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INTRODUCTION 
 

Ischemic stroke accounts for more than 80% of clinical 

strokes worldwide [1]. It kills millions of people each 

year, leaving most survivors with permanent disability, 

placing a huge burden on individuals and society [2]. 

Therefore, early diagnosis and treatment for IS will be a 

top priority in modern healthcare. A review of the 

development of stroke reveals that disruption of the 

blood-brain barrier may lead to a disturbance of the 

central immune microenvironment, which may invite 

more inflammatory cells to infiltrate and cause a more 

www.aging-us.com AGING 2023, Vol. 15, No. 24 

Research Paper 

Investigating the ID3/SLC22A4 as immune-related signatures in 
ischemic stroke 
 

Dading Lu1,2,3, Heng Cai4, Yugang Li1, Wenyuan Chang2, Xiu Liu5, Qiwei Dai4, Wanning Yu4, 
Wangli Chen4, Guomin Qiao4, Haojie Xie4, Xiong Xiao4, Zhiqing Li1,2,3 
 
1Department of Stroke Center, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China 
2Department of Neurology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China 
3Department of Neurosurgery, The First Hospital of China Medical University, Heping, Shenyang, Liaoning, China 
4Department of Neurosurgery, Shengjing Hospital, Shenyang, China Medical University, Heping, Shenyang, 
China  
5The First Clinical College, China Medical University, Shenbei, Shenyang, China 
 
Correspondence to: Zhiqing Li; email: dr_lizhiqing@163.com, https://orcid.org/0000-0003-3579-1271  
Keywords: ischemic stroke, ID3, SLC22A4, bioinformation, immune 
Received: August 3, 2023 Accepted: November 3, 2023  Published: December 14, 2023 
 
Copyright: © 2023 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Background: Ischemic stroke (IS) is a fearful disease that can cause a variety of immune events. Nevertheless, 
precise immune-related mechanisms have yet to be systematically elucidated. This study aimed to identify 
immune-related signatures using machine learning and to validate them with animal experiments and single 
cell analysis. 
Methods: In this study, we screened 24 differentially expressed genes (DEGs) while identifying immune-related 
signatures that may play a key role in IS development through a comprehensive strategy between least 
absolute shrinkage and selection operation (LASSO) regression, support vector machine (SVM) and immune-
related genes. In addition, we explored immune infiltration using the CIBERSORT algorithm. Finally, we 
performed validation in mouse brain tissue and single cell analysis. 
Results: We identified 24 DEGs for follow-up analysis. ID3 and SLC22A4 were finally identified as the better 
immune-related signatures through a comprehensive strategy among DEGs, LASSO, SVM and immune-related 
genes. RT-qPCR, western blot, and immunofluorescence revealed a significant decrease in ID3 and a significant 
increase in SLC22A4 in the middle cerebral artery occlusion group. Single cell analysis revealed that ID3 was 
mainly concentrated in endothelial_2 cells and SLC22A4 in astrocytes in the MCAO group. A CIBERSORT finds 
significantly altered levels of immune infiltration in IS patients. 
Conclusions: This study focused on immune-related signatures after stroke and ID3 and SLC22A4 may be new 
therapeutic targets to promote functional recovery after stroke. Furthermore, the association of ID3 and 
SLC22A4 with immune cells may be a new direction for post-stroke immunotherapy. 
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intense immune response, which may further aggravate 

the condition [3]. Now, immunomodulation has been 

shown to effectively delay ischemic stroke and promote 

neurological recovery [4]. This again emphasises the 

importance of maintaining the balance of the immune 

microenvironment for the protection of the central 

nervous system.  

 

Therefore, to better guide therapeutic interventions, 

such as drug development and repurposing, it is 

necessary to deepen our understanding about immune 

mechanisms associated with stroke to demonstrate 

target genes and pathways better [5]. Analysis of 

Disease-related gene expression or transcriptomic data 

can yield valuable insights. In this process, in silico, 

gene expression data can identify heterogeneous cell 

populations in a sample, including immune activating 

subpopulations [6]. Furthermore, with the constant 

iteration of gene microarray technology, machine 

learning has become increasingly involved in modern 

biomedicine, specifically, whether it is analysing huge 

amounts of gene expression profiles or finding relevant 

biological features, machine learning is well equipped 

to do and accomplish this [7]. 

 
Now there have been studies applying machine learning 

to the biomedical field [8–10], however, while we 

rejoice in the medical advances brought about by 

technology, we have to admit that there is a certain 

degree of limitation in the existing studies. First, some 

studies only incorporate a single dataset, which will 

inevitably introduce a certain amount of data bias. 

Second, there are multiple algorithms in machine 

learning, and some studies use only a single algorithm, 

which may lead to a certain amount of error. Finally, 

some studies only perform analytical predictions with- 

out corresponding experimental validation, which will 

lead us to not know the accuracy of the prediction in 

time. 

 
In this study, we used multiple datasets  

including GSE58294 and GSE22255 as the discovery 

set, GSE16561, GSE37587 and GSE110993 as the 

validation set, and GSE174574 for further single-cell 

level validation. The ceRNA network associated with 

DEGs was further constructed using online databases 

and tools such as the R package. Meanwhile, DEGs 

were enriched and analysed using multiple methods 

such as GO, KEGG and GSEA to reveal underlying 

biological processes and pathways. To further inves-

tigate immune-related signatures, the study employed  

a comprehensive strategy including DEGs, LASSO 

regression model, SVM, and immune-related genes to 

identify better immune-related signatures and confirm 

their ability to distinguish IS from controls using ROC. 

We also used a mouse model of middle cerebral artery 

occlusion for corresponding RT-qPCR, western blot, 

immunofluorescence validation, and the CIBERSORT 

technique to study immune infiltration features, thus 

further investigating the role of immunity in the  

stroke process. Additionally, the study used single cell 

analysis techniques to reveal precise transcriptional 

changes during disease progression. Taken together, this 

research may trigger new insights into the pathogenesis 

of stroke, thus further enriching the understanding  

of stroke disease mechanisms and thus providing a 

theoretical basis for the development of new therapeutic 

approaches. 

 

MATERIALS AND METHODS 
 

Data sources and preprocessing 

 

Datasets (GSE58294; GSE22255; GSE16561; GSE37587; 

GSE110993; GSE174574) were downloaded from Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih. 

gov/geo/). It’s worth noting that GSE58294, GSE22255, 

GSE16561, GSE37587 are expression profiling datasets 

by array. GSE110993 is RNA profiling by high through-

put sequencing. GSE174574 is expression profiling by 

high throughput sequencing. As discovery datasets, 

GSE58294 and GSE22255 are part of the same GPL570 

array platform (HG-U133_Plus_2) Affymetrix Human 

Genome U133 Plus 2.0. With GSE58294 contains a 

sample of 69 IS patients and 23 controls [11]. GSE 

22255 contains 20 IS samples and 20 gender and age 

matched samples [12]. As validation datasets, GSE16561 

and GSE37587 are part of the GPL6883 (Illumina 

HumanRef-8 v3.0 expression beadchip), with GSE16561 

containing 39 IS patient samples and 24 healthy controls 

[13], GSE37587 containing 68 IS patient samples [14]. 

