B). Cluster B, 

associated with poor prognosis, exhibited significant 

survival differences compared to cluster A (Figure 1C). 

The heat map depicted BMGs expression profiles  

and clinical features (Figure 1D). DEGs between  

these clusters underwent GO and KEGG enrichment 

analyses performed. KEGG pathway analysis, revealing 

enrichment in renal cell carcinoma, oncogenic pathway, 

and metabolic pathway (Figure 1E). GO annotation 

classified proteins based on biological process (BP), 

cellular component (CC), and molecular function (MF), 

indicating involvement in multiple immune regulatory 

pathways, immunoglobulin complex, focal adhesion, 

and cell adhesion molecule binding, among others 

(Figure 1F). GSVA analysis indicated that multiple 

metabolic pathways including fatty acid metabolism, 

tryptophan metabolism, and beta-alanine metabolism 

were enriched in cluster A while multiple pro-cancer 

pathways including the P53 signaling pathway and 

cycle circle were enriched in cluster B (Figure 1G).  
 

Identification of immune characteristics of BCAA 

metabolism-related clusters 
 

A heat map visualized the distribution of  

immune infiltrating cells and tumor microenvironment  

scores between clusters A and B (Figure 2A). 

Immunosuppressive cells, such as Regulatory T cell, 

Macrophage, and Myeloid-derived suppressor cells 

(MDSC), were significantly more infiltrative in cluster 

B (Figure 2B). Immune function pathway indicated  

that higher expression of CCR, Parainflammation, T 

cell co-stimulation, and Type II IFN Response in cluster 

B (Figure 2C). Moreover, most immunosuppressive 

checkpoints were significantly overexpressed in cluster 

B compared to cluster A (Figure 2D). 
 

Construction of BCAA metabolic prognostic 

signature and BMS 
 

LASSO regression analysis based on significant  

BMG expression profiles identified a BCAA metabolic 

prognostic signature comprising 6 BMGs (Figure 3A, 

3B). The risk score of our signature can be figured out 

though the following formula:  
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According to the median of BMS, ccRCC  

patients were equally split into high- and low-BMS  

groups. The heat map illustrated the distribution of 6  

modeled gene expression profiles and clinicopathologic  

features (Figure 3C). Scatter plots and survival curves 

demonstrated higher BMS correlating with increased 
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mortality (Figure 3D, 3E). The BMS displayed 

excellent accuracy in predicting 1-, 2-, and 3-year  

OS, with corresponding AUCs of 0.731, 0.698, and 

0.712 (Figure 3F). Univariate and multivariate cox 

regression analyses identified BMS as the primary 

independent predictor of OS in ccRCC patients (Figure 

3G, 3H). To further confirm the accuracy and stability 

of this signature, datasets from the E-MATB-1980 and 

 

 
 

Figure 1. Prognostic and biological characteristics of the branched chain amino acids (BCAA) metabolism-related clusters.  
(A) Results of univariate cox analysis of BCAA metabolism-related genes. (B) Consensus map for non-negative matrix factorization (NMF) 
clustering. (C) The Kaplan-Meier (KM) survival curve of BCAA metabolism-related clusters. (D) Heatmap showing the correlations with 
clinicopathological characteristics based on results of the cluster analysis. (E) Kyoto encyclopedia of genes and genomes (KEGG) pathway 
enrichment of differentially expressed genes (DEGs) between clusters A and B. The enriched items were analyzed by using gene counts and 
adjusted p-values. (F) Gene ontology (GO) functional annotation analysis of DEGs between clusters A and B, including enriched biological 
processes (BP), cellular components (CC), and molecular functions (MF). (G) Results of Gene Set Variation Analysis (GSVA) enrichment 
analysis between clusters.  
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GSE22541 were used as objective evaluation gene sets. 

The high-BMS group was linked with a poor prognosis, 

according to the KM survival curve, which showed  

a significant difference in survival between the high- 

and low-BMS groups (Figures 3I, 3K). Additionally,  

the E-MATB-1980 dataset’s AUCs for the 1-, 2-,  

and 3-year OS predictions based on BMS were  

0.772, 0.813, and 0.70, respectively (Figure 3J). In the 

GSE22541 dataset, the AUCs for the 1-, 2-, and 3-year 

OS predictions based on BMS were 0.678, 0.712, and 

0.723, respectively (Figure 3L).  

 

Identification of immune characteristic of BMS 

groups 

 

We utilized seven mainstream algorithms to assess  

the immune infiltration scores in each ccRCC sample. 

The resulting heatmap illustrated the distribution  

of immune infiltration cells between high- and low-

BMS groups (Figure 4A). Correlation analyses  

(Figure 4B) revealed a strong association between 

BMS and Macrophage and Regulatory.T.cell. Further 

examination of immunosuppressive cell expression 

indicated a significant increase in Regulatory.T.cell, 

Macrophage, and MDSCs abundance in the high-BMS 

group (Figure 4C). Using the ESTIMATE algorithm, 

we explored differences in immune-related scores 

between risk groups, observing higher ESTIMATE, 

Stromal, and Immune scores in high-BMS group 

(Figure 4D). To validate the reliability of BMS in 

immunotyping, we analyzed its association with pan-

cancer immune subtypes, revealing higher BMS levels 

in ccRCC patients with C1 and C6 subtypes and lower 

levels in those with C3, C4, and C5 subtypes (Figure 

4E) [23]. Previous studies have shown that C3 was 

related to a better prognosis while C6 was associated 

with a worse prognosis, which was consistent with our 

results. Additionally, the high-BMS group exhibited 

 

 
 

Figure 2. The immune characteristic of the BCAA metabolism-related clusters. (A) Distribution of immune infiltrating cells and 
tumor microenvironment scores between BCAA metabolism-related clusters. (B) Differential abundance of immunosuppressive cell 
infiltration (Macrophage, Regulatory.T.cell, and Myeloid-derived suppressor cells (MDSC)) between BCAA metabolism-related clusters.  
(C) Differences in the 13 immune-related functions between BCAA metabolism-related clusters. (D) Differential expression of 
immunosuppressive checkpoints between BCAA metabolism-related clusters. Wilcox test was used, and the asterisks represent the statistical 
P-value (*p <0.05, ** p <0.01, *** p <0.001). 
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significantly elevated scores in all immune- 

related functions, except Type II IFN Response (Figure 

4F). One previous study referred to seven sequential 

processes of antitumor immunity as the “cancer-immunity 

cycle” [24]. TIP (a web service for determining tumor 

immunophenotype profiling) was utilized to evaluate  

the anticancer immunological functions of the seven- 

step cancer-immunity-cycle between high- and low-BMS 

groups. Our results in Figure 4G revealed that the 

abundance of antitumor immune cells in high-BMS group 

was significantly higher than that in low-BMS group. 

