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ABSTRACT 
 

Background: MicroRNA-221-3p (miR-221-3p) facilitates the advancement of breast cancer (BC) through the 
induction of epithelial-mesenchymal transition (EMT). Our research aimed to utilize bioinformatics to discover 
possible EMT-related target genes (ETGs) of miR-221-3p and examine their roles in breast cancer. 
Methods: We employed bioinformatics techniques to identify ten key ETGs of miR-221-3p. Subsequently, we 
conducted an extensive analysis of both miR-221-3p and the ten ETGs, including clinical significance and 
immune characteristics. 
Results: The expression of miR-221-3p was notably higher in Basal-like BC compared to other subtypes and 
adjacent normal tissue. Our pathway analysis suggested that miR-221-3p might regulate EMT through the 
MAPK signaling pathway by targeting its ETGs. Among the ETGs, seven core genes (EGFR, IGF1, KDR, FGF2, KIT, 
FGFR1, and FGF1) exhibited downregulation in BC. Conversely, ERBB2, SDC1, and MMP14 showed upregulation 
in BC and displayed potential diagnostic value. The analysis of prognostication indicated that increased levels of 
SDC1 and MMP14 were correlated with an unfavorable prognosis, whereas elevated expression of KIT was 
associated with a more favorable prognosis. The infiltration of various immune cells and the expression of 
immune checkpoint genes (ICGs) exhibited positive correlations with most ETGs and miR-221-3p. SDC1 
exhibited a greater tumor mutational burden (TMB) score, while ERBB2, KDR, FGF2, KIT, FGFR1, and FGF1 
showed lower TMB scores. Furthermore, decreased ERBB2 and KDR expression levels were correlated with 
elevated microsatellite instability (MSI) scores. Elevated expression of ETGs was linked to decreased mRNA 
stemness indices (mRNAsi), whereas miR-221-3p displayed the opposite pattern. Most ETGs and miR-221-3p 
expression exhibited a negative correlation with IC50 values for drugs. Among the ETGs, amplification was the 
most significant genetic alteration, except for IGF1.  
Conclusion: In conclusion, miR-221-3p acts as a unique indicator for Basal-like BC. The examination revealed ten 
essential ETGs of miR-221-3p, some of which show potential as diagnostic and prognostic markers. The in-depth 
examination of these ten ETGs and miR-221-3p indicates their participation in the development of BC, 
emphasizing their promise as innovative targets for therapy in BC patients. 
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INTRODUCTION 
 

Breast cancer (BC) presents a major challenge for 

women worldwide due to its high incidence rate, with 

over two million new cases diagnosed annually [1]. A 

Comprehensive therapeutic strategy is currently used in 

the treatment of BC patients [2]. Patients with localized 

BC have a survival rate of over 90% within five years, 

whereas those with metastatic cancer experience a rate 

below 30% [3]. Metastasis is the primary reason for more 

than 90% of cancer-related fatalities in BC [4]. Tumor 

metastasis is closely linked to the crucial process of 

epithelial-mesenchymal transition (EMT), where 

epithelial cells undergo a change into highly mobile 

mesenchymal cells that possess increased migratory and 

invasive abilities [5]. The process of epithelial-

mesenchymal transition (EMT) has been linked to 

multiple biological aspects of breast cancer (BC), such as 

the development of stem cell-like traits [6]. Besides, the 

process of EMT has been recognized as a crucial element 

in the immunosuppression within the microenvironment 

of the tumor, facilitating cancer progression and 

contributing to drug resistance [7]. Furthermore, sub-

stantial evidence suggests that EMT-related genes are 

linked to therapeutic resistance. Hence, it is crucial to 

evaluate the influence of gene expression related to EMT 

in order to develop accurate and individualized 

therapeutic approaches for BC patients [8]. 

 

MicroRNAs (miRNAs) are small RNA molecules that 

are not involved in coding and have a significant 

function in regulating gene expression after 

transcription. Which involved the development and 

advancement of different human illnesses, such as 

cancers [9, 10]. Several studies have revealed that 

miRNAs can trigger the EMT process to promote tumor 

invasion and metastasis in various malignancies [11]. 

Furthermore, specific miRNAs related to EMT have 

been discovered to be linked to the characteristics of 

cancer stem cells and resistance to drugs [12]. 

 

MiRNA-221-3p belongs to the miRNA family that is 

encoded on the X chromosome in humans. The 

regulation of its target genes is essential in the growth 

of different cancerous tumors, as it can either inhibit or 

facilitate tumorigenesis. [13]. Previous research has 

provided evidence that miR-221-3p exerts regulatory 

control over the expression of its target genes, thereby 

regulating the process of EMT in BC [14, 15]. 

Considering that miRNAs can regulate multiple targets 

simultaneously [16], further exploration of the 

underlying molecular mechanisms through which miR-

221-3p regulates the EMT process in BC is warranted. 

 

Considering the information mentioned, our research 

aimed to discover further possible target genes linked to 

EMT that are regulated by miR-221-3p. Moreover, our 

aim was to investigate their clinical importance, their 

correlation with immune cells that infiltrate tumors, and 

their influence on drug responsiveness through the 

utilization of bioinformatics tools. The discovery of 

these results has the capacity to reveal new targets for 

therapy in individuals with BC. 

 

MATERIALS AND METHODS 
 

MiR-221-3p differential expression analysis  

 

Clinical information for BC patients was obtained along 

with the miR-221-3p expression data from the Cancer 

Genome Atlas (TCGA) website, which included 1103 

BC tissue and 104 normal samples. The expression data 

of miR-221-3p was displayed in log2(RPM+1) format. 

Furthermore, we verified the distinct expression of miR-

221-3p by utilizing the GSE45666 dataset obtained 

from the Gene Expression Omnibus (GEO) database 

and various cell lines. Receiver Operating Characteristic 

(ROC) curve analysis was performed to assess the 

discriminatory power of miR-221-3p in distinguishing 

BC subtypes. 

 

EMT-related target genes (ETGs) identification and 

enrichment analysis 

 

In order to discover possible target genes of miR-221-

3p (Supplementary Table 1), we utilized version 3.0 of 

miRWalk, a website that integrates prediction results 

from multiple databases for comprehensive target gene 

analysis [17]. From the dbEMT 2.0 database [18], a 

collection of 1184 genes associated with EMT 

(Supplementary Table 2) was acquired [18]. Further-

more, the R software package limma was used to 

identify the differentially expressed genes (DEGs) 

(Supplementary Table 3) using data from TCGA. The 

criteria of |logFC| > 1 and FDR < 0.05 were applied as 

thresholds. Subsequently, we pinpointed the common 

genes shared among the possible target genes of miR-

221-3p, the DEGs, and the EMT-related genes, thereby 

designating them as the possible ETGs of miR-221-3p. 