As validation datasets, GSE110993 are part of the 

GPL15456 (Illumina HiScanSQ), with totally 20 ische-

mic stroke patients and 20 matched healthy controls 

[15]. As validation datasets, GSE174574 are part of the 

GPL21103 (Illumina HiSeq 4000) with 3 mouses middle 

cerebral artery occlusion samples and 3 sham samples 

[16]. For more detailed information on the six datasets, 

please refer to Table 1, as all datasets are publicly 

available, ethics committee approval is not required. 

The data source for this study was primarily from the 

GEO database and the data was analysed using R 

software (version 4.2.2). Before combining the samples, 

we carried out sufficient quality control. Probe level 

data were normalised and background corrected to gene 

expression values, using the average expression value  

of multiple probes in a gene as the gene expression 

value. We used Combat functions from the SVA and  

R packages to eliminate batch differences [17]. The 

GPL570-based data were grouped to include 89 stroke 

patients and 43 healthy controls, while the GPL6883-

based data included 107 stroke patients and 24 healthy 
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Table 1. Basic information of gene expression profiling. 

GEO Accession ID Platform Examples Number of cases Number of controls Year 

Discovery set      

GSE58294 GPL570 Blood samples (92) 69 ischemic stroke patients 23 controls 2014 

GSE22255 GPL570 
Peripheral blood mononuclear 

cells (40) 
20 ischemic stroke patients 

20 sex- and age- 

matched controls 
2011 

Validation set      

GSE16561 GPL6883 Blood samples (63) 39 ischemic stroke patients 24 healthy controls 2010 

GSE37587 GPL6883 Blood samples (68) 68 ischemic stroke patients   2015 

GSE110993 GPL15456 Plasma samples (40) 20 ischemic stroke patients 
20 matched healthy 

control subjects 
2018 

GSE174574 GPL21103 Brain tissues of mice (6) 
3 middle cerebral artery 

occlusion samples 
3 sham samples 2021 

 

controls. The principal component analysis (PCA) 

method allowed us to observe the distribution patterns 

between the disease and control samples, further 

analysing the data and providing a more reliable data 

base for the study. We also placed the corrected before 

and after box plots and UMAP plots in Supplementary 

Figure 1. 

 
DEmRNAs, DEmiRNAs, and DElncRNAs identified 

in IS 

 
For difference analysis, we used the Linear  

Model for Microarray Data (LIMMA) method  

in the R′Bioconductor package after normalization  

and log2 conversion. A gene with a P-value of  

0.05 and a Fold change of 1.5 was considered differen- 

tially expressed. In the data prediction process, the  

GSE58294, GSE22255 datasets were used to recognize 

differentially expressed lncRNAs (DElncRNAs) and the 

Diana database (DIANA-LncBase - Database Commons 

(cncb.ac.cn)) was used to predict potential miRNAs 

corresponding to DElncRNAs. In the target prediction 

process, the “multiMiR” package (v1.16.0) [18] is used 

to acquire downstream target mRNAs of the miRNAs 

and find the overlap with the DEmRNAs as the final 

DEGs. For data visualisation, in R, heat maps and 

volcano maps can be generated using the “pheatmap” 

package (v1.0.12), while the use of Venn diagrams can 

better reveal the prediction process. DEmiRNAs are 

identified in GSE110993. 

 
IS triple ceRNA network construction 

 
We constructed an IS-based triple ceRNA network 

designed to reveal potential regulatory mechanisms 

between lncRNAs [19, 20], miRNAs and mRNAs; to 
build this network, we used the online database Diana 

and R package (multiMiR) to integrate lncRNA-miRNA 

pairs and miRNA-mRNA pairs and combine them to 

form an integrated ceRNA network structure. To better 

represent this network, we used cytoscape (v3.8.0)  

[21] for visualisation, showing the topology of the 

ceRNA network, key nodes and other information, thus 

contributing to a better understanding of the network 

and the complexity of the internal structure. 

 
GO, KEGG and GSEA enrichment analyses 

 
In this study, we used “ggplot2 (v3.3.0)”, 

“clusterProfiler (v3.14.3)”, “org.hs.eg.db (v3.10.0)”  

and “enrichplot (v1.6.1)” in R software for GO, KEGG 

and GSEA pathway enrichment analysis. In addition 

[22, 23], we set thresholds of P<0.05 and Q<0.05 to 

screen against significantly enriched GO and KEGG 

entries. A GSEA approach [24] was used, based on the 

KEGG database for the analysis. During the enrichment 

analysis, we used the Normalised Enrichment Scale 

(NES) [25] to identify pathways that were up- or  

down-regulated in stroke samples compared to normal 

subjects. These results were ultimately used to present 

GSEA enrichment maps. 

 
Selection of the better DEIRG 

 
LASSO regression [26] is a method for dimensionality 

reduction in the analysis of large-scale gene expression 

data to avoid overfitting. The method removes noisy 

features and retains meaningful gene features by 

introducing a penalty parameter (λ). To select the best 

penalty parameter, we use a five-fold cross-validation 

method for optimisation. In addition to this, the R 

package “glmnet (v4.1-2)” was used, a tool that 

removes genes that may have overfit the model and 

further optimises model performance. In a support 

vector machine (SVM), we set the parameters: 
kernel=“radial”, type=“eps-regression”, cross=5 to find 

the best variable [27]. In addition, 17,664 immune-

related genes (See Supplementary Table 10 for more 
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details) have been collated from the GeneCards web-

site (v5.7, https://www.genecards.org), which can be 

effectively used for immune response-related analysis. 

Therefore, the LASSO regression model, SVM, DEGs, 

and immune-related gene sets will be evaluated together 

to find better differentially expressed immune response-

related signatures (DEIRS) [28, 29]. 

 
Discriminant ability evaluation and validation 

 

To assess the ability of DEIRS to discriminate between 

stroke and healthy populations, we used the “ROCR 

(v1.0-11)” R package to plot ROC curves and visual- 

ize the AUC area (ID3 AUC=0.893, 95% CI=0.819- 

0.954; SLC22A4 AUC=0.891, 95% CI=0.819-0.951) of 

DEIRS in the discovery set. In addition, we validated 

this performance (ID3 AUC=0.898, CI=0.830-0.951; 

SLC22A4 AUC=0.940, 95%=0.874-0.988) using the 

validation set. Also, to test the accuracy of the LASSO 

model, we plotted ROC curves to assess its precision in 

the discovery set (AUC=0.955, 95% CI=0.901-0.992) 

and validation set (AUC=0.813, 95% CI=0.737-0.889). 

In addition, to test the accuracy of the SVM model, we 

also plotted ROC curves to assess its accuracy in the 

discovery set. 

 
Analysis of immune infiltration 

 

CIBERSORT is a commonly used deconvolution 

algorithm that translates gene expression matrices into 

the composition of infiltrating immune cells [6]. We 

performed a CIBERSORT evaluation on the discovery 

dataset. In this study, the infiltrating immune cell 

composition of each sample was assessed by the 

CIBERSORT algorithm. The immune cells covered 22 

types, including T cells, B cells, NK cells, monocytes, 

macrophages, dendritic cells, mast cells, eosinophils, 

and neutrophils. The scores of all 22 immune cell types 

were assessed in each sample sum to one, meaning  

that the relative proportions of each cell type can be 

compared and counted against each other. 