 

Mutation and immunotherapeutic responses of BMS 

groups 

 

Since TMB was substantially correlated with the 

effectiveness of immunotherapy, we analyzed the 

changes of TMB in high- and low-BMS groups.  

The mutation rate was 123/150 (82%) in the high- 

BMS group and 143/178 (80.34%) in the low-BMS 

group. The top 18 genes with the most significant 

mutations were all the same in the high- and low-BMS 

groups. (Figure 5A, 5B). As anticipated, the TMB  

was much higher in the high-BMS group compared to 

the low-BMS group (Figure 5C). Therefore, elevated 

TMB was considerably associated with poor prognosis 

(Figure 5D). Given the crucial link between TMB and 

immunotherapy efficacy, we analyzed TMB changes in 

high- and low-BMS groups. The mutation rate was 

higher in the high-BMS group, and the top 18 mutated 

genes were consistent between the groups (Figure 5A, 

5B). As expected, TMB was significantly higher in the 

high-BMS group (Figure 5C), correlating with a poorer 

prognosis (Figure 5D). Combining TMB with BMS, we 

 

 
 

Figure 3. Establishment of BCAA metabolism-related signature. (A) LASSO coefficient profiles of the expression of 9 prognostic BCAA 
metabolism-related genes. (B) Selection of the penalty parameter (λ) in the least absolute shrinkage and selector operation (LASSO) model 
via 10-fold cross-validation. (C) Heatmap showing the model gene expression and clinicopathological variables in the BCAA metabolism-
related signature (BMS); (D) Risk curve of the risk score rank, scatter plot for the survival status distribution; (E) The KM survival curve for the 
survival probability of patients in different groups; (F) Receiver operating characteristic (ROC) curve in predicting 1-,2-, and 3-year overall 
survival (OS) based on BMS. (G, H) Univariate and multivariate cox regression analyses of clinicopathological variables for predicting the 
survival in ccRCC patients. (I) The KM survival curve of BCAA metabolism-related signature in the E-MTAB-1980 cohort. (J) ROC curve in 
predicting 1-,2-, and 3-year OS based on BMS in the E-MTAB-1980 cohort. (K) The KM survival curve of BCAA metabolism-related signature in 
the GSE22541 cohort. (L) ROC curve in predicting 1-,2-, and 3-year OS based on BMS in the GSE22541 cohort. 
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Figure 4. The immune characteristic of BMS groups. (A) Distribution of immune infiltrating cells between BMS groups using seven 

mainstream algorithms. (B) Correlation analysis of immune infiltrating cells between BMS groups using seven mainstream algorithms.  
(C) Abundances of main immunosuppressive infiltrating cells (MDSCs, macrophages, and regulatory T cells) in TME in two subgroups.  
(D) Samples in the high-BMS group exhibited higher ESTIMATE, stromal, and immune scores than the low-BMS group. (E) Association 
between BMS and the previously reported pan-cancer immune subtypes. (F) Differences in the 13 immune-related functions between high- 
and low-BMS groups. (G) Evaluation of the anticancer immunological functions of the seven-step cancer-immunity-cycle between high- and 
low- BMS groups. Wilcox test was used, and the asterisks represent the statistical P-value (*p <0.05, ** p <0.01, *** p <0.001). 
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found distinct prognostic outcomes for different BMS 

and TMB combinations (Figure 5E). Analysis of 

immunosuppressive checkpoint expression revealed 

significant overexpression in the high-BMS group 

(Figure 5F). Considering a growing number of studies 

have demonstrated that high TMB was associated with 

better immunotherapy outcomes [23], we hypothesized 

that ccRCC patients with high BMS may benefit from 

immunotherapy despite owning a poorer prognosis. 

Hence, we downloaded immunotherapy data from the 

TCIA database to verify the value of BMS in predicting 

immunotherapy response, showing a higher probability 

of response to CTLA4(+)/PD-1(+), CTLA4(+)/PD-1(-), 

and CTLA4(-)/PD-1(+) treatments in the high-BMS 

group (Figure 5G, 5J). 

 

Drug susceptibility analysis of BMS groups 

 

We compared the sensitivity of high- and low-BMS 

groups to commonly used ccRCC targeted therapeutic 

agents. The low-BMS group exhibited higher IC50 

values for Rapamycin, Temsirolimus, Sorafenib, and 

 

 
 

Figure 5. Mutation and immunotherapeutic responses of BMS groups. (A, B) Waterfall plots of somatic mutations in tumors in high-

and low-BMS groups. (C) Differential expression of Tumor Mutation Burden (TMB) between high- and low-BMS groups. (D) Survival analysis 
between high- and low-TMB groups. (E) Survival analysis of distinct groups stratified by both TMB and BMS. (F) Differential expression of 

immunosuppressive checkpoints between high- and low-BMS groups. (G–J) The relative probability of response to anti-CTLA4 and/or anti-

PD1 combination immunotherapy between high- and low-BMS groups. Wilcox test was used, and the asterisks represent the statistical P-
value (*p <0.05, ** p <0.01, *** p <0.001). 
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Sunitinib, while Axitinib and Pazopanib showed  

no significant differences (Supplementary Figure 2A–

2F). Target genes of anticancer drugs obtained from  

the DrugBank database included KIT, FLT1, FLT4, 

PDGFRA, RAF1, BRAF, RET, FGFR3, SH2B3, ITK, 

MTOR, FGF2, and FKBP1A. It was worth noting that 

Target gene expression analysis revealed significant 

differences in all target genes between the two groups 

(Supplementary Figure 3G), suggesting BMS as a 

potential tool for treatment selection. 

 
Clinical, prognostic, and protein expression 

characteristics of model genes 

 
Analyzing model gene expression in different 

clinicopathological variables revealed strong correlations 

with clinicopathological stage. With the increase of  

the clinicopathological stage, the expression levels of 

ACADSB, BCKDHA, and NOTCH1 gradually decreased, 

while the expression levels of BCAT1, SLC7A5, and 

SLC1A5 gradually increased (Supplementary Figure 3A–

3E). Supplementary Figure 3F revealed that BCAT1 and 

NOTCH1 were significantly overexpressed in ccRCC, 

while the expression of ACADSB and BCKDHA was 

significantly downregulated in ccRCC. There was no 

difference in the expression of SLC7A5 and SLC1A5 

between the tumor and adjacent tissues. The protein 

expression data of the model genes were obtained from 

the CPTAC database and the differences in protein 

expression of the model genes between tumor and 

adjacent tissues were analyzed. ACADSB, BCKDHA, 

and SLC1A5 were less expressed in tumors, while 

BCAT1 and SLC7A5 were more expressed in tumors 

(Supplementary Figure 3G). The KM survival curves 

indicated that the expression levels of BCAT1, SLC7A5, 

and SLC1A5 were associated with a poorer prognosis, 

while the expression levels of ACADSB, BCKDHA,  

and NOTCH1 were correlated with a better prognosis 

(Supplementary Figure 3H). Therefore, considering the 

clinical, prognostic, and protein expression characteristics 

of the model genes, we finally screened out the onco-

genic gene BCAT1 as a key gene for further analyses. 