For a deeper investigation into the pathways associated 

with BC progression and the biological roles of the 

potential ETGs of miR-221-3p, we conducted Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) functional enrichment analyses, 

which were executed with the R clusterProfiler package. 

To improve the accuracy of the research, we created a 

network of protein-protein interactions (PPI) for the 

ETGs by utilizing the STRING database [19]. The 

visualization of the network was done using Cytoscape 

version 3.8.2. For further investigation, the top ten core 

genes were selected as the ETGs of miR-221-3p using 

the cytoHubba tool. 
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Correlation analysis  

 

The RNA-sequencing data for ten ETGs were obtained 

from the TCGA website. Subsequently, the data were 

transformed into transcripts per million (TPM) format, 

represented as log2(TPM+1). Then we analyzed the 

relation between miR-221-3p and its ETGs, as well as 

the pairwise relation among the ETGs. 

  

ETGs differential expression analysis  

 

Using data obtained from TCGA, we analyzed the 

differential expression of ten ETGs between the 

normal and BC groups. The validation of this analysis 

was later confirmed by the GSE45666 dataset of the 

GEO database and cell lines. Additionally, we obtained 

immunohistochemistry (IHC) images of BC tissues 

and normal tissues of ten ETGs from the Human 

Protein Atlas (https://www.proteinatlas.org/) website 

for further analyzing their expression at the protein 

level. 

  

Quantitative real-time PCR (qRT-PCR) analysis 

 

The BC cell lines MCF-7 and MDA-MB-231, as well as 

the breast epithelial cell line MCF-10A, were procured 

from Procell (Wuhan, China) and cultured following  

the manufacturer’s guidelines. Total RNA was extracted 

from the cells using the RNAsimple total RNA  

kit (Tiangen, Beijing, China) according to the 

manufacturer’s instructions. Subsequently, qRT-PCR 

was performed using the PrimeScript™ RT reagent kit 

(Takara, Japan) and the SYBR Premix Ex Taq™ II 

(Takara, Japan) as per the manufacturer’s protocol. 

GAPDH was chosen as the internal reference gene, and 

the relative expression levels were calculated using the 

2−ΔΔCt method. Specific primers used in this study are 

shown in Table 1. 

 

IHC staining and scoring 

 

We used tissue microarrays (F048Br01a, Bioaitech, 

China) comprising 24 BC tissues of varying stages and 

grades, along with their corresponding adjacent tumor 

tissues. IHC staining and scoring were conducted 

following a previously described protocol [20]. In 

summary, following the removal of paraffin, 

rehydration, and microwave antigen retrieval, the slides 

were left to incubate with antibodies overnight at a 

temperature of 4 degrees Celsius. Anti-ERBB2 

(ab237715, Abcam), anti-SDC1 (ab130405, Abcam), 

and anti-MMP14 (ab51074, Abcam) were each diluted 

to concentrations of 1:2000, 1:1000, and 1:800, 
respectively. Afterward, the slides were subjected to 

secondary antibodies at ambient temperature for a 

duration of 30 minutes. Then, they were stained using 

DAB substrate and subsequently counterstained with 

hematoxylin. 

 

ETGs clinical significance analysis 

 

The diagnostic value of the upregulated ETGs was 

evaluated through ROC curve analysis, and the 

findings were subsequently confirmed using the 

GSE45666 dataset. To assess the clinical significance 

of the ETGs, we conducted an analysis of their 

expression in relation to clinical stages and PAM50 

subtypes of BC. Furthermore, to investigate the 

correlation between the ETGs expression and the 

prognosis, we stratified the BC patients into two 

groups according to the median ETGs expression  

value. Subsequently, the Kaplan-Meier (KM) survival 

analysis was conducted to analyze the relationship 

between ETGs expression and patient prognosis, 

encompassing both overall survival (OS) and the 

disease-specific survival (DSS). 

 

Immune characteristics analysis 

 

To investigate the correlation between ETG expression 

and immune cells, we employed the single-sample gene 

set enrichment analysis method [21] to evaluate the 

infiltration enrichment of 24 common immune cell 

types. This enabled us to conduct further correlation 

analysis between ETGs expression and immune cell 

infiltration levels. Furthermore, the correlation between 

eight immune checkpoint genes (ICGs) and ETGs 

expression was analyzed.  

 

Tumor mutational burden (TMB), microsatellite 

instability (MSI) and stemness analysis 

 

TMB and MSI scores were derived from prior 

research [22, 23]. The one-class logistic regression 

machine-learning algorithm [24] facilitated the 

computation of the mRNA expression-based stemness 

index (mRNAsi) score. Analysis of the difference of 

the TMB, MSI and mRNAsi scores between the high 

and low expression groups of ten ETGs and miR-221-

3p was conducted. 

 

Drug sensitivity analysis 

 

To predict the drug response of individual samples 

obtained from TCGA, we employed the R pRRophetic 

package. Afterward, the IC50 values for each sample’s 

drug sensitivity were estimated using Ridge’s 

regression, utilizing data acquired from the Genomics of 

Drug Sensitivity in Cancer database [25]. Additionally, 
we conducted further analysis on the association 

between the IC50 values and the expression of the 

ETGs and miR-221-3p.  

https://www.proteinatlas.org/
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Table 1. Sequences of all Primers. 

 Primers sequence (5′–3′) 

GAPDH F GTCAAGGCTGAGAACGGGAA 

GAPDH R TGGACTCCACGACGTACTCA 

EGFR F TCAGCTAGTTAGGAGCCCATTTTT 

EGFR R TGTGACTGAACATAACTGTAGGCT 

IGF1 F TCTCTAAATCCCTCTTCTGTTTGCT 

IGF1 R GGAGATGTTGAGAGCAATGTCAC 

ERBB2 F TCTGCTGGCATCAAGAGGTG 

ERBB2 R AGCCATCTGGGAACTCAAGC 

KDR F GTTCAGACGGGGTTTCTGGT 

KDR R TTGGCCAGGAGACACGTAAC 

FGF2 F GTGCTAACCGTTACCTGGCT 

FGF2 R TCTGCCCAGGTCCTGTTTTG 

KIT F AGGTTGTTGAGGCAACTGCT 

KIT R ATGGTGCAGGCTCCAAGTAG 

FGFR1 F GAGCCTTGTCACCAACCTCT 

FGFR1 R AAGCATCTCACCGAAATCCCG 

SDC1 F GGAAGGGCCTGTGGGTTTAT 

SDC1 R CTGCTCGATGCTCTCTTGGG 

FGF1 F CGGCTCAACACCAAATGAGG 

FGF1 R TCTGGCCATAGTGAGTCCGA 

MMP14 F CCGATGTGGTGTTCCAGACA 

MMP14 R TCGTATGTGGCATACTCGCC 

MiR-221-3p F GTTCGTGGGAGCTACATTGTCTGC 

MiR-221-3p R GTGTCGTGGAGTCGGCAATTC 

MiR-221-3p RT Primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAAACCCA 

 

Genetic alteration analysis 

 

We utilized the cBioPortal website to analyze 

genetic alterations in the BC cohort. Moreover, we 

examined OS and DSS in both the altered and 

unaltered groups. 