 

Animals and middle cerebral artery occlusion 

(MCAO) in vivo model 

 

We purchased adult male C57NL/6 mice from  

SPF Biotechnology Co., Ltd. (Beijing, China). In 

Tianjin, China, the mice were housed in the Animal 

Experimental Center of the Fifth Central Hospital at a 

temperature of 20–25° C and humidity of 50% ± 5%. 

Firstly, a longitudinal incision of approximately 1 cm in 

length was made between the sternum and mandible of 

the mouse to allow for surgical manipulation through a 

stereomicroscope (Olympus Corporation, Tokyo, Japan). 

Next, we isolated the right common carotid artery  

and identified the external and internal carotids further. 

We then ligated the distal and proximal ends of the 

external carotid artery. Lastly, a modified nylon thread 

(silicone tip length 3-4 mm, silicone tip diameter 0.22-

0.23 mm, thread body diameter 0.1 mm, total thread 

length 30 mm) was inserted from the carotid artery into 

the middle cerebral artery (length 10 ± 0.5 mm) and 

secured with surgical thread [30]. We divided all mice 

into MCAO and Sham groups, each with six mice. 

 
Immunofluorescent staining 

 

The animals were anaesthetised and killed 24 h after the 

MCAO surgery. Brain tissue was submerged in 4% 

paraformaldehyde solution, fixed at 4° C for 24 h, 

dehydrated and paraffin-embedded. The brain was 

continuously sectioned (4 µm coronal section) at 1.0 to 

5.0 mm posterior to bregma. 1 h in an oven at 80° C. 

Dewaxing with xylene for 5 min, 3 times. Gradient 

alcohol dehydration (anhydrous ethanol, 95% ethanol, 

75%, 50%). Immersion in ultrapure water for 2 min. 

Soak in tap water for 2 min. Antigen repair by sodium 

citrate, autoclave heat repair for 5 min. Cooled for 1 h 

to room temperature. 0.3% Triton X-100 penetration  

for 10 min. PBST rinse for 5 min, 3 times. 10% BSA 

(No. A8010, Solarbio, China) blocked for 1 h. PBS 

rinse for 5 min, 3 times. Overnight incubation with 

primary antibody (ID3, No. MG750811, 1:500, mouse, 

Abmart, China; SLC22A4, No.TD9724, 1:500, rabbit, 

Abmart; NeuN, ab177487, 1:500, rabbit, Abcam, UK; 

Nestin, ab5320, 1:500, mouse, Abcam). Incubation with 

fluorescent secondary antibody for 1 h the next day. 

(Alexa Fluor® 488, ab150113, 1:500, Goat Anti-

Mouse, Abcam; Alexa Fluor® 594, ab150080, 1:500, 

Goat Anti-Rabbit, Abcam). Sealing with a DAPI-

containing sealing solution. Under a confocal laser 

scanning microscope (Olympus, Tokyo, Japan), slides 

were observed. Imaging and analysis are carried out 

using ZEN software. 

 
Real time quantitative PCR 

 

RNAiso Plus (No. SD1412, Takara, Japan) was used to 

isolate total RNA from frozen brain tissue, followed by 

reverse transcription kits (No. AT351, TransGen Biotech, 

China) to synthesize cDNA. Next, the synthesised cDNA 

was amplified using a two-step qRT-PCR kit (AQ202, 

TransGen Biotech) to detect the gene of interest. Finally, 

to eliminate variability between samples, Using the 2-

ΔΔC method, gene expression levels were normalised  

to U6. In Supplementary Table 1, primers are listed. 

 

Western blot 

 

Frozen brain tissue was lysed with RIPA working 

solution mixed with protease inhibitors (No. ST505, 

Beyotime, China). Centrifuge for 15 minutes at 14,000 

https://www.genecards.org/
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rpm (4° C). The supernatant was collected, a small por-

tion was taken, and the concentration was determined 

using the BCA kit. (No. P0012S, Beyotime, China). 

After mixing with 4x loading buffer, the remaining 

protein was boiled for 10 minutes. Electrophoresed on 

10%-12% polyacrylamide gels, then transferred the 

protein to a 0.45 um PVDF membrane. Using 5% skim 

milk powder (No. BS102-100g, Biosharp, China) to 

block the membrane for 1 h. Then the membrane was 

incubated with ID3 antibody (No. MG750811, 1:1000, 

mouse, Abmart), SLC22A4 antibody (No. TD9724, 

1:1000, rabbit, Abmart) for overnight, using anti-

GAPDH antibody (No. ab8245, 1:10000, mouse, Abcam) 

as an internal loading control. Recovered the primary 

antibody, wash with TBST for 15 minutes three  

times. Then incubated the secondary antibody (room 

temperature) for 1 h. Recovered the secondary anti-

body. Washed the membrane with TBST for 15 minutes 

three times. Finally, add ECL exposure solution  

(No. P0018S, Beyotime, China) for exposure. Using 

ImageJ software (v1.46r, National Institutes of Health, 

USA), we determined the relative levels of protein 

expression. 

 
Single-cell analyses 

 

Single-cell sequencing data were obtained from 

GSE174574 on the GEO website [16]. 3 brain cortex 

samples of a control group and 3 samples under 24- 

hour MCAO condition were used to generate data. 

Seurat (4.3.0) and R (4.2.2) were used to import the 

original data. Standard quality control and norma-

lization procedures were applied to all of these data.  

We removed low-quality cells (<200 genes/cell and 

>10% mitochondrial genes). The Harmony algorithm 

was used to integrate datasets from 6 samples in the 

entire database. To identify highly variable genes,  

we used the Seurat function “FindVariableFeatures”.  

To integrate the data, we chose the top 2000 genes 

exhibiting the greatest cell-to-cell variation. For data 

scaling and principal component analysis (PCA), the 

dataset under-went processing using the “ScaleData” 

and “RunPCA” functions, respectively. Using the 

“FindNeighbors” and “FindClusters” functions, sub-

sequent auto-clustering analyses were performed. UMAP 

scatter plots were utilized to visualize the resulting 

clustering outcomes. 

 
Statistical analyses 

 

We performed statistical analyses using R software and 

GraphPad Prism software, setting the conditions for 

differential expression analysis to p < 0.05, and |log2 

fold change (FC)| > 0.585. We refer to expressions  

with log2FC greater than 0.585 as up-regulated 

expressions, and expressions with log2FC less than 

0.585 as down-regulated expressions. We used t-test to 

analyze normally distributed variables and used  

the Mann-Whitney U-test to evaluate nonnormally 

distributed variables. We showed data as mean and 

standard error (SEM). When the p-value is less than 

0.05, we consider this to be a sign of a significant 

difference. 

 

Data availability statement 

 

The data that support the findings of this study are 

available in GEO database, reference number GSE58294, 

GSE22255, GSE16561, GSE37587, GSE110993 and 

GSE174574. The datasets during and/or analyzed during 

the current study are available from the corresponding 

author on reasonable request. 