 
Prognostic value and biological features of BCAT1 

 
Patients were divided equally into high- and low-

BCAT1 groups based on the median expression level  

of BCAT1 in ccRCC. BCAT1 exhibited strong 

predictive value in ccRCC patients (Figure 6A) and was 

associated with poor Progress Free Interval (PFI) and 

Disease-Specific Survival (DSS) (Figure 6B, 6C). Then, 

we utilized the GEO datasets to verify the correlation 

between BCAT1 expression and clinicopathological 

variables in ccRCC. BCAT1 expression was higher in 

ccRCC tissues, positively correlating with histological 

grade and pathological stage (Figure 6D–6H). To  

assess the biological features of BCAT1 in ccRCC,  

we performed the enrichment analyses of KEGG  

and hallmark pathways. In terms of KEGG pathways, 

overexpressed BCAT1 was positively associated with 

several tumor-related and angiogenesis-related pathways 

(Figure 6I), such as JAK/STAT signaling pathway, 

mTOR signaling pathway, VEGF signaling pathway, 

and TOLL like receptor pathway. And in terms of 

HALLMARK pathways, overexpressed BCAT1 was 

also positively associated with tumor-related and 

angiogenesis-related pathways (Figure 6J), such as 

KRAS signaling pathway, PI3K/Akt/mTOR signaling 

pathway, and Angiogenesis pathway. These results 

suggested that BCAT1 may play a potential driving role 

in tumorigenesis and progression. 

 
Validation of BCAT1 expression in ccRCC 

 
RT-qPCR confirmed elevated BCAT1 expression in 

ccRCC tissues and all three ccRCC cell lines especially 

in 786-O cell (Figure 6K, 6L). Through Human Protein 

Atlas (HPA) database analysis, it was found that the 

protein expression level of BCAT1 in ccRCC tissues 

was significantly higher than that in adjacent tissues 

(Figure 6M, 6N).  

 
Identification of immune features of BCAT1 

 
TME scores indicated that several immune cells  

and immune-related molecules were abundant in the 

high-BCAT1 group (Figure 7A). BCAT1 expression 

positively correlated with Regulatory T cells and 

Macrophages infiltration (Figure 7B), and high-BCAT1 

group exhibited elevated immunosuppressive cell 

abundance (Figure 7C). Moreover, we investigated  

the relationship between BCAT1 and the immuno-

suppressive checkpoints. The results demonstrated  

that PDL1, CD96, and PDCD1LG2 were all over-

expressed in the high-BCAT1 group, and BCAT1 was 

positively correlated with most immunosuppressive 

checkpoints (Figure 7D, 7E). Taken together, these 

data revealed that BCAT1 was closely related to the 

formation of an immunosuppressive microenvironment 

and may be a potential immunotherapeutic target. 

 
Mapping BCAT1 in single cell data 

 
Figure 8A showed the composition and distribution of 

single cells from the GEO database, and 16 cell clusters 

were further identified (Figure 8B). In line with the 

earlier research [20], the majority of normal renal 

cortical samples were renal tubular epithelial cells, 

whereas immune and tumor cells predominated in 

ccRCC samples (Figure 8C). We then investigated the
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Figure 6. Validation of prognostic value and biological features of branched-chain amino acid transaminase 1 (BCAT1). 
(A) Time-dependent ROC curve of BCAT1 in ccRCC. (B, C) Kaplan-Meier survival curves of high- and low-BCAT groups in ccRCC (B: 
Progress Free Interval (PFI); C: Disease-Specific Survival (DSS)). (D–H) Validation of the correlation between BCAT1 expression and 
clinicopathological variables in ccRCC (D: GSE53737; E: GSE17895; F and H: GSE73731; G: GSE40435); (I) Results of Gene Set 
Enrichment Analysis (GSEA) analysis of BCAT1-enriched KEGG pathways. (J) Results of GSEA analysis of BCAT1-enriched HALLMARK 
pathways. (K) Comparison of mRNA expression levels of BCAT1 between ccRCC and adjacent cancerous tissues.  (L) Comparison of 
mRNA expression levels of BCAT1 in HK-2 and RCC cell lines. (M, N) Immunohistochemistry (IHC) staining of BCAT1 in clinical ccRCC 
tissues (N) and adjacent cancerous tissues (M). 
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expression profile of BCAT1 in different types of  

cells. The results showed that the BCAT1 expression 

was significantly higher in macrophages and tumor  

cells than that in other cell types (Figure 8D, 8E), 

consistent with the former analysis. Thus, we can 

hypothesize that ccRCC may promote its own growth 

and progression through BCAT1-mediated metabolic 

reprogramming of BCAAs and induce the same process 

of macrophages in the TME, which leads to the 

polarization of immunosuppressive phenotype. 

 

BCAT1-knockdown suppressed proliferation, 

migration, and invasion in A498 and 786-O cells 

 

In the BCAT1-knockdown group, mRNA, and  

protein expression of BCAT1 were dramatically down-

regulated (Figure 9A). The CCK8 assay demonstrated 

that the proliferation of A498 and 786-O cells was 

markedly decreased in BCAT1-knockdown group 

(Figure 9B). Wound healing detection suggested  

that the healing distance of A498 and 786-O cells  

in BCAT1-knockdown group was lower than that in 

control group after 24 hours (Figure 9C). Transwell 

experiments revealed that the migration of A498  

and 786-O cells were clearly inhibited in BCAT1-

knockdown group (Figure 9D). Therefore, the 

expression of BCAT1 was positively correlated with the 

proliferation, migration, and invasion of ccRCC cells. 
 

DISCUSSION 
 

ccRCC is an immune-responsive tumor characterized  

by high heterogeneity and metastatic potential [23]. 