 

Statistical analysis 

 

The unpaired t-test was used to analyze statistical 

differences between two groups, whereas the Kruskal-

Wallis test was employed for comparing multiple 

groups. Expression level values were presented as 

means ± standard deviations. Correlation analysis 

utilized Spearman’s correlation test. Statistical analyses 

and plotting were made easier with the help of R 
software (version 4.2.1) and GraphPad Prism (version 

8.0). Statistically significant findings were determined 

in this study for P-values less than 0.05. 

Availability of data and materials 

 

The data underlying this study are freely available from 

TCGA (https://portal.gdc.cancer.gov/), GEO 

(http://www.ncbi.nlm.nih.gov/geo/), miRWalk 3.0 

(http://mirwalk.umm.uni-heidelberg.de/), dbEMT 2.0 

(http://dbemt.bioinfo-minzhao.org/index.html), Human 

Protein Atlas (https://www.proteinatlas.org/) and 

cBioPortal databases (http://www.cbioportal.org). 

 

RESULTS 
 

The clinical significance and differential expression 

of miR-221-3p 

 

The differential expression analysis of miR-221-3p 

revealed that miR-221-3p levels were lower in BC 

tissues compared to normal tissues (p = 0.001). In 

Figure 1A, the expression levels in BC tissues and 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://mirwalk.umm.uni-heidelberg.de/
http://dbemt.bioinfo-minzhao.org/index.html
https://www.proteinatlas.org/
http://www.cbioportal.org/
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normal tissues were 6.509 ± 1.082 and 6.884 ± 0.557, 

respectively. The GSE45666 dataset also confirmed the 

identical outcome (p < 0.05) (Figure 1B). Moreover, 

miR-221-3p expression was decreased in MCF-7 and 

notably increased in MDA-MB-231 (Figure 1C). 

Furthermore, as shown in Figure 1D, the higher 

expression of miR-221-3p was linked to the negative 

status of estrogen receptor (ER) (p < 0.001) and 

progesterone receptor (PR) (p < 0.001), as well as 

human epidermal growth factor receptor 2 (HER2) (p = 

0.004). Additionally, miR-221-3p expression was found 

to be reduced in BC patients with nodal status

 

 
 

Figure 1. MiR-221-3p differential expression in BC and normal adjacent tissues based on TCGA database (A) and validated by the 

GSE45666 dataset (B) and cell lines (C). The clinical significance of miR-221-3p expression (D). ROC curve shows the discriminative power of 
miR-221-3p between the Basal-like subtype and others (E). In the present study, NS indicates no statistical difference, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. 
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N1 in comparison to individuals without lymph node 

metastases (p = 0.044). Significantly, miR-221-3p 

expression in the Basal-like subtype was 7.379 ± 1.081, 

markedly higher than that in Luminal A (6.303 ± 0.975, 

p < 0.001), Luminal B (6.214 ± 1.013, p < 0.001), and 

HER2-enriched subtypes (6.380 ± 0.845, p < 0.001). 

Due to the high expression in Basal-like BC, we further 

prove miR-221-3p is a special biomarker of which to 

discriminate from other subtypes. Using a cut-off value 

of 7.037, the ROC curve analysis yielded an area under 

the curve (AUC) of 0.791, with a specificity of 63.9% 

and sensitivity of 84.0% (Figure 1E).  

 

ETGs identification and enrichment analysis 

 

As shown in the Venn diagram (Figure 2A), 35 genes 

were selected as possible ETGs of miR-221-3p. The 

subsequent GO analysis of these 35 genes revealed 

that they may play a role in regulating biological 

processes related to epithelial cell proliferation and 

transmembrane receptor protein tyrosine kinase 

activity. Furthermore, the KEGG pathway analysis 

suggested that these ETGs might play a role in 

controlling the EMT process via the MAPK signaling 

pathway and could potentially be linked to the 

resistance of EGFR tyrosine kinase inhibitors in the 

BC treatment (Figure 2B; Supplementary Table 4). 

Figure 2C shows the construction of a PPI network of 

35 ETGs, including 26 nodes and 78 edges. In order to 

enhance the precision of predictions, we have 

identified the top ten core genes from the PPI network 

for further investigation. These core genes included 

EGFR, IGF1, ERBB2, KDR, FGF2, KIT, FGFR1, 

SDC1, FGF1, and MMP14 (Figure 2D). 

 

 
 

Figure 2. The Venn diagram shows DEGs, EMT-related genes, and possible targets of miR-222-3p (A). GO and KEGG pathway enrichment 

analysis of 35 ETGs (B). The PPI network of 35 ETGs (C). 10 top core genes of the PPI network were identified as the ETGs of miR-221-3p for 
further research (D). 



www.aging-us.com 328 AGING 

Correlation analysis  

 

Correlation analysis revealed that seven out of the ten 

ETGs exhibited a significant correlation with miR-221-

3p expression. The results depicted in Figure 3A 

indicate that the levels of EGFR (r = 0.227, p < 0.001), 

FGF2 (r = 0.132, p < 0.001), KIT (r = 0.114, p < 0.001), 

SDC1 (r = 0.061, p = 0.045), and MMP14 (r = 0.087,  

p = 0.004) exhibited a positive correlation with miR-

221-3p expression. In contrast, miR-221-3p expression 

showed a negative correlation with ERBB2 (r = −0.318, 

p < 0.001) and KDR (r = −0.121, p < 0.001). Moreover, 

the ETGs were evaluated for pairwise correlation, and 

the majority of them exhibited positive correlation with 

one another (Figure 3B). Additionally, it was observed 

that there were negative correlations between EGFR 

and ERBB2 (r = −0.142, p < 0.001), FGF2 and ERBB2 

(r = −0.088, p = 0.003), and FGF2 and SDC1 (r = 

−0.108, p < 0.001).  