 

RESULTS 
 

Data pre-processing 

 

PCA scatter plots show two distinct distribution 

patterns between ischemic stroke patients and healthy 

controls after batch correction with ComBat. As 

shown in the Supplementary Figure 1, samples from 

ischemic stroke patients were mostly distributed on 

the left-hand side of the plot, while samples from 

healthy controls were predominantly distributed to the 

right. The six downloaded GEO datasets are shown in 

Table 1, where GSE58294 and GSE22255 were 

combined as the discovery dataset comprising 89 IS 

patients and 43 healthy controls, and GSE16561 and 

GSE37587 were combined as the validation dataset 

comprising 107 IS patients and 24 healthy controls. 

GSE110993 was the same validation dataset 

comprising 20 IS patients and 20 matched healthy 

control subjects. GSE174574 for single cell level 

analysis, including 3 MCAO samples and 3 sham 

control samples. After data merging and eliminating 

differences between batches, we obtained expression 

matrices for 132 samples in the discovery dataset 

(GSE58294, GSE22255), 131 samples in the 

validation dataset (GSE16561, GSE37587) and 40 

samples in the validation dataset (GSE110993). The 

workflow diagram is shown in Figure 1. 

 

Identification of DEmRNAs 

 

The limiting thresholds were p < 0.05 and |log2FC| 

>0.585, and 131 DEmRNAs were selected for  

further analysis (71 up-regulated, 60 down-regulated) in 

the discovery datasets; the volcano plot is shown in  

Figure 2A. Under the same threshold conditions, a  

total of 301 DEmRNAs (166 up-regulated genes, 135 

down-regulated genes) were found in the validation 

datasets; the volcano plot is shown in Figure 2B, and 



www.aging-us.com 14808 AGING 

 
 

Figure 1. Flowchart about the entire working processes of this study. IS: ischemic stroke; Con: controls; DEGs: differently expressed 

genes. 
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the intersection of the two was taken to obtain  

24 DEmRNAs, as shown in the Venn diagram  

(Figure 2C), including (ID3, SLC22A4, CLEC4E, 

CLEC4D, ABCA1, MCEMP1, TNFRSF25, ITM2C, 

CD19, NFIL3, IL18RAP, ANXA3, CD163, CCR7, 

HIST1H4H, ANKRD22, THBS1, ARG1, MMP9, 

CD79A, PTGS2, TCN1, NELL2, TPST1). The heat 

map is shown in the Figure 2D, 2E. 

 

 
 

Figure 2. Difference analysis of identification criteria: P < 0.05 and |log2FC| >0.585. (A) Volcano plots for DEmRNAs in discovery set 

(71 upregulated and 60 downregulated). (B) Volcano plots for DEmRNAs in validation set (166 upregulated and 135 downregulated). (C) Venn 
diagram showing the common 24 DEmRNAs between discovery set and validation set. (D) Heatmap plot showing the common 24 DEmRNAs 
in discovery set. (E) Heatmap plot showing the common 24 DEmRNAs in validation set. 
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Identification of DEmiRNAs, and DElncRNAs 

 

In discovery sets, a total of six DElncRNAs were 

directly identified, as detailed in the Supplementary 

Table 2, including two down-regulated lncRNAs and 

four up-regulated lncRNAs, and 105 potential miRNAs, 

which can be checked in the Supplementary Table 3, 

detailed in the Diana database were found to bind to 

these six lncRNAs. In the validation set GSE110993, 16 

up-regulated (e.g. miR-125a-5p) and 80 down-regulated 

DEmiRNAs (e.g. miR-101-3p) were identified. The 

intersection of the two was taken to yield 13 potential 

candidate miRNAs, (Figure 3A) miRNAs can be 

detailed in the Supplementary Table 4. Based on the 

multiMiR R package, these 13 potential candidate 

miRNAs were predicted to bind to 11,481 downstream 

mRNAs, and after intersection with DEmRNAs (Figure 

3B), the focus was on the remaining 12 DEGs, 

including (PTGS2, ID3, ITM2C, MMP9, NELL2, 

SLC22A4 THBS1, ABCA1, ANXA3, CD19, IL18RAP, 

NFIL3), which shared genes between 11481 target 

mRNAs and 24 DEmRNAs. However, not all of the 13 

potential candidate miRNAs can match each other with 

the 12 screened DEGs, and in order to focus more on 

the interactions with them. The 12 DEGs were reverse 

predicted by the multiMiR R package and intersected 

with the 13 potential candidate miRNAs mentioned 

above to obtain 12 miRNAs’ that were strongly 

associated with DEGs. Similarly, by Diana database and 

taking intersection with the above 6 DElncRNAs,  

3 lncRNAs’ strongly associated with DEGs were 

obtained. lncRNAs’, miRNAs’, and the relationship of 

DEGs are shown in the Figure 3C. 

 
GSEA, KEGG and GO enrichment analysis 

 

Based on GSEA enrichment results, the 12 DEGs 

involved in the ceRNA network were mostly concen-

trated in: NF-κB signaling pathway, IL -17signaling 

pathway, TGF-β signaling pathway, TNF signaling 

pathway, Primary immunodeficiency, B cell receptor 

signaling pathway (Figure 4A–4F). The KEGG 

enrichment results are mainly focused on: IL-17 

signaling pathway, TNF signaling pathway and so on 

(See Supplementary Table 5 for details). The results of 

the GO enrichment analysis were mainly: regulation of 

neuroinflammatory response, carboxylic acid trans-

membrane transport etc. (See Supplementary Table  

6 for details). Notably, the results GSEA clearly 

suggested immune-related pathways, which pointed the 

way to the next analysis. 

 
Selection of the better DEIRS in IS 

 

We identified 12 DEGs in the discovery set. To select 

the better DEIRS in IS, we used a comprehensive 

strategy among DEGs, LASSO, SVM and immune-

related genes. 12 differential genes were incorporated in 

the LASSO regression model, and 8 candidate genes 

were obtained after dimensionality reduction (Figure 

5A, 5B). Subsequently, we evaluated the accuracy of 

the LASSO regression model in the discovery and 

validation sets by ROC curves (Figure 5C, 5D). The 

SVM incorporated 12 differential genes and evaluated 

the model accuracy by ROC curves (Figure 5H), AUC 

values, 95% CIs are shown in the Supplementary Table 

7. The intersection between LASSO regression analysis, 

SVM, DEGs, and immune-related genes resulted in 8 

immune-related signatures (Figure 5I). Notably, among 

these eight immune-related signatures, ID3 was the 

smallest among the negative values in the LASSO 

regression score and SLC22A4 was the largest among 

the positive values in the LASSO regression score. 

Also, ID3 and SLC22A4 had the top two AUC values in 

the SVM. Therefore, ID3 and SLC22A4 were selected 

as the better DEIRS for further analysis. We then 

assessed ID3 and SLC22A4’s discriminatory ability for 

stroke patients and healthy controls, respectively, and a 

good discriminatory ability was found for both the 

discovery and validation sets (discovery set: ID3 

AUC=0.893, 95%CI=0.819-0.954; SLC22A4 AUC= 

0.891, 95%CI=0.819-0.951; validation set ID3 AUC= 

0.898, 95%CI=0.830-0.951; SLC22A4 AUC=0.940, 

95%CI=0.874-0.988) (Figure 5E–5H). 