Despite the efficacy of combining molecular targeted 

 

 
 

Figure 7. Comparison of immune cells of ccRCC patients between high- and low-BCAT1 groups. (A) Samples in the high-BCAT1 
group exhibited higher ESTIMATE, stromal, and immune scores than the low-BCAT1 group. (B) Correlation analysis between BCAT1 
expression and immune infiltrating cells. (C) Abundances of main immunosuppressive infiltrating cells (MDSCs, macrophages, and Tregs) in 
tumor microenvironment (TME) in two groups. (D) Differential expression of common immune checkpoint molecules (PDL1, CD96, and 
PDCD1LG2) between high- and low-BCAT1 groups. (E) Correlation between the expression of BCAT1 and common immune checkpoint 
molecules. Wilcox test was used, and the asterisks represent the statistical P-value (*p <0.05, ** p <0.01, *** p <0.001). 
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drugs (Sunitinib and Pazopanib) with immune 

checkpoint blockade (Nivolumab) in improving the 

prognosis of advanced RCC patients, the incidence  

of ccRCC continues to rise annually [25]. In-depth 

investigations into ccRCC reveal that traditional histo-

pathological features (tumor size, stage, grade) may 

not sufficiently address its diagnosis and prognosis 

[26–28]. A better understanding and integration of the 

latest advancements in deep learning and artificial 

intelligence technologies related to data processing 

and analysis are expected to assist in the diagnosis  

and prevention of diseases [29, 30]. BCAAs play a 

pivotal role in tumor proliferation and progression  

due to the heightened demand for BCAAs driven by 

the inherent dividing and proliferative properties of 

tumor cells [26]. Consequently, our study delves into 

the prognostic and immune characteristics of BMGs in 

ccRCC based on their expression profiles. 

 

In our investigation, two BCAA metabolism-related 

clusters were developed, revealing distinct prognostic 

and immune features based on the expression  

profiles of 9 prognostic BMGs. Patients in cluster  

B exhibited a poor prognosis, a high abundance of 

immunosuppressive cells, and expression of immune 

checkpoint molecules. This phenomenon may be 

attributed, in part, to the elevated expression of 

BCAA transporter genes in cluster B, providing 

additional building blocks for tumor proliferation. 

Furthermore, significant enrichment of pro-cancer 

pathways (P53 signaling pathway) and epigenetic 

processes (cell cycle, DNA replication, and  

mismatch repair) in Cluster B potentially offers  

additional pathways for tumor progression [31].  

Subsequently, the LASSO algorithm was employed  

to construct the BCAA metabolic prognostic  

signature and the formula for its risk score, denoted  

as BMS. The stability of this model in predicting  

patient prognosis was validated through univariate  

and multivariate independent prognostic analyses  

using datasets from E-MATB-1980 and GSE22541.  

In TME, invasive immune cells play a pivotal  

role in tumor proliferation, metastasis, and regulation of  

anti-cancer immunity, presenting critical therapeutic  

targets [18]. In the high-BMS group exhibited higher  

TME scores and increased immunosuppressive cell  

infiltration, correlating with a worse prognosis. This  

observation aligns with the immune exhaustion  

phenotype reported in Meng et al.’s study [32]. While  

immune checkpoint blocking therapy and targeted 

 

 
 

Figure 8. Expression profile of BCAT1 based on single-cell sequencing analysis. (A) Composition and distribution of single cells in 

the GEO datasets. (B) UMAP projection of all 50201 cells including ccRCC cells and normal kidney cells. 16 different cell clusters were 
identified. (C) Composition ratio of cell clusters in individual sample. (D) Distribution of the BCAT1 expression in scRNA-Seq cluster of ccRCC 
cells and normal cells. (E) Distribution of the BCAT1 expression of different cell clusters in ccRCC. 
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therapy are indispensable in the management of 

ccRCC [33], formulating an optimal personalized 

treatment plan remains a challenge for clinicians. 

Considering CTLA4 and PD-1 as key immune 

checkpoints, we analyzed differences in responses  

to immunotherapy between high- and low-BMS 

groups. The findings revealed that the effect of 

CTLA4(+) and/or PD-L1(+) treatment was superior in 

the high-BMS group. Additionally, patients in the 

high-BMS group exhibited increased sensitivity to four 

drugs (Rapamycin, Temsirolimus, Sorafenib, and 

Sunitinib). These results suggest that our BCAA 

metabolic prognostic model serves as a valuable 

indicator for predicting the efficacy of targeted therapy 

and immunotherapy, facilitating the development  

of individualized treatment for ccRCC patients.  

 

Several physiological and pathological processes, 

encompassing tumour growth and metastasis, cell 

cycle, apoptosis, pyroptosis, and angiogenesis, are 

under the regulatory influence of BCAT1-mediated 

BCAA catabolism [34, 35]. It is well-established  

that distinct modes of cell death in ccRCC exhibit 

substantial heterogeneity across various dimensions, 

including functional status, tumor microenvironment, 

genomic alterations, responses to chemotherapy and 

immunotherapy, as well as clinical outcomes [36]. 

Numerous studies have established a correlation 

between elevated BCAT1 expression in tissues  

and the development of various cancers, such as  

glioblastoma [37], radiation-induced breast cancer [38],  

acute myeloid leukemia [16], and gastric cancer [39].  

Our findings affirm a positive association between  

BCAT1 expression levels and poor prognosis in ccRCC.  

Gene Set Enrichment Analysis (GSEA) highlights the 

potential impact of BCAT1 on pathways related to 

tumor invasion and proliferation, including cytokine-

cytokine receptor interaction, ECM receptor interaction, 

TGF-β signaling pathway, and JAK/STAT signaling 

pathway. These pathways are known to significantly 

influence tumor genesis and metastasis. 

 

Furthermore, our GSEA enrichment analysis indicates 

that several crucial angiogenesis pathways, such as 

Toll-like receptor signaling, VEGF signaling pathway, 

and mTOR signaling, are markedly enriched in the 

high-BCAT1 group. Recent reports substantiate the 

close relationship between BCAT1 expression and 

mTOR signaling activity in other cancers. For instance, 

BCAT1, by enhancing mitochondrial biosynthesis and 

function through mTOR mediation, may stimulate 

breast cancer cell growth [38]. Activation of the PI3K/ 

Akt/mTOR pathway by BCAT1 may also promote  

the proliferation, invasion, and angiogenesis of

 

 
 

Figure 9. Down-regulation of BCAT1 suppressed the progression of ccRCC in vitro. (A) The expression of BCAT1 in A498 and 786-O 

cells was detected by RT-qPCR and Western blot; (B) BCAT1-knockdown suppressed ccRCC cell proliferation in A498 and 786-O cells;  
(C) Wound-healing tests demonstrated changes in ccRCC cell migration; (D) BCAT1-knockdown suppressed ccRCC cell metastasis in A498 and 
786-O cells. 
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gastric cancer cells [40]. The PI3K/Akt/mTOR 

signaling pathway could induce the secretion of 

vascular endothelial growth factors (VEGFs) mediated 

by the hypoxia-inducible factor 1 (HIF-1) and get 

involved in regulating the expression of other angio-

genic factors such as nitric oxide and angiopoietin 

[41]. In addition, the Toll-like receptor signaling 

pathway could also promote the angiogenesis of 

tumors by inducing VEGF production [42]. Given that 

BCAAs, especially leucine, serve as vital signaling 

molecules in the PI3K/AKT/mTOR pathway and  

can activate it in conjunction with growth factors  

[43, 44], our hypothesis posits that high BCAT1 

expression may activate the PI3K/Akt/mTOR pathway 

via the production of essential BCAAs, consequently 

enhancing ccRCC angiogenesis. 