 

ETGs differential expression analysis  

 

The result of the differential expression indicated that 

seven out of ten ETGs had reduced expression levels in 

the tumor group compared to the normal group (Figure 

4A). These ETGs were EGFR, IGF1, KDR, FGF2, KIT, 

FGFR1 and FGF1. In contrast, ERBB2, SDC1, and 

MMP14 exhibited elevated expression levels in the 

tumor group (All p < 0.05). Furthermore, the 

GSE109169 dataset was utilized to validate the 

differential expression of the ETGs, as depicted in 

Figure 4B. In addition, the analysis of ETGs in cell lines 

validated the same outcomes (Figure 4C). Figure 5 

displays the immunohistochemistry images acquired 

from the HPA database (https://www.proteinatlas.org/) 

(Supplementary Table 5) for the analysis of ETGs 

protein expression. The majority of ETGs showed 

consistent protein expression with the previous analyses 

in tissue samples. However, the protein expression of 

IGF1, KDR and FGF2 were not detected in both BC 

tissue and normal tissue. Moreover, IHC staining was 

conducted to confirm the protein expression of three 

ETGs that were upregulated. We utilized tissue 

microarrays containing 24 instances of BC tissues and 

their corresponding neighboring tumor tissues. 

According to the findings, in 14 out of 24 cases (58.3%) 

ERBB2 expression was upregulated in BC tissues 

compared to the corresponding paracancerous tissues, 

while SDC1 expression was upregulated in 18 out of 24 

cases (75.0%). Additionally, 17 out of 24 cases (70.8%) 

exhibited increased expression. Supplementary Figure 1 

contains representative IHC images. 

 

The diagnostic significance of the upregulated ETGs 

 

Furthermore, we evaluated the possible diagnostic 

significance of the upregulated ETGs. The ROC curves 

for ERBB2, MMP14, and SDC1 are illustrated in Figure 

6A. When the threshold value was set at 7.007, the 

AUC for ERBB2’s ROC curve was 0.702, with a 

sensitivity of 87.6% and a specificity of 45.6%. When 

the threshold was set at 7.728, the AUC for MMP14’s 

ROC curve was 0.794, demonstrating a sensitivity of 

92.0% and a specificity of 66.1%. Significantly, SDC1 

exhibited the greatest AUC of 0.847 among the ETGs 

that were upregulated, demonstrating a sensitivity of 

85.0% and a specificity of 71.8% when the threshold 

was established at 7.538. Figure 6B demonstrates the 

validation of the diagnostic values of the upregulated 

ETGs using the GSE45666 dataset. 

 

ETGs clinical significance analysis  

 

Our study examined the association between ETGs 

expression and both clinical stages and PAM50 

subtypes of BC. As depicted in Figure 7A, in terms of 

clinical stages, the majority of ETGs exhibited no 

notable variations in expression across different stages. 

Nevertheless, the examination in Figure 7B exposed 

connections between ETGs manifestation and PAM50 

subtypes. In particular, the Basal-like subtype exhibited 

a tendency towards increased expression of EGFR and 

KIT in comparison to the other subtypes. Conversely, 

the Basal-like BC exhibited decreased expression of

 

 
 

Figure 3. The correlation between miR-221-3p and its ETGs expression (A). The pairwise correlation among the ETGs expression (B). 

https://www.proteinatlas.org/
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KDR. Luminal A subtype showed increased expression 

of IGF1 and FGF1. Furthermore, the levels of ERBB2 

and SDC1 were elevated in the HER2-enriched BC. In 

the Luminal subtypes, FGFR1 showed increased 

expression, while FGF2 showed elevated expression in 

both Luminal A and Basal-like BC compared to the 

remaining subtypes.  

Evaluation of the ETGs prognosis  

 

KM survival curves were generated to analyze the 

prognosis and the results are presented in Figure 8. It 

was observed that BC patients who had elevated levels 

of SDC1 expression experienced poorer DSS (HR = 

2.21, p = 0.001) and OS (HR = 1.60, p = 0.004). 

 

 
 

Figure 4. Differential expression of 10 ETGs in BC and normal adjacent tissues based on TCGA database (A) and validated by the 

GSE109169 dataset obtained from the GEO database (B) and cell lines (C). 
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Notably, a decrease in KIT expression was linked to a 

poorer DSS outcome (HR = 0.62, p = 0.028), although 

there was no significant statistical variation in OS. 

Moreover, increased MMP14 expression was associated 

with poorer DSS outcomes (HR = 1.57, p = 0.040), 

while no significant correlation was observed with OS. 

 

Immune infiltration analysis 

 

The results of the immune infiltration analysis are 

depicted in Figure 9A. We observed that several ETGs, 

particularly EGFR, IGF1, KDR, FGF2, and KIT, 

exhibited significant positive correlations with various 

immune cell infiltrations. Among them, IGF1 showed 

the strongest positive correlation with CD8+ T cells (r = 

0.444), cytotoxic cells (r = 0.366), dendritic cells (DCs) 

(r = 0.408), eosinophils (r = 0.491), immature DCs 

(iDCs) (r = 0.571), mast cells (r = 0.464), natural killer 

(NK) cells (r = 0.486), plasmacytoid DCs (pDCs) (r = 

0.425), T cells (r = 0.414), T effector memory (Tem) 

cells (r = 0.39), and T follicular helper (TFH) cells  

(r = 0.337) (all p < 0.001). On the other hand, a negative 

correlation between ETG expression and immune 

infiltration was mainly observed in ERBB2, which 

exhibited the strongest negative correlation with 

activated DCs (aDCs) (r = −0.226), B cells (r = −0.140),

 

 
 

Figure 5. Protein expression of 10 ETGs. 
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cytotoxic cells (r = −0.179), DCs (r = −0.129), 

macrophages (r = −0.174), NK CD56- cells (r = −0.166), 

T cells (r = −0.150), type 1 Th (Th1) cells (r = −0.243), 

and regulatory T (Treg) cells (r = −0.180) (all p < 0.001), 

as well as gamma delta T (Tgd) cells (r = −0.079, p = 

0.008). Moreover, as illustrated in Figure 9B, the miR-

221-3p expression exhibited noteworthy positive 

associations with the majority of immune cell categories, 

notably Th1 lymphocytes (r = 0.413, p < 0.001), aDCs  

(r = 0.386, p < 0.001), and macrophages (r = 0.382, p < 

0.001). In contrast, the expression of miR-221-3p showed 

a notable inverse association with eosinophils (r = −0.174, 

p < 0.001) and mast cells (r = −0.100, p = 0.001). 