 
Expression validation of ID3 and SLC22A4 

 

Analysis of the discovery dataset (GSE58294, 

GSE22255) showed a significant decrease in ID3 

expression and a significant upregulation of SLC22A4 

expression in stroke patient samples compared with 

controls (Figure 6A, 6B). We then used the mouse 

MCAO model and examined the mRNA and protein 

expression levels of ID3 and SLC22A4 and found that 

ID3 was significantly downregulated and SLC22A4  

was significantly upregulated in the MCAO group 

(Figure 6C–6H). Immunofluorescence detection of ID3 

and SLC22A4 expression revealed that the fluorescence 

intensity of ID3 was weakened and that of SLC22A4 

was enhanced in the MCAO group (Figure 6I). 

 
Immune infiltration analysis 

 

IS is followed by a series of immune events, including 

peripheral immune cell invasion, pro-inflammatory 

factors secretion and so on [31]. Thus, we compared 

immune infiltration characteristics between IS groups 

and normal groups by using CIBERSORT. Bar charts 

depicted relative percentages of different immune cell 

subpopulations in each sample. (Figure 7A). CD8 T 

cells, naive B cells, and naive CD4 T cells show lower 

levels of immune infiltration in IS patients than in 
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controls, while activated memory CD4 T cells and 

neutrophils show higher levels of immune infiltration 

(Figure 7B). An analysis of Spearman correlation was 

performed to demonstrate the relationship between ID3, 

SLC22A4 and different immune cell subpopulations. 

According to these results, ID3 correlated positively 

with CD8 T cells, naive B cells, and naive CD4 T cells; 

however, it correlated negatively with activated 

memory CD4 and neutrophils. CD8 T cells, naive B 

cells, and naive CD4 T cells were negatively correlated 

with SLC22A4, while activated memory CD4 cells, 

neutrophils were positively correlated (Figure 7C, 7D). 

See Supplementary Tables 8, 9 for more details. 

 

Single cell genome sequencing level analysis 

 

In order to examine MCAO-induced changes in  

gene expression profiles and cell heterogeneity, we 

downloaded GSE174574 from the GEO database for 

further analysis. GSE174574 includes three mouse

 

 
 

Figure 3. Triple ceRNA network construction. (A) Venn diagram showing the common miRNAs between validation set GSE110993 and 
predicted miRNAs. (B) Venn diagram showing the DEGs between DEmRNAs and mRNAs. (C) CeRNA network in IS, the octagon represents 
lncRNA, the diamond represents miRNAs, and the ellipse represents mRNAs. (red represents upregulated, and green represents 
downregulated). 
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middle cerebral artery occlusion model samples  

and three control samples, as detailed in Table 1. 

Significant heterogeneity was seen in the MCAO  

group relative to the sham group in UMAP (Figure  

8A). Detecting known cell type markers, we identi- 

fied 13 transcriptionally distinct clusters including 

endothelia_1; endothelia_2; microglia_1; microglia_2; 

astrocyte; ependymocyte; vascular smooth muscle cells 

 

 
 

Figure 4. Enrichment plots from GSEA. (A) The DEGs positively correlated with the NF-κB signaling pathway. (B) The DEGs positively 
correlated with the IL-17 signaling pathway. (C) The DEGs positively correlated with the TGF-β signaling pathway. (D) The DEGs positively 
correlated with the TNF signaling pathway. (E) The DEGs negatively corelated with the primary immunodeficiency signaling pathway. (F) The 
DEGs negatively correlated with the B cell receptor signaling pathway. 

 

 
 

Figure 5. Comprehensive strategy to select the better DEIRG in IS. (A) 12 differentially expressed genes are represented by LASSO 

coefficient profiles. (B) Twelve differentially expressed genes were examined for binomial deviance profiles. (C) ROC curve for analysing 
LASSO regression model accuracy in the discovery set. (D) ROC curve for analysing LASSO regression model accuracy in the validation set. (E) 
ROC curve for ID3 in the discovery set. (F) ROC curve for SLC22A4 in the discovery set. (G) ROC curve for ID3 in the validation set. (H) ROC 
curve for SLC22A4 in the validation set. (I) ROC curve for SVM model accuracy in the discovery set. (J) Venn diagram for showing a 
comprehensive strategy among DEGs (pink circle), LASSO regression (light green circle), SVM models (purple circle), immune-related genes 
(light blue circle). DEIRS: differentially expressed immune-related signatures. 
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Figure 6. Expression validation in vivo models. (A) ID3 expression patterns in IS patients and controls in discovery set. (B) SLC22A4 
expression patterns in IS patients and controls in discovery set. (C) The mRNA levels of ID3 in mouse brain tissues. (D) The mRNA levels of 
SLC22A4 in mouse brain tissues. (E, F) The protein levels of ID3 in mouse brain tissues. (G, H) The protein levels of SLC22A4 in mouse brain 
tissues. (I) The immunofluorescence levels of ID3 and SLC22A4 in mouse brain tissues. MCAO group and sham group, number of mice per 
group n=6. 
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Figure 7. Immune infiltration characteristics. (A) A bar plot shows the relative percentage of 22 immune cell subsets. (B) Comparison of 
immune cells infiltrating IS patients and controls. (C, D) A Spearman correlation of immune cell subsets and ID3; SLC22A4. The color and size 
of the dots indicate the strength of the correlation. 
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(SMC); monocyte-derived cells (MdC); central  

nervous system (CNS)-associated macrophages  

(CAM); oligodendrocyte; pericyte; neutrophil; choroid  

plexus capillary endothelial cells (CPC) (Figure 8B). 

We compared and visualized the composition ratios  

of each of the cell types identified in sham and  

MCAO groups to identify brain cell types susceptible  

to ischemic injury. We found a significant decrease  

in endothelial_1 cells and a significant increase in 

endothelial_2 cells in MCAO group; interestingly, there 

was a significant increase in microglia_1 cells and a 

significant decrease in microglia_2 cells (Figure 8C, 

8D). We examined the expression of ID3 and SLC22A4 

in 13 identified clusters and found that ID3 expression 

was reduced in endothelial cell subtype I and increased 

in endothelial cell subtype II in MCAO group, while 

ID3 was increased in microglia subtype I and de-

creased in microglia subtype II; SLC22A4 was mainly 

concentrated in astrocytes (Figure 8E, 8F). 

 
Correlation analysis based on the single cell level 

 
Based on single cell level data, we performed correlation 

analysis between ID3 and vascular endothelial cell 

marker [32]; SLC22A4 and astrocyte marker [33]. We 

found that in endothelial cells, ID3 was significantly and 

positively correlated with Claudin5, Occludin, and  

ZO1 (Figure 9A–9C); in astrocytes, SLC22A4 was 

significantly and positively correlated with GFAP, 

S100β, and EAAT1 (Figure 9D–9F). 