 

Moreover, BCAT1 expression significantly correlates 

with immunosuppressive cells, particularly macrophages, 

and immunosuppressive checkpoints, potentially con-

tributing to the formation of the immunosuppressive 

TME. Lidia et al. reported BCAT1 overexpression in 

glioblastoma, where it participates in constructing an 

immunosuppressive microenvironment by inhibiting the 

phagocytosis of tumor-associated macrophages [45]. 

These findings underscore BCAT1 as a promising 

molecular target for innovative ccRCC prevention and 

treatment strategies. 

 

However, our current efforts are not without limitations. 

Firstly, our study relies solely on public data for 

constructing and retrospectively validating our findings. 

Thus, prospective studies are imperative to assess clinical 

utility in ccRCC patients. Additionally, comprehensive 

experiments are indispensable for elucidating the intricate 

mechanism of BCAA metabolism and BCAT1 in 

ccRCC. 

 

CONCLUSIONS 
 

In summary, based on the expression of prognosis- 

related BMGs in ccRCC, we categorized patients  

into two BCAA metabolism-related clusters, each  

exhibiting distinct prognosis and immune cell infiltration 

characteristics. Additionally, we developed a BCAA 

metabolic prognostic signature for ccRCC, serving as a 

reliable predictor for both prognosis and immunotherapy 

response. Concurrently, our findings suggest that BCAT1 

potentially contributes to the establishment of an 

immunosuppressive TME in ccRCC, positioning it as  

a promising therapeutic target. 

 

AUTHOR CONTRIBUTIONS 
 
Lingsong Tao designed this work. Jie Zheng wrote the 

manuscript and performed the experiments. Yingqing 

Liu performed the bioinformatics analysis. Jiawei Wang 

was responsible for the article’s revision and editing 

work. Jiewu Shi, Lin Li and Xuefeng Jiang performed 

the data review. All authors have read and approved the 

manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

ETHICAL STATEMENT 
 

This study exclusively involved cell experiments, and 

no human subjects were involved, and therefore, the 

ethical approval is not required for this study. The 

protocols for cell experiments adhered to established 

ethical guidelines and standards for cellular research. 

 

FUNDING 
 

This work was supported by the “Wuhu Huatuo Plan”. 

 

REFERENCES 
 
1. Ljungberg B, Bensalah K, Canfield S, Dabestani S, 

Hofmann F, Hora M, Kuczyk MA, Lam T, Marconi L, 
Merseburger AS, Mulders P, Powles T, Staehler M, et 
al. EAU guidelines on renal cell carcinoma: 2014 
update. Eur Urol. 2015; 67:913–24. 

 https://doi.org/10.1016/j.eururo.2015.01.005 
PMID:25616710 

2. Barata PC, Rini BI. Treatment of renal cell carcinoma: 
Current status and future directions. CA Cancer J Clin. 
2017; 67:507–24. 

 https://doi.org/10.3322/caac.21411 PMID:28961310 

3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 
Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 

 https://doi.org/10.3322/caac.21492 PMID:30207593 

4. Weng S, DiNatale RG, Silagy A, Mano R, Attalla K, 
Kashani M, Weiss K, Benfante NE, Winer AG, 
Coleman JA, Reuter VE, Russo P, Reznik E, et al. The 
Clinicopathologic and Molecular Landscape of Clear 
Cell Papillary Renal Cell Carcinoma: Implications in 
Diagnosis and Management. Eur Urol. 2021; 
79:468–77. 

 https://doi.org/10.1016/j.eururo.2020.09.027 
PMID:33046271 

5. You B, Sun Y, Luo J, Wang K, Liu Q, Fang R, Liu B, Chou 
F, Wang R, Meng J, Huang CP, Yeh S, Chang C, Xu W. 
Androgen receptor promotes renal cell carcinoma 

https://doi.org/10.1016/j.eururo.2015.01.005
https://pubmed.ncbi.nlm.nih.gov/25616710
https://doi.org/10.3322/caac.21411
https://pubmed.ncbi.nlm.nih.gov/28961310
https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.1016/j.eururo.2020.09.027
https://pubmed.ncbi.nlm.nih.gov/33046271


www.aging-us.com 2730 AGING 

(RCC) vasculogenic mimicry (VM) via altering TWIST1 
nonsense-mediated decay through lncRNA-TANAR. 
Oncogene. 2021; 40:1674–89. 

 https://doi.org/10.1038/s41388-020-01616-1 
PMID:33510354 

6. Bian Z, Meng J, Niu Q, Jin X, Wang J, Feng X, Che H, 
Zhou J, Zhang L, Zhang M, Liang C. Prognostic Role of 
Prothrombin Time Activity, Prothrombin Time, 
Albumin/Globulin Ratio, Platelets, Sex, and Fibrinogen 
in Predicting Recurrence-Free Survival Time of Renal 
Cancer. Cancer Manag Res. 2020; 12:8481–90. 

 https://doi.org/10.2147/CMAR.S264856 
PMID:32982441 

7. Meng J, Gao L, Zhang M, Gao S, Fan S, Liang C. 
Systematic investigation of the prognostic value of 
cell division cycle-associated proteins for clear cell 
renal cell carcinoma patients. Biomark Med. 2020; 
14:223–38. 

 https://doi.org/10.2217/bmm-2019-0498 
PMID:31955607 

8. Cocetta V, Ragazzi E, Montopoli M. Links between 
cancer metabolism and cisplatin resistance. Int Rev Cell 
Mol Biol. 2020; 354:107–64. 

 https://doi.org/10.1016/bs.ircmb.2020.01.005 
PMID:32475471 

9. Vander Heiden MG, Cantley LC, Thompson CB. 
Understanding the Warburg effect: the metabolic 
requirements of cell proliferation. Science. 2009; 
324:1029–33. 