 

Correlation with the ICGs expression 

 

The findings from Figure 10A indicated that most ETGs 

controlled by miR-221-3p displayed a positive 

association with ICGs expression. However, the inverse 

relationship primarily existed between ERBB2 and 

ICGs, especially LAG3 (r = −0.229), PDCD1LG2 (r = 

−0.159), TIGIT (r = −0.155), and PDCD1 (r = −0.109) 

(all p < 0.001). In addition, as depicted in Figure 10B, 

miR-221-3p displayed a notable association with eight 

ICGs, out of which it solely demonstrated an inverse 

correlation with SIGLEC15 (r = −0.170, p < 0.001). 

TMB and MSI analysis 

 

TMB has become a significant indicator for forecasting 

the effectiveness of immunotherapy and has been 

extensively researched in different forms of cancer. 

Figure 11A demonstrates a positive correlation between 

higher expression of IGF1 (p < 0.001), ERBB2 (p < 

0.001), KDR (p = 0.006), FGF2 (p = 0.002), KIT (p = 

0.035), FGFR1 (p < 0.001), and FGF1 (p = 0.005) with 

lower TMB scores. Furthermore, solely elevated SDC1 

expression exhibited a correlation with an increased 

TMB score (p = 0.014). Additionally, we examined the 

correlation between MSI scores and the levels of 

expression of ETGs, as shown in Figure 11B. The 

findings from our study indicated that higher MSI 

scores were linked to decreased expression of ERBB2 

and KDR (p = 0.036; p = 0.002, respectively). 

Moreover, individuals exhibiting elevated levels of 

miR-221-3p expression displayed a tendency towards 

increased MSI scores (p = 0.038) as depicted in Figure 

11C. 

 

Stemness analysis 

 

The mRNAsi scores were compared between groups 

with high expression and low expression. According to 

 

 
 

Figure 6. ROC curves show the diagnostic values of 3 upregulated ETGs (A) and are validated by the GSE109169 dataset (B). 
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Figure 12, there was a significant correlation (p < 0.001 

for all) between increased expression of ETGs and 

decreased mRNAsi scores. Conversely, elevated levels 

of miR-221-3p showed a tendency towards increased 

mRNAsi scores (p = 0.049). 

 

Drug sensitivity analysis 

 

The analysis shown in Figure 13A indicated a majority 

of ETGs displayed a negative association with the 

IC50 values. Notably, EGFR exhibited the most robust 

correlation with IC50 values for doxorubicin (r = 

−0.297), paclitaxel (r = −0.401), cisplatin (r = −0.560), 

gemcitabine (r = −0.285), and tamoxifen (r = −0.394) 

(all p < 0.001). Conversely, positive association 

predominantly existed between the IC50 values and 

both ERBB2 and FGFR1. Furthermore, Figure 13B 

revealed a negative correlation between miR-221-3p 

expression and seven drug IC50 values (all p < 0.001), 

except for lapatinib which showed a positive 

correlation with miR-221-3p expression (r = 0.206,  

p < 0.001). 

 

ETGs genetic alteration analysis 

 

The examination of genetic alteration of the ETGs 

depicted in Figure 14A indicated that amplification was 

the main type of genetic alteration observed in nine ETGs, 

except for IGF1, which had a genetic alteration rate of 

only 0.5%. Among the ten ETGs, ERBB2 had the highest 

genetic alteration rate, reaching 14%. However, there was 

no notable disparity in OS and DSS between the ETGs-

altered group and the unaltered group (Figure 14B, 14C). 

Furthermore, the OS of the unaltered group and the main 

ETGs-altered groups (EGFR, ERBB2, and FGFR1) were 

also analyzed (Figure 14D). The median OS in months 

(95% CI) for the unaltered group was 129.70, which was 

longer than that of the FGFR1-altered group (127.33) but 

shorter than the EGFR (140.28) and ERBB2-altered 

group (146.50). 

 

 
 

Figure 7. The association between 10 ETGs expression and pathologic stage (A) and PAM50 subtype (B). 
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Figure 8. KM survival curves analysis of 10 ETGs. 

 

 
 

Figure 9. Comparison of infiltration levels in 24 common immune cells between low and high expression groups of 10 ETGs (A) and miR-

221-3p (B). 



www.aging-us.com 334 AGING 

 
 

Figure 10. Correlation between ICGs and ETGs expression (A), and correlation between ICGs and miR-221-3p expression (B). 

 

 
 

Figure 11. The TMB scores (A) and MSI scores (B) between the high and low expression groups of 10 ETGs. The TMB and MSI scores 

between the high and low expression groups of miR-221-3p (C). 
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DISCUSSION 
 

Typically, early-stage BC patients have a positive 

prognosis and a high chance of being cured. 

Nevertheless, the poor prognosis of metastatic BC poses 

a considerable public health obstacle. Over the past few 

years, there has been an increasing fascination with the 

phenomenon of EMT as a pivotal process implicated in 

the spread of tumors [5]. The progression of BC is 

influenced by the participation of multiple miRNAs in 

the regulation of EMT. These miRNAs can have tumor-

suppressing or tumor-promoting effects and may serve 

as potential therapeutic targets [11, 26]. It has been 

demonstrated that miR-221-3p is a regulator of EMT in 

BC [14, 15, 27]. Using bioinformatic analyses, we 

identified ten genes associated with EMT that are 

targeted by miR-221-3p. Additionally, we delved into 

the potential mechanisms that regulate these genes. 

 

In this study, miR-221-3p expression was observed to 

be reduced when compared to the adjacent normal 

tissues. The validation of this finding was additionally 

confirmed in the MCF-7 cell line through qRT-PCR. 

However, prior research has consistently indicated 

elevated levels of miR-221-3p expression in blood and 

tissue samples from individuals with BC [28, 29]. These 

 

 
 

Figure 12. The mRNAsi scores between the high and low expression groups of 10 ETGs (A) and miR-221-3p (B). 

 

 
 

Figure 13. The correlation between the IC50 of 8 drugs and ETGs expression (A) and miR-221-3p expression (B). 
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discrepancies could be attributed to small sample sizes 

and regional differences in patient selection, mainly  

in Asian populations, which may have contributed  

to inconsistent results. Our research uncovered a 

noteworthy increase in the expression of miR-221-3p in 

MDA-MB-231 cells. Furthermore, the analysis of 

PAM50 subtypes indicated a considerably higher 

expression in the Basal-like subtype when compared to 

other subtypes of BC and normal tissues. These findings 

align with previous studies [14, 15, 30]. The ROC 

analysis indicated that miR-221-3p could potentially 

function as a distinctive biomarker for Basal-like BC. 