 

DISCUSSION 
 

In the United States, stroke is the second leading cause 

of death and disability, affecting one in four people 

during their lifetime [34]. Emerging molecular and 

diagnostic technologies are being developed rapidly  

to better treat IS patients, while early diagnosis, 

treatment, and prognosis of IS still have limitations 

and require further research. Immune infiltration is  

one of the key factors in the development of IS, but 

few studies have explored immune infiltration in depth 

as a signature of IS progression [5]. Furthermore, the 

mechanism of immune-related signatures as a ceRNA 

may provide a new direction of thinking for early 

diagnosis and precise treatment of IS, which needs 

further in-depth study. 

 

We successfully constructed a network containing triple 

ceRNAs and identified 12 differentially expressed genes 

(DEGs). Then we comprehensively evaluated the Venn 

results between DEGs, LASSO regression, SVM, and

 

 
 

Figure 8. Mouse brains’ scRNA-seq demonstrates transcriptome atlas. (A) UMAP plot for visualizing clustering profiles between 
MCAO and sham groups. (B) The UMAP plots display clustering of single cells by types. (C) The proportion of cells in each sample for each 
cluster is shown in a bar plot. (D) Visualizing the number of cells in each sample for each cluster. (E, F) Violin plots showing ID3 and SLC22A4 
expression levels in the above 13 clusters. 
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immune-related genes and selected two better signatures 

-- ID3 and SLC22A4. The CIBERSORT algorithm 

showed that the characteristics of immune infiltration  

in IS. We also explored the involvement of ID3 and 

SLC22A4 in immune infiltration, and their expression 

in a mouse model of middle cerebral artery occlusion 

and at the single cell level, respectively. 

 

Inhibitor of DNA binding 3(ID3, also known as  

HEIR-1; bHLHb25, gene ID: 3399) is located on 

chromosome 1p36.12(exon count :3) [35]. As a 

member of the DNA binding inhibitor family, ID3 

plays a crucial role in cell growth, self-renewal, 

senescence, angiogenesis and neurogenesis, and plays 

an integral role in functions such as stress coping, 

neuroplasticity, and neural circuitry [36–38]. In neuro-

logical and behavioural studies, ID3 has demonstrated 

its biological importance. 

 

ID3 also plays an important role in immune regulation 

[39, 40]. In the course of our research explorations, we 

identified the presence of ID3 from the 12 candidate 

genes identified. During our study explorations further 

into independent patient populations, we verified the 

significance of these 12 genes in terms of diagnostic 

reliability. Notably, ID3 was found to be time-stable in 

the early 24 hours of stroke in previous study, further 

highlighting the importance of this gene in the early 

diagnosis of the disease [38].  

 

Solute carrier family 22 member 4 (SLC22A4,  

also known as OCTN1; DFNB60, gene ID:6583, 

HGNC:10,968, OMIM:604,190) is located on chro-

mosome 5q31.1 (encoded by 11 exons). Transporting 

organic cations between the plasma membranes of 

epithelial cells [41, 42]. It is associated with genetic 

polymorphisms that cause inflammation and plays  

a huge role in the human innate immune response. 

SLC22A4 polymorphisms are associated with the 

incidence of inflammatory bowel disease (IBD), 

Crohn’s disease (CD) and ulcerative colitis (UC) [43–

45]. There are two polymorphisms associated with 

rheumatoid arthritis (RA) in Japanese and Chinese 

populations, rs2073838 and rs3792876 [46, 47]. 

SLC22A4 was also found to be significantly over-

expressed in RA tissues by experiments in a mouse 

model of collagen-induced arthritis. At the same time, 

the running transcription factor RUNX1 regulated the 

expression of SLC22A4, thus having a significant 

impact on the susceptibility to RA [48]. Finally, it  

was shown that by reducing the non-normal trans- 

porter function of the SLC22A4 503F variant, we  

could effectively reduce the over-triggering of the 

inflammatory response [49]. Furthermore, ischemic

 

 
 

Figure 9. Correlation analysis based on the single cell level. (A–C) Correlation analysis of ID3 with Claudin5, Occludin and ZO1 in 

vascular endothelial cells. (D–F) Correlation analysis of SLC22A4 with GFAP, S100β and EAAT1 in astrocytes. 
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stroke in the Japanese population was also significantly 

associated with the SLC22A4 gene polymorphism 

rs273909 [50].  

 

In this study, two important signatures closely related to 

immune infiltration in ischemic stroke were identified. 

In MCAO model mice, bioinformatics analysis and 

multidimensional validation by qRT-PCR, western blot 

and immunofluorescence revealed a decrease in ID3 

gene expression and an increase in SLC22A4 gene 

expression. These findings suggest that ID3 and 

SLC22A4 have significant biological significance in 

ischemic stroke. 

 

Additionally, the enrichment analysis demonstrated that 

DEGs are involved in signaling pathways involved in 

inflammation or immunity. Specifically, the NF-kB 

signalling pathway showed significant enrichment in 

GSEA enrichment analysis, implying that NF-kB  

plays an essential role in inflammatory and immune 

responses. In addition, the transcription factor NF-κB is 

itself a regulator of the inflammatory response [51]. As 

ischemic stroke (IS) is a disease that elicits a systemic 

immune response [52], NF-kB plays a huge role in  

the induced inflammation of this disease. Also, NF- 

kB overexpression is involved in the inflammatory 

response associated with rheumatoid arthritis through 

activation of the SLC22A4 promoter [53]. And ID3  

also plays a regulatory role in the NF-kB signalling 

pathway, its knockdown may lead to dysfunction of this 

signalling pathway [54]. We find these findings to be 

consistent with our bioinformatics analysis, suggesting 

that ID3, SLC22A4 and the NF-kB signaling pathway 

are very important for mediating biological processes 

involved in ischemic stroke. These results point the way 

to our subsequent analysis. However, these signalling 

pathways and their specific mechanisms of action still 

require further experimental validation. 

 

On the basis of cumulative evidence, IS triggers a 

systemic immune response that is not confined to the 

infarcted area alone. This immune response is a 

systemic immune inflammatory response triggered to 

some extent by oxidative stress and immune dys-

function triggered by the ischemic brain tissue [55]. The 

progressive increase in oxidative mediators leads to 

further infiltration of immune cells, including T cells, B 

cells, macrophages and dendritic cells in the ischemic 

brain areas, thereby exacerbating the neurotoxic and 

neuroinflammatory response [56]. In order to learn 

more about the type and proportion of immune cell 

infiltration in stroke patients with ischemic stroke, 22 

immune cells were evaluated using CIBERSORT. 
According to our analysis, ischemic stroke patients had 

reduced infiltration of naive B cells, CD8 T cells and 

naive CD4 T cells, while there was a trend towards 

increased infiltration of activated CD4 memory T cells, 

M0 macrophages and neutrophils. 

 

Most experimental stroke models regarded neutrophils 

as the first blood-derived immune cells [57]. It had been 

reported that on day one, neutrophils increased, peaked 

on day three, and then declined, at 7 and 15 days after 

cerebral ischemia, they were still present, and were 

positively correlated with infarct volume and functional 

impairment [58]. In the peripheral blood, Kaito et al. 

reported an increase in monocytes-macrophages after 

brain injury [59]. 3-7 days after the onset of ischemia, 

peripheral blood monocytes and macrophages infiltrate 

the site of injury and reach a peak [60]. Unlike 

neutrophils, monocytes and macrophages, the number 

of lymphocytes in the peripheral blood flow is reduced 

in patients with ischemic stroke, resulting in an 

increased neutrophil/lymphocyte ratio [57]. Conversely, 

some studies showed that IS severely impairs certain 

stages of B-cell development in the bone marrow and 

this impairment leads to a reduction in the number of 

peripheral lymphocytes [61]. When this happens, the 

CD4+ T cell response shifts from a T cell-mediated 

immune system to a Th2-mediated humoral immune 

system, protecting the brain from further damage [62]. 