 https://doi.org/10.1126/science.1160809 
PMID:19460998 

10. Commisso C, Davidson SM, Soydaner-Azeloglu RG, 
Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal 
M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo 
CM, Vander Heiden MG, Bar-Sagi D. Macropinocytosis 
of protein is an amino acid supply route in Ras-
transformed cells. Nature. 2013; 497:633–7. 

 https://doi.org/10.1038/nature12138 PMID:23665962 

11. Mayers JR, Torrence ME, Danai LV, 
Papagiannakopoulos T, Davidson SM, Bauer MR, Lau 
AN, Ji BW, Dixit PD, Hosios AM, Muir A, Chin CR, 
Freinkman E, et al. Tissue of origin dictates 
branched-chain amino acid metabolism in mutant 
Kras-driven cancers. Science. 2016; 353:1161–5. 

 https://doi.org/10.1126/science.aaf5171 
PMID:27609895 

12. Neinast M, Murashige D, Arany Z. Branched Chain 
Amino Acids. Annu Rev Physiol. 2019; 81:139–64. 

 https://doi.org/10.1146/annurev-physiol-020518-
114455 PMID:30485760 

13. Rossi M, Mascaretti F, Parpinel M, Serraino D, Crispo A, 
Celentano E, Giacosa A, La Vecchia C. Dietary intake of 

branched-chain amino acids and colorectal cancer risk. 
Br J Nutr. 2021; 126:22–7. 

 https://doi.org/10.1017/S0007114520003724 
PMID:32962776 

14. Ananieva EA, Wilkinson AC. Branched-chain amino acid 
metabolism in cancer. Curr Opin Clin Nutr Metab Care. 
2018; 21:64–70. 

 https://doi.org/10.1097/MCO.0000000000000430 
PMID:29211698 

15. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, 
Grabocka E, Vander Heiden MG, Miller G, Drebin JA, 
Bar-Sagi D, Thompson CB, Rabinowitz JD. Human 
pancreatic cancer tumors are nutrient poor and tumor 
cells actively scavenge extracellular protein. Cancer 
Res. 2015; 75:544–53. 

 https://doi.org/10.1158/0008-5472.CAN-14-2211 
PMID:25644265 

16. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, 
Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, 
Barnert A, Bahr C, Zeisberger P, Przybylla A, et al. 
BCAT1 restricts αKG levels in AML stem cells leading to 
IDHmut-like DNA hypermethylation. Nature. 2017; 
551:384–8. 

 https://doi.org/10.1038/nature24294  
PMID:29144447 

17. Qi LN, Xiang BD, Wu FX, Ye JZ, Zhong JH, Wang YY, 
Chen YY, Chen ZS, Ma L, Chen J, Gong WF, Han ZG, Lu 
Y, et al. Circulating Tumor Cells Undergoing EMT 
Provide a Metric for Diagnosis and Prognosis of 
Patients with Hepatocellular Carcinoma. Cancer Res. 
2018; 78:4731–44. 

 https://doi.org/10.1158/0008-5472.CAN-17-2459 
PMID:29915159 

18. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer 
G, Zitvogel L. Targeting the tumor microenvironment: 
removing obstruction to anticancer immune responses 
and immunotherapy. Ann Oncol. 2016; 27:1482–92. 

 https://doi.org/10.1093/annonc/mdw168 
PMID:27069014 

19. Sivanand S, Vander Heiden MG. Emerging Roles for 
Branched-Chain Amino Acid Metabolism in Cancer. 
Cancer Cell. 2020; 37:147–56. 

 https://doi.org/10.1016/j.ccell.2019.12.011 
PMID:32049045 

20. Lee JH, Cho YR, Kim JH, Kim J, Nam HY, Kim SW, Son J. 
Branched-chain amino acids sustain pancreatic cancer 
growth by regulating lipid metabolism. Exp Mol Med. 
2019; 51:1–11. 

 https://doi.org/10.1038/s12276-019-0350-z 
PMID:31784505 

21. Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, 
Perales-Patón J, Jansen J, Reimer KC, Smith JR, Dobie R, 

https://doi.org/10.1038/s41388-020-01616-1
https://pubmed.ncbi.nlm.nih.gov/33510354
https://doi.org/10.2147/CMAR.S264856
https://pubmed.ncbi.nlm.nih.gov/32982441
https://doi.org/10.2217/bmm-2019-0498
https://pubmed.ncbi.nlm.nih.gov/31955607
https://doi.org/10.1016/bs.ircmb.2020.01.005
https://pubmed.ncbi.nlm.nih.gov/32475471
https://doi.org/10.1126/science.1160809
https://pubmed.ncbi.nlm.nih.gov/19460998
https://doi.org/10.1038/nature12138
https://pubmed.ncbi.nlm.nih.gov/23665962
https://doi.org/10.1126/science.aaf5171
https://pubmed.ncbi.nlm.nih.gov/27609895
https://doi.org/10.1146/annurev-physiol-020518-114455
https://doi.org/10.1146/annurev-physiol-020518-114455
https://pubmed.ncbi.nlm.nih.gov/30485760
https://doi.org/10.1017/S0007114520003724
https://pubmed.ncbi.nlm.nih.gov/32962776
https://doi.org/10.1097/MCO.0000000000000430
https://pubmed.ncbi.nlm.nih.gov/29211698
https://doi.org/10.1158/0008-5472.CAN-14-2211
https://pubmed.ncbi.nlm.nih.gov/25644265
https://doi.org/10.1038/nature24294
https://pubmed.ncbi.nlm.nih.gov/29144447
https://doi.org/10.1158/0008-5472.CAN-17-2459
https://pubmed.ncbi.nlm.nih.gov/29915159
https://doi.org/10.1093/annonc/mdw168
https://pubmed.ncbi.nlm.nih.gov/27069014
https://doi.org/10.1016/j.ccell.2019.12.011
https://pubmed.ncbi.nlm.nih.gov/32049045
https://doi.org/10.1038/s12276-019-0350-z
https://pubmed.ncbi.nlm.nih.gov/31784505


www.aging-us.com 2731 AGING 

Wilson-Kanamori JR, Halder M, Xu Y, et al. Decoding 
myofibroblast origins in human kidney fibrosis. Nature. 
2021; 589:281–6. 

 https://doi.org/10.1038/s41586-020-2941-1 
PMID:33176333 

22. Borcherding N, Vishwakarma A, Voigt AP, Bellizzi A, 
Kaplan J, Nepple K, Salem AK, Jenkins RW, Zakharia Y, 
Zhang W. Mapping the immune environment in clear 
cell renal carcinoma by single-cell genomics. Commun 
Biol. 2021; 4:122. 