Moreover, the miR-221-3p’s clinical significance 

suggests that its elevated levels were inversely linked to 

the status of ER, PR, and HER2. Studies have shown 

that the excessive presence of miR-221-3p hinders the 

translation of ER. However, ER has the ability to 

repress the expression of miR-221-3p through the 

recruitment of nuclear receptor corepressor and thyroid 

hormone receptor [31]. The specific relationship

 

 
 

Figure 14. Analysis of genetic alteration of 10 ETGs (A). The KM survival curves show the OS and DSS between the ETGs altered group and 

the unaltered group (B, C). The KM survival curve shows the OS of the ETGs-unaltered group and the ETGs-altered groups of EGFR, ERBB2 
and FGFR1 (D). 
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between miR-221-3p and PR or HER2 remains unclear. 

Furthermore, our investigation uncovered the 

correlation between miR-221-3p expression and the 

infiltration of immune cells, along with ICGs, indicating 

its potential involvement in the regulation of the 

immune microenvironment in BC. Moreover, we 

discovered a direct association between the miR-221-3p 

expression and mRNAsi scores, suggesting that 

individuals with elevated levels of miR-221-3p in BC 

exhibited reduced levels of differentiation and increased 

cellular stemness.  

 

The pathway enrichment analysis in our research 

indicated that miR-221-3p has the potential to control 

the process of EMT through the MAPK signaling 

pathway. Abnormal activation of the p38 MAPK 

signaling pathway in BC cells has been demonstrated to 

promote EMT, one of the three primary components of 

the MAPK signaling pathway [32]. For our research, we 

identified ten key target genes related to EMT of miR-

221-3p for subsequent analysis. 

 

The epidermal growth factor receptor (EGFR), a 

transmembrane protein, is essential for controlling 

cellular processes like growth, development, and 

viability. MiR-221-3p has been recognized in recent 

research as a regulator of the EGFR signaling pathway 

that enhances EMT [33, 34]. Based on the findings of 

this research, miR-221-3p exhibits a strong association 

with EGFR, which emerging as the top core ETG, and 

there is also a positive correlation in their expression 

levels. The results indicate that the combination of miR-

221-3p and EGFR activation may collaborate in 

enhancing EMT in BC through the establishment of a 

beneficial cycle. According to reports, EGFR 

overexpression is found in 15-30% of cases of BC, and 

overexpression is observed in at least 50% of Basal-like 

BC [34, 35]. Furthermore, we noticed a substantial 

increase in the expression of EGFR in Basal-like BC in 

comparison to other subtypes, suggesting a potential 

correlation between its overabundance and the invasion 

of BC. Furthermore, our findings indicate a correlation 

between the elevated levels of EGFR and the presence 

of immune cell infiltrates and ICGs. This implies that 

individuals diagnosed with BC who exhibit high EGFR 

expression might experience greater advantages from 

immune checkpoint inhibitor therapy. In recent times, 

the treatment of Basal-like BC [36] has been effectively 

demonstrated by the emerging therapy of chimeric 

antigen receptor T-cell that specifically targets EGFR. 

EGFR seems to be a promising therapeutic focus for 

treating Basal-like BC, as indicated by these findings.  

 
Insulin-like growth factor 1 (IGF1) is crucial in the 

metabolic function of hepatocytes and the overall 

metabolism of the body [37]. Previous experimental 

findings demonstrated that IGF1 facilitates the 

activation of EMT through the MAPK and PI3K/AKT 

pathways, consequently promoting the metastasis of BC 

cells [38]. This study revealed that IGF1 exhibited the 

strongest positive association with the majority of 

immune cells, including CD8+ T cells, DCs, NK cells, 

and T cells. This suggests that IGF1 signaling 

molecules could potentially attract immune cells within 

the tumor microenvironment. Nevertheless, there is a 

scarcity of prior research on the impact of IGF1 

signaling on immune cells in BC. Consequently, further 

experiments are necessary to uncover its function to 

anti-tumor immunity.  

 

Erb-b2 receptor tyrosine kinase 2 (ERBB2), also 

known as HER2, is a receptor tyrosine kinase 

belonging to the EGFR family. It is amplified and 

overexpressed in over 20% of BC cases, leading to an 

unfavorable prognosis [39]. Multiple pieces of 

evidence indicate that ERBB2 has the ability to trigger 

EMT in BC cells by engaging with various pathways 

associated with stemness, leading to the development 

of resistance to trastuzumab [40]. Moreover, the 

excessive expression of ERBB2 in breast epithelial 

cells has the ability to trigger EMT and enhance 

oncogenic capacity, which can be suppressed by the 

concurrent presence of EGFR [41]. In our present 

investigation, we discovered an inverse association 

between the expression of ERBB2 and numerous 

infiltrations of immune cells, indicating that ERBB2 

may also play a role in suppressing the immune 

response in BC. The presence of ERBB2 was also 

discovered to have a positive correlation with the IC50 

values of chemotherapeutic medications, indicating 

that ERBB2 signaling could potentially be involved in 

the development of resistance to chemotherapy. 
 

Kinase inserts domain receptor (KDR), also called 

VEGFR2, is a receptor for vascular endothelial growth 

factor and plays a crucial role in regulating angiogenesis 

in BC. Overexpression of KDR is linked to the 

aggressive advancement of BC [42, 43]. Furthermore, 

there have been reports indicating a correlation between 

elevated KDR expression and the heightened expression 

of proteins associated with EMT in BC. However, the 

precise mechanism remains unknown [43]. Additionally, 

there were reports indicating that elevated KDR 

expression can facilitate the conversion of BC from 

Basal-like to Luminal phenotype and improve the 

responsiveness to Tamoxifen therapy, which is linked to 

a favorable prognosis [44]. In this study, we observed 

comparable results where the luminal-like subtype 

exhibited elevated levels of KDR expression compared 
to the Basal-like subtype. Furthermore, heightened 

KDR expression was linked to reduced responsiveness 

to various drugs, including Tamoxifen. The role of 
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KDR in BC remains controversial and deserves further 

exploration. 

 

As a member of the fibroblast growth factor (FGF) 

family, FGF2 is a growth factor derived from cancer-

associated fibroblasts that stimulate BC cell pro-

liferation and migration [45, 46]. Interestingly, another 

study found that FGF2 can reverse the TGF-β signaling 

pathway to suppress the growth and migration of BC 

cells [47]. Although FGF2 has been identified as an 

EMT activator in the progression of cancers [48, 49], 

studies about its EMT-related regulatory mechanisms in 

BC are limited. Our finding reveals for the first time 

that FGF2 might recruit immune cells and enhance the 

drug sensitivity to exert an anti-tumor effect in BC. 