However, due to suppression of the immune system, the 

number of T and B lymphocytes in peripheral blood 

eventually decreased [63].  

 

But reports about the relationship between different 

types of immune cells and IS development are lacking, 

and more research is required to uncover details in the 

process. In addition, we found a correlation between 

ID3 and SLC22A4 and 22 different types of immune 

cells. Among naive B cells, CD8 T cells, and CD4 naive 

T cells, ID3 was significantly positively correlated and 

negatively correlated with CD4 activated memory T 

cells, M0 macrophages and neutrophils. SLC22A4, on 

the other hand, was negative correlation and positive 

correlation with M0 macrophages and neutrophils. The 

role of ID3 and SLC22A4 in IS pathogenesis will thus 

be an important field for future research. 

 

In addition, to identify brain cell types prone to 

ischemic injury, we identified 13 transcriptionally 

distinct clusters at the single-cell level by examining 

known cellular markers [16], and we compared and 

visualized the different compositional proportions in 

each cell type identified in sham and MCAO groups  

in a comprehensive manner. We noted a significant 

decrease in the proportion of ID3 in endothelial_1 in the 

MCAO group. Previous studies have reported that ID3 

overexpression contributed to the increased vascular 
neogenesis involved in blood vessels in human brain 

microvascular endothelial cells [64]. ID3 deficiency 

leads to diminished reperfusion recovery [65]. Therefore, 



www.aging-us.com 14818 AGING 

focusing on ID3 expression in endothelial_1 may 

provide new ideas for the treatment of stroke. There are 

many types of glial cells in the central nervous system 

(CNS), and astrocytes play a vital role in neuro-

development and endostasis. It can regulate neural 

activity, produce synaptogenic factors, control of glial 

cell boundary membranes and blood-brain barrier [66, 

67]. These neuroendostatic mechanisms are important 

for the maintenance of normal CNS physiology, and 

abnormalities in endostasis can lead to the development 

of neurological disorders and, in disease states, astrocytes 

have functions that promote and amplify CNS patho-

logy, including inflammation [68, 69]. The results of 

single cell analysis showed that SLC22A4 was mainly 

concentrated in astrocyte in MCAO group, suggesting 

that SLC22A4 may be involved in the development  

of neuroinflammation by affecting the endostasis  

of astrocyte. Therefore, the regulation of SLC22A4 

expression in the astrocyte may contribute to the 

treatment of ischemic stroke. 

 

Finally, we found a significant positive correlation 

between ID3 and Claudin5, Occludin, ZO1 in vascular 

endothelial cells by correlation analysis. It is known  

that there is a significant decrease in ID3 after stroke, 

and from the correlation analysis it can be deduced  

that there is also a significant decrease in Claudin5, 

Occludin and ZO1, which is consistent with our 

knowledge that the massive damage to tight junction 

proteins after stroke leads to increased permeability of 

the vascular endothelium, which ultimately leads to 

massive infiltration of inflammatory factors [70, 71]. 

 
Similarly, in astrocytes, we found a significant positive 

correlation between SLC22A4 and GFAP, S100β, 

EAAT1. Astrocytes may show increased reactivity after 

stroke, which may lead to an abnormal opening of gap 

junctions located within them, ultimately leading to 

increased inflammation [72]. This is consistent with our 

findings. 

 
We also have to admit that there are some shortcomings 

in the current study. Although our study verified the 

expression of ID3 and SLC22A4 in animal experiments 

and at the single cell level, the intrinsic mechanisms 

were not verified in sufficient depth. More experiments 

are needed for in-depth exploration in the future. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Data preprocessing of DEGs. (A) PCA after batch correction with ComBat for GSE58294 and GSE22255. (B) 

PCA after batch correction with ComBat for GSE16561 and GSE37587. (C) Boxplot after batch correction with ComBat for GSE58294 and 
GSE22255. (D) Boxplot after batch correction with ComBat for GSE16561 and GSE37587. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 10. 

 

Supplementary Table 1. Sequences of primers. 

Primer name Sequence 

ID3 FP 5’-CAGCGTGTCATAGACTACATCCT-3’ 

ID3 RP 5’-TCCTCTTGTCCTTGGAGATCAC-3’ 

SLC22A4 FP 5’-GTGTTCCCCTGTGGTGGTTT-3’ 

SLC22A4 RP 5’-TGCTGTTCATCTTTGCGGCT-3’ 

GAPDH FP 5’-GCAAGTTCAACGGCACAG-3’ 

GAPDH RP 5’-CGCCAGTAGACTCCACGAC-3’ 

 

Supplementary Table 2. DElncRNAs of GSE58294 and GSE22255. 

ID P-Value FDR log2FC regulated 

LINC00342 1.57E-11 2.22E-09 -0.695526303 Down 

LINC00926 2.23E-08 8.54E-07 -0.720364083 Down 

LINC00282 4.01E-08 1.42E-06 0.654800644 Up 

LINC01094 1.52E-05 0.000206152 0.628948948 Up 

LINC01270 8.44E-05 0.000846398 0.618386414 Up 

LINC01093 0.000382075 0.002930149 0.791047092 Up 
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Supplementary Table 3. The Diana database 
found that a total of 105 potential miRNAs 
can bind to the above 6 lncRNAs. 