 https://doi.org/10.1038/s42003-020-01625-6 
PMID:33504936 

23. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone 
DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, 
Eddy JA, Ziv E, Culhane AC, Paull EO, et al. The 
Immune Landscape of Cancer. Immunity. 2018; 
48:812–30.e14. 

 https://doi.org/10.1016/j.immuni.2018.03.023 
PMID:29628290 

24. Chen DS, Mellman I. Oncology meets immunology: the 
cancer-immunity cycle. Immunity. 2013; 39:1–10. 

 https://doi.org/10.1016/j.immuni.2013.07.012 
PMID:23890059 

25. Chow WH, Dong LM, Devesa SS. Epidemiology and 
risk factors for kidney cancer. Nat Rev Urol. 2010; 
7:245–57. 

 https://doi.org/10.1038/nrurol.2010.46 
PMID:20448658 

26. Penticuff JC, Kyprianou N. Therapeutic challenges in 
renal cell carcinoma. Am J Clin Exp Urol. 2015; 3:77–90. 

 PMID:26309897 

27. Zhang D, Zhang X, Liu Z, Han T, Zhao K, Xu X, Zhang X, 
Ren X, Qin C. An integrative multi-omics analysis based 
on disulfidptosis-related prognostic signature and 
distinct subtypes of clear cell renal cell carcinoma. 
Front Oncol. 2023; 13:1207068. 

 https://doi.org/10.3389/fonc.2023.1207068 
PMID:37427103 

28. Zhang X, Zhang M, Song L, Wang S, Wei X, Shao W, 
Song N. Leveraging diverse cell-death patterns to 
predict the prognosis, immunotherapy and drug 
sensitivity of clear cell renal cell carcinoma. Sci Rep. 
2023; 13:20266. 

 https://doi.org/10.1038/s41598-023-46577-z 
PMID:37985807 

29. Hong D, Zhang B, Li H, Li YX, Yao Y, Li CY, Werner M, 
Chanussot J, Zipf A, Zhu X. Cross-city matters: A 
multimodal remote sensing benchmark dataset for 
cross-city semantic segmentation using high-resolution 
domain adaptation networks. Remote Sens Environ. 
2023; 299:0034–4257. 

 https://doi.org/10.1016/j.rse.2023.113856 

30. Hong DF, Zhang B, Li XY, Li YX, Li CY, Yao Y, Yokoya N, Li 
H, Ghamisi P, Jia XP, Plaza A, Paolo G, Benediktsson J, 
Chanussot J. SpectralGPT: Spectral Foundation. Model 
Comput Sci. 2023. 

31. Arany Z, Neinast M. Branched Chain Amino Acids in 
Metabolic Disease. Curr Diab Rep. 2018; 18:76. 

 https://doi.org/10.1007/s11892-018-1048-7 
PMID:30112615 

32. Meng J, Jiang A, Lu X, Gu D, Ge Q, Bai S, Zhou Y, Zhou J, 
Hao Z, Yan F, Wang L, Wang H, Du J, Liang C. 
Multiomics characterization and verification of clear 
cell renal cell carcinoma molecular subtypes to guide 
precise chemotherapy and immunotherapy. iMeta. 
2023; 2:e147. 

 https://doi.org/10.1002/imt2.147 

33. Ravi P, Mantia C, Su C, Sorenson K, Elhag D, Rathi N, 
Bakouny Z, Agarwal N, Zakharia Y, Costello BA, 
McKay RR, Narayan V, Alva A, et al. Evaluation of the 
Safety and Efficacy of Immunotherapy Rechallenge 
in Patients With Renal Cell Carcinoma. JAMA Oncol. 
2020; 6:1606–10. 

 https://doi.org/10.1001/jamaoncol.2020.2169 
PMID:32469396 

34. Wang ZQ, Faddaoui A, Bachvarova M, Plante M, 
Gregoire J, Renaud MC, Sebastianelli A, Guillemette 
C, Gobeil S, Macdonald E, Vanderhyden B, 
Bachvarov D. BCAT1 expression associates with 
ovarian cancer progression: possible implications in 
altered disease metabolism. Oncotarget. 2015; 
6:31522–43. 

 https://doi.org/10.18632/oncotarget.5159 
PMID:26372729 

35. Zhang X, Wei X, Wang Y, Wang S, Ji C, Yao L, Song N. 
Pyroptosis Regulators and Tumor Microenvironment 
Infiltration Characterization in Clear Cell Renal Cell 
Carcinoma. Front Oncol. 2022; 11:774279. 

 https://doi.org/10.3389/fonc.2021.774279 
PMID:35070978 

36. Jiang A, Meng J, Bao Y, Wang A, Gong W, Gan X, Wang 
J, Bao Y, Wu Z, Lu J, Liu B, Wang L. Establishment of a 
prognosis Prediction Model Based on Pyroptosis-
Related Signatures Associated With the Immune 
Microenvironment and Molecular Heterogeneity in 
Clear Cell Renal Cell Carcinoma. Front Oncol. 2021; 
11:755212. 

 https://doi.org/10.3389/fonc.2021.755212 
PMID:34804944 

37. Tönjes M, Barbus S, Park YJ, Wang W, Schlotter M, 
Lindroth AM, Pleier SV, Bai AH, Karra D, Piro RM, 
Felsberg J, Addington A, Lemke D, et al. BCAT1 
promotes cell proliferation through amino acid 
catabolism in gliomas carrying wild-type IDH1. Nat 
Med. 2013; 19:901–8. 

https://doi.org/10.1038/s41586-020-2941-1
https://pubmed.ncbi.nlm.nih.gov/33176333
https://doi.org/10.1038/s42003-020-01625-6
https://pubmed.ncbi.nlm.nih.gov/33504936
https://doi.org/10.1016/j.immuni.2018.03.023
https://pubmed.ncbi.nlm.nih.gov/29628290/
https://doi.org/10.1016/j.immuni.2013.07.012
https://pubmed.ncbi.nlm.nih.gov/23890059
https://doi.org/10.1038/nrurol.2010.46
https://pubmed.ncbi.nlm.nih.gov/20448658
https://pubmed.ncbi.nlm.nih.gov/26309897
https://doi.org/10.3389/fonc.2023.1207068
https://pubmed.ncbi.nlm.nih.gov/37427103
https://doi.org/10.1038/s41598-023-46577-z
https://pubmed.ncbi.nlm.nih.gov/37985807
https://doi.org/10.1016/j.rse.2023.113856
https://doi.org/10.1007/s11892-018-1048-7
https://pubmed.ncbi.nlm.nih.gov/30112615
https://doi.org/10.1002/imt2.147
https://doi.org/10.1001/jamaoncol.2020.2169
https://pubmed.ncbi.nlm.nih.gov/32469396
https://doi.org/10.18632/oncotarget.5159
https://pubmed.ncbi.nlm.nih.gov/26372729
https://doi.org/10.3389/fonc.2021.774279
https://pubmed.ncbi.nlm.nih.gov/35070978
https://doi.org/10.3389/fonc.2021.755212
https://pubmed.ncbi.nlm.nih.gov/34804944