 

The KIT proto-oncogene receptor tyrosine kinase (KIT) 

gene codes for the cluster of differentiation 117, a 

receptor tyrosine kinase responsible for controlling 

cellular growth and viability [50]. The expression and 

function of KIT in BC have been a topic of considerable 

controversy. On the one hand, prior research has 

indicated that the occurrence of KIT expression in 

patients with Basal-like BC is higher compared to 

patients with other subtypes, and an elevated KIT 

expression level is linked to the advancement of tumors 

[51, 52]. In this research, we discovered a similar result 

indicating that the level of KIT expression is higher in 

Basal-like BC compared to other subcategories. 

Conversely, certain studies have indicated that the 

absence of KIT is detected while breast cancer is 

progressing and is associated with the occurrence of 

malignancy [53, 54]. In line with these results, our study 

revealed a decrease in KIT expression in BC tissues 

compared to normal tissues. Additionally, patients with 

elevated KIT expression had a longer DSS period. 

Furthermore, it was discovered that increased KIT 

expression is associated with elevated immune 

infiltration and expression of ICGs, as well as decreased 

drug sensitivity and stemness. This suggests that BC 

patients with higher levels of KIT expression are more 

likely to respond well to treatment and have a favorable 

prognosis. The possible reason for the controversial role 

of KIT in BC could be explained by tissue specificity 

[53]. KIT might mainly function as a tumor suppressor 

gene in BC but promote the malignant transformation in 

the Basal-like subtype, which deserves further in-depth 

studies. 

 

As a member of the fibroblast growth factor receptor 

(FGFR) family, FGFR1 shows a high affinity for FGF2 

to stimulate the growth and progression of BC cells [45]. 

FGFR1 was recently demonstrated as an EMT marker 
and its interaction with β3 integrin is required to the 

FGF2-facilitate metastatic outgrowth in BC [55]. The 

co-expression between FGFR1 and FGF2 was also 

found in this study. Additionally, it was reported that 

FGFR1 amplification mainly existed in the Luminal 

subtype and is related to adverse prognosis [56, 57]. We 

found similar outcomes in this study, the amplification 

rate of FGFR1 in the TCGA dataset was up to 13%, and 

the median months overall of the FGFR1 altered BC 

patients was 127.33, shorter than the unaltered group. 

Hence, it is imperative to conduct additional research on 

FGFR1 as a plausible target for therapeutic intervention 

in BC. 

 

Syndecan-1 (SDC1), a heparan sulfate proteoglycan, is 

part of the syndecan family and is crucial in the 

advancement of cancer [58]. In this study, we 

discovered that the SDC1 demonstrates a greater level 

of expression in BC, particularly in the HER2-enriched 

subtype. Additionally, BC patients with elevated 

SDC1 levels are more likely to experience a negative 

prognosis. These findings align with previous 

investigations [59–61]. Furthermore, the AUC value of 

the diagnostic ROC curve is 0.847, indicating that 

SDC1 has the potential to be a biomarker for the 

diagnosis of BC, with a sensitivity of 85.0% and 

specificity of 71.8%.  

 

FGF1 is part of the FGF family, known for its role in 

promoting angiogenesis [62]. It was observed that FGF1 

expression in mammary epithelial cells can augment 

EMT induced by TGF-β1 [63], which might be crucial 

to the occurrence of BC. In line with a prior 

investigation, our findings indicate that the levels of 

FGF1 in BC tissues are comparatively reduced 

compared to those in normal breast tissues, implying 

that FGF1 primarily functions as a differentiating agent 

in normal tissues rather than a factor promoting growth. 

Nevertheless, the involvement of FGF1 expression in 

BC has been documented in the invasion and spread of 

BC. Additionally, the antibody scFv1C9, specific to 

FGF1, has demonstrated its ability to decrease the 

density of microvessels in BC tissues and hinder the 

lung metastasis of BC [64–66]. These findings highlight 

the potential of IGF1 as a target for effective BC 

treatment. 

 

As a member of the matrix metalloproteinase (MMP) 

family, MMP14 is overexpressed in BC tissues and 

participates in the pathogenesis and metastasis of BC 

[67]. Correlative evidence suggests that high MMP14 

expression in cancers is significantly correlated with 

adverse prognosis [68–70], and it was observed that BC 

patients with high MMP14 expression have a shorter 

DSS. It was the first time we found that MMP14 

exhibited a high correlation with immune cells, ICGs 
expression, and drug sensitivity in BC. Additionally, by 

the ROC analysis, we found that MMP14 might be a 

diagnostic biomarker for BC. It has been demonstrated 
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that the MMP family is crucial in regulating the EMT 

process in cancers [71, 72], however, the EMT-

associated mechanism of MMP14 involved in BC has 

not been reported, we supposed that miR-221-3p might 

upregulate the MMP14 expression in BC to promote 

EMT, which deserves our further study. 

 

Further validation is necessary for the present study,  

as it primarily relied on data acquired from the TCGA 

database. To overcome these limitations, it is 

recommended to conduct the luciferase reporter assay 

as an initial measure in order to confirm the correlation 

between miR-221-3p and its ETGs. Secondly, further 

research should be conducted on the EMT-regulated 

mechanisms associated with ETGs. Moreover, it is 

imperative to explore the potential of employing ETGs 

as targets for therapy in the upcoming time. The results 

of this study have implications for future research on 

the EMT mechanism of BC, potentially offering 

effective treatment approaches for individuals afflicted 

by the condition. 

 

CONCLUSION 
 

To summarize, our research revealed that miR-221-3p is 

upregulated in Basal-like BC, functioning as a 

distinctive indicator for differentiating it from other 

subtypes of BC. Ten core ETGs of miR-221-3p were 

identified, and SDC1 and MMP14 could potentially 

function as valuable indicators for the diagnosis of BC 

and the prediction of unfavorable prognosis. The 

comprehensive analysis of these ten ETGs indicates 

their possible involvement in the tumor micro-

environment during the development of BC. These 

findings highlight the promising therapeutic targets for 

BC patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 

Supplementary Figure 1. Representative images of 3 upregulated ETGs in BC tissues and their matched paracancerous 
tissues. Original magnifications 200×.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. The potential target genes of miR-222-3p obtained from the miRWalk 3.0 (n = 2342). 
 

Supplementary Table 2. EMT-related genes obtained from the dbEMT 2.0 database (n = 1184). 
 

Supplementary Table 3. Differentially expressed genes (n = 2401). 
 

Supplementary Table 4. GO and KEGG pathway enrichment analysis of 35 ETGs of miR-221-3p. 