www.aging-us.com 2732 AGING 

 https://doi.org/10.1038/nm.3217  
PMID:23793099 

38. Zhang L, Han J. Branched-chain amino acid 
transaminase 1 (BCAT1) promotes the growth of breast 
cancer cells through improving mTOR-mediated 
mitochondrial biogenesis and function. Biochem 
Biophys Res Commun. 2017; 486:224–31. 

 https://doi.org/10.1016/j.bbrc.2017.02.101 
PMID:28235484 

39. Xu Y, Yu W, Yang T, Zhang M, Liang C, Cai X, Shao Q. 
Overexpression of BCAT1 is a prognostic marker in 
gastric cancer. Hum Pathol. 2018; 75:41–6. 

 https://doi.org/10.1016/j.humpath.2018.02.003 
PMID:29447920 

40. Shu X, Zhan PP, Sun LX, Yu L, Liu J, Sun LC, Yang ZH, Ran 
YL, Sun YM. BCAT1 Activates PI3K/AKT/mTOR Pathway 
and Contributes to the Angiogenesis and 
Tumorigenicity of Gastric Cancer. Front Cell Dev Biol. 
2021; 9:659260. 

 https://doi.org/10.3389/fcell.2021.659260 
PMID:34164393 

41. Karar J, Maity A. PI3K/AKT/mTOR Pathway in 
Angiogenesis. Front Mol Neurosci. 2011; 4:51. 

 https://doi.org/10.3389/fnmol.2011.00051 
PMID:22144946 

42. Belmont L, Rabbe N, Antoine M, Cathelin D, 
Guignabert C, Kurie J, Cadranel J, Wislez M. Expression 
of TLR9 in tumor-infiltrating mononuclear cells 
enhances angiogenesis and is associated with a worse 
survival in lung cancer. Int J Cancer. 2014; 134:765–77. 

 https://doi.org/10.1002/ijc.28413 PMID:23913633 

43. Song Y, Zhao B, Xu Y, Ren X, Lin Y, Zhou L, Sun Q. 
Prognostic significance of branched-chain amino acid 
transferase 1 and CD133 in triple-negative breast 
cancer. BMC Cancer. 2020; 20:584. 

 https://doi.org/10.1186/s12885-020-07070-2 
PMID:32571264 

44. Hassan B, Akcakanat A, Holder AM, Meric-Bernstam F. 
Targeting the PI3-kinase/Akt/mTOR signaling pathway. 
Surg Oncol Clin N Am. 2013; 22:641–64. 

 https://doi.org/10.1016/j.soc.2013.06.008 
PMID:24012393 

45. Silva LS, Poschet G, Nonnenmacher Y, Becker HM, 
Sapcariu S, Gaupel AC, Schlotter M, Wu Y, Kneisel N, 
Seiffert M, Hell R, Hiller K, Lichter P, Radlwimmer B. 
Branched-chain ketoacids secreted by glioblastoma 
cells via MCT1 modulate macrophage phenotype. 
EMBO Rep. 2017; 18:2172–85. 

 https://doi.org/10.15252/embr.201744154 
PMID:29066459 

  

https://doi.org/10.1038/nm.3217
https://pubmed.ncbi.nlm.nih.gov/23793099
https://doi.org/10.1016/j.bbrc.2017.02.101
https://pubmed.ncbi.nlm.nih.gov/28235484
https://doi.org/10.1016/j.humpath.2018.02.003
https://pubmed.ncbi.nlm.nih.gov/29447920
https://doi.org/10.3389/fcell.2021.659260
https://pubmed.ncbi.nlm.nih.gov/34164393
https://doi.org/10.3389/fnmol.2011.00051
https://pubmed.ncbi.nlm.nih.gov/22144946
https://doi.org/10.1002/ijc.28413
https://pubmed.ncbi.nlm.nih.gov/23913633
https://doi.org/10.1186/s12885-020-07070-2
https://pubmed.ncbi.nlm.nih.gov/32571264
https://doi.org/10.1016/j.soc.2013.06.008
https://pubmed.ncbi.nlm.nih.gov/24012393
https://doi.org/10.15252/embr.201744154
https://pubmed.ncbi.nlm.nih.gov/29066459


www.aging-us.com 2733 AGING 
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Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Multi-omics landscape of BMGs in ccRCC. (A) Mutation frequency of 18 BMGs in 336 ccRCC patients.  
(B) Copy number variations (CNVs) of the 18 BMGs. (C) Differential expression of 18 BMGs in ccRCC and adjacent normal tissues. (D) Location 
of CNV alterations in the 23 chromosomes of 18 BMGs. (E) Association and prognostic characteristics of 18 BMGs in ccRCC. Wilcox test was 
used, and the asterisks represent the statistical P-value (*p <0.05, ** p <0.01, *** p <0.001). 

 



www.aging-us.com 2734 AGING 

 
 

Supplementary Figure 2. Drug sensitivity analysis of BMS groups. (A–F) Comparison of the sensitivity of patients in high- and low- 

BMS groups to (A) Rapamycin, (B) Temsirolimus, (C) Sorafenib, (D) Axitinibn, (E) Pazopanib, and (F) Sunitinib. (G) Differential expression of 
target genes between high- and low-BMS groups after targeted drug treatment. Wilcox test was used, and the asterisks represent the 
statistical P-value (*p <0.05, ** p <0.01, *** p <0.001). 
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Supplementary Figure 3. Clinical, prognostic, and protein expression characteristics of model genes. (A–E) Differential 

expression of model genes among different clinicopathological variables, including (A) histological grade, (B) pathological stage, (C) T stage, 
(D) M stage, and (E) N stage. (F) Differential mRNA expression of model genes between ccRCC and adjacent tissues. (G) Differential protein 
expression of model genes between ccRCC and adjacent tissues. (H) Survival analysis of model genes in ccRCC. Wilcox test was used, and the 
asterisks represent the statistical P-value (*p <0.05, ** p <0.01, *** p <0.001). 

 

 