Ontology ID Description 
Gene 

Ratio 
BgRatio pvalue p.adjust qvalue geneID Count 

BP GO:0050679 

positive 

regulation of 

epithelial cell 

proliferation 

10/35 206/18670 3.10e-12 5.84e-09 3.35e-09 

EGFR/ERBB2/FGF1/FGF2/ 

FGFR1/IGF1/KDR/PRKCA/ 

CYP7B1/ESRP2 

10 

BP GO:0050673 
epithelial cell 

proliferation 
12/35 434/18670 1.10e-11 1.04e-08 5.94e-09 

EGFR/ERBB2/FGF1/FGF2/ 

FGFR1/IGF1/KDR/KIT/ 

MMP14/PRKCA/CYP7B1/ 

ESRP2 

12 

BP GO:0061138 

morphogenesis 

of a branching 

epithelium 

9/35 182/18670 3.70e-11 1.84e-08 1.05e-08 

FGF1/FGF2/FGFR1/ 

MMP14/TGFBR2/SEMA3E/ 

SPRY1/LEF1/ESRP2 

9 

CC GO:0009925 
basal plasma 

membrane 
2/35 34/19717 0.002 0.067 0.057 EGFR/ERBB2 2 

CC GO:0045121 membrane raft 4/35 315/19717 0.002 0.067 0.057 
EGFR/KDR/TGFBR2/ 

CAVIN1 
4 

CC GO:0098857 
membrane 

microdomain 
4/35 316/19717 0.002 0.067 0.057 

EGFR/KDR/TGFBR2/ 

CAVIN1 
4 

MF GO:0019199 

transmembrane 

receptor protein 

kinase activity 

8/35 79/17697 2.34e-12 2.81e-10 1.82e-10 

EGFR/ERBB2/FGFR1/ 

KDR/KIT/NTRK3/ 

TGFBR2/CRIM1 

8 

MF GO:0004714 

transmembrane 

receptor protein 

tyrosine kinase 

activity 

7/35 62/17697 2.84e-11 1.71e-09 1.11e-09 
EGFR/ERBB2/FGFR1/ 

KDR/KIT/NTRK3/CRIM1 
7 

MF GO:0005178 integrin binding 8/35 132/17697 1.54e-10 6.15e-09 3.99e-09 

EGFR/FGF1/FGF2/IGF1/ 

KDR/MMP14/PRKCA/ 

FBLN5 

8 

KEGG hsa04010 

MAPK 

signaling 

pathway 

11/22 294/8076 6.11e-11 7.88e-09 5.27e-09 

EGFR/ERBB2/FGF1/FGF2/ 

FGFR1/IGF1/KDR/KIT/ 

PRKCA/TGFBR2/PDGFD 

11 

KEGG hsa01521 

EGFR tyrosine 

kinase inhibitor 

resistance 

7/22 79/8076 9.91e-10 5.48e-08 3.67e-08 
EGFR/ERBB2/FGF2/IGF1/ 

KDR/PRKCA/PDGFD 
7 

KEGG hsa05205 
Proteoglycans 

in cancer 
9/22 205/8076 1.37e-09 5.48e-08 3.67e-08 

EGFR/ERBB2/FGF2/FGFR1/ 

IGF1/KDR/PRKCA/SDC1/ 

TWIST2 

9 

 

 

Supplementary Table 5. URL that links directly to the HPA database for obtaining the IHC images and 
information. 

Gene Tissue type URL 

EGFR Normal tissue https://images.proteinatlas.org/18530/41191_B_2_4.jpg  

EGFR Breast cancer tissue https://images.proteinatlas.org/18530/41188_A_6_7.jpg  

IGF1 Normal tissue https://images.proteinatlas.org/48946/110992_B_2_4.jpg  

https://images.proteinatlas.org/18530/41191_B_2_4.jpg
https://images.proteinatlas.org/18530/41188_A_6_7.jpg
https://images.proteinatlas.org/48946/110992_B_2_4.jpg
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IGF1 Breast cancer tissue https://images.proteinatlas.org/48946/110989_A_6_8.jpg  

ERBB2 Normal tissue https://images.proteinatlas.org/1383/4682_B_2_4.jpg  

ERBB2 Breast cancer tissue https://images.proteinatlas.org/1383/4496_A_5_6.jpg  

KDR Normal tissue https://images.proteinatlas.org/4028/11467_B_2_4.jpg  

KDR Breast cancer tissue https://images.proteinatlas.org/4028/12048_A_4_1.jpg  

FGF2 Normal tissue https://images.proteinatlas.org/65502/167321_B_1_4.jpg  

FGF2 Breast cancer tissue https://images.proteinatlas.org/125/2185_A_5_5.jpg  

KIT Normal tissue https://images.proteinatlas.org/72867/156398_B_2_4.jpg  

KIT Breast cancer tissue https://images.proteinatlas.org/72867/156394_A_5_3.jpg  

FGFR1 Normal tissue https://images.proteinatlas.org/56402/136145_B_2_4.jpg  

FGFR1 Breast cancer tissue https://images.proteinatlas.org/56402/136148_A_4_8.jpg  

SDC1 Normal tissue https://images.proteinatlas.org/67477/168250_B_1_4.jpg  

SDC1 Breast cancer tissue https://images.proteinatlas.org/6185/40535_A_5_4.jpg  

FGF1 Normal tissue https://images.proteinatlas.org/17519/39215_B_2_4.jpg  

FGF1 Breast cancer tissue https://images.proteinatlas.org/17519/39212_A_5_2.jpg  

MMP14 Normal tissue https://images.proteinatlas.org/9918/24805_B_1_4.jpg  

MMP14 Breast cancer tissue https://images.proteinatlas.org/9918/24802_A_6_2.jpg  

 

 

https://images.proteinatlas.org/48946/110989_A_6_8.jpg
https://images.proteinatlas.org/1383/4682_B_2_4.jpg
https://images.proteinatlas.org/1383/4496_A_5_6.jpg
https://images.proteinatlas.org/4028/11467_B_2_4.jpg
https://images.proteinatlas.org/4028/12048_A_4_1.jpg
https://images.proteinatlas.org/65502/167321_B_1_4.jpg
https://images.proteinatlas.org/125/2185_A_5_5.jpg
https://images.proteinatlas.org/72867/156398_B_2_4.jpg
https://images.proteinatlas.org/72867/156394_A_5_3.jpg
https://images.proteinatlas.org/56402/136145_B_2_4.jpg
https://images.proteinatlas.org/56402/136148_A_4_8.jpg
https://images.proteinatlas.org/67477/168250_B_1_4.jpg
https://images.proteinatlas.org/6185/40535_A_5_4.jpg
https://images.proteinatlas.org/17519/39215_B_2_4.jpg
https://images.proteinatlas.org/17519/39212_A_5_2.jpg
https://images.proteinatlas.org/9918/24805_B_1_4.jpg
https://images.proteinatlas.org/9918/24802_A_6_2.jpg