Diana_res.Gene.Name Diana_res.Mirna 

LINC00342 hsa-let-7a-5p 

LINC01094 hsa-let-7a-5p 

LINC00342 hsa-let-7b-5p 

LINC01094 hsa-let-7b-5p 

LINC00342 hsa-let-7c-5p 

LINC01094 hsa-let-7c-5p 

LINC00342 hsa-let-7d-5p 

LINC01094 hsa-let-7d-5p 

LINC00342 hsa-let-7e-5p 

LINC01094 hsa-let-7e-5p 

LINC00342 hsa-let-7f-5p 

LINC01094 hsa-let-7f-5p 

LINC00342 hsa-let-7g-5p 

LINC01094 hsa-let-7g-5p 

LINC00342 hsa-let-7i-5p 

LINC01094 hsa-let-7i-5p 

LINC01094 hsa-miR-101-3p 

LINC00342 hsa-miR-103a-3p 

LINC00926 hsa-miR-106a-5p 

LINC01094 hsa-miR-107 

LINC00342 hsa-miR-10a-5p 

LINC01094 hsa-miR-125a-5p 

LINC00342 hsa-miR-1260b 

LINC00926 hsa-miR-128-1-5p 

LINC00342 hsa-miR-1285-3p 

LINC00926 hsa-miR-1293 

LINC01094 hsa-miR-132-3p 

LINC01094 hsa-miR-135a-5p 

LINC00342 hsa-miR-139-5p 

LINC01094 hsa-miR-139-5p 

LINC01270 hsa-miR-147b-3p 

LINC01094 hsa-miR-148b-3p 

LINC00342 hsa-miR-149-5p 

LINC01094 hsa-miR-15b-5p 

LINC01093 hsa-miR-16-5p 

LINC01094 hsa-miR-16-5p 

LINC00342 hsa-miR-17-5p 

LINC01094 hsa-miR-17-5p 

LINC01094 hsa-miR-181a-5p 

LINC00342 hsa-miR-188-5p 

LINC00342 hsa-miR-191-5p 

LINC01093 hsa-miR-195-5p 

LINC01094 hsa-miR-195-5p 

LINC00342 hsa-miR-196a-5p 

LINC00342 hsa-miR-197-5p 

LINC00342 hsa-miR-19a-3p 

LINC01094 hsa-miR-19a-3p 

LINC00342 hsa-miR-19b-1-5p 

LINC00342 hsa-miR-19b-3p 

LINC01094 hsa-miR-19b-3p 

LINC00342 hsa-miR-20b-5p 

LINC01094 hsa-miR-20b-5p 

LINC00342 hsa-miR-210-3p 

LINC01094 hsa-miR-210-3p 
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LINC01270 hsa-miR-210-3p 

LINC00342 hsa-miR-218-5p 

LINC01094 hsa-miR-218-5p 

LINC01094 hsa-miR-219a-2-3p 

LINC00342 hsa-miR-221-3p 

LINC00342 hsa-miR-23a-3p 

LINC01094 hsa-miR-23a-3p 

LINC01094 hsa-miR-23b-3p 

LINC00342 hsa-miR-24-3p 

LINC01094 hsa-miR-24-3p 

LINC00342 hsa-miR-25-3p 

LINC00342 hsa-miR-26a-5p 

LINC01094 hsa-miR-26a-5p 

LINC00342 hsa-miR-27a-3p 

LINC00342 hsa-miR-27b-3p 

LINC00342 hsa-miR-296-3p 

LINC01094 hsa-miR-29a-3p 

LINC01094 hsa-miR-29b-3p 

LINC01094 hsa-miR-29c-3p 

LINC00342 hsa-miR-30a-3p 

LINC01270 hsa-miR-30a-5p 

LINC00926 hsa-miR-30b-5p 

LINC01094 hsa-miR-30b-5p 

LINC01270 hsa-miR-30c-2-3p 

LINC00926 hsa-miR-30c-5p 

LINC01094 hsa-miR-30c-5p 

LINC00342 hsa-miR-30e-3p 

LINC01094 hsa-miR-320a-3p 

LINC01094 hsa-miR-33a-5p 

LINC01094 hsa-miR-33b-5p 

LINC01094 hsa-miR-342-3p 

LINC00342 hsa-miR-34a-5p 

LINC01094 hsa-miR-34a-5p 

LINC01270 hsa-miR-34a-5p 

LINC00342 hsa-miR-365a-3p 

LINC00342 hsa-miR-365b-3p 

LINC01094 hsa-miR-423-3p 

LINC01270 hsa-miR-423-5p 

LINC01094 hsa-miR-432-5p 

LINC01094 hsa-miR-433-3p 

LINC00342 hsa-miR-449c-5p 

LINC00342 hsa-miR-450b-5p 

LINC01270 hsa-miR-486-3p 

LINC00342 hsa-miR-589-5p 

LINC01094 hsa-miR-7-5p 

LINC01094 hsa-miR-874-5p 

LINC00926 hsa-miR-876-3p 

LINC00342 hsa-miR-92a-3p 

LINC00342 hsa-miR-93-3p 

LINC00342 hsa-miR-98-5p 

LINC01094 hsa-miR-98-5p 
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Supplementary Table 4. 13 
common miRNAs between 
validation set GSE110993 and 
predicted miRNAs. 

ID regulated 

hsa-miR-101-3p down 

hsa-miR-17-5p down 

hsa-miR-125a-5p up 

hsa-let-7f-5p down 

hsa-miR-423-3p down 

hsa-miR-19b-3p down 

hsa-let-7i-5p down 

hsa-miR-92a-3p down 

hsa-miR-19a-3p down 

hsa-miR-16-5p down 

hsa-miR-103a-3p down 

hsa-let-7d-5p down 

hsa-miR-181a-5p down 

 

Supplementary Table 5. KEGG enrichment pathways of the 12 differentially expressed mRNAs.  

Term Description Count Q-value Genes 

Hsa04657 IL-17 signaling pathway 2 3.07x10-2 PTGS2/MMP9 

Hsa04668 TNF signaling pathway 2 3.25x10-2 PTGS2/MMP9 

Hsa05340 Primary immunodeficiency 1 6.34x10-3 CD19 

Hsa04662 B cell receptor signaling pathway 1 6.34x10-3 CD19 

Hsa04350 TGF-beta signaling pathway 1 6.34x10-3 ID3 

 

Supplementary Table 6. GO biological processes of the 12 differentially expressed mRNAs. 

Term Description Count Q-value Genes 

GO:0043154 Negative regulation of cysteine-type endopeptidase 

activity involved in apoptotic process 

3 3.00x10-4 THBS1/PTGS2/MMP9 

GO:0043281 Regulation of cysteine-type endopeptidase activity 

involved in apoptotic process 

3 1.26x10-3 THBS1/PTGS2/MMP9 

GO:2001234 Negative regulation of apoptotic signaling pathway 3 1.38x10-3 THBS1/PTGS2/MMP9 

GO:0150077 Regulation of neuroinflammatory response 2 1.52x10-3 PTGS2/MMP9 

GO:1905039 Carboxylic acid transmembrane transport 2 8.53x10-3 THBS1/SLC22A4 

GO:0098739 Import across plasma membrane 2 1.05x10-2 THBS1/SLC22A4 

GO:0002283 Neutrophil activation involved in immune response 1 1.50x10-2 ANXA3 

GO:0043312 Neutrophil degranulation 1 1.47x10-2 ANXA3 

GO:0006638 Neutral lipid metabolic process 1 3.19x10-2 SLC22A4 

GO:0002446 Neutrophil mediated immunity 1 1.73x10-2 ANXA3 

GO:0051092 Positive regulation of NF-kappaB transcription factor 

activity 

1 3.41x10-2 IL18RAP 

GO:0033549 Regulation of DNA replication  1 3.35x10-2 ID3 

GO:0017017 B cell differentiation  1 3.38x10-2 CD19 
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Supplementary Table 7. AUC and 95%CI for 
Support Vector Machines (SVM). 

Gene AUC CI_95 

PTGS2 0.686858 0.571-0.799 

ID3 0.892915 0.818-0.954 

ITM2C 0.837209 0.750-0.914 

MMP9 0.736074 0.617-0.839 

NELL2 0.742023 0.625-0.836 

SLC22A4 0.891293 0.818-0.952 

THBS1 0.772309 0.667-0.867 

ABCA1 0.842618 0.749-0.925 

ANXA3 0.871823 0.786-0.943 

CD19 0.806382 0.706-0.895 

IL18RAP 0.835587 0.746-0.915 

NFIL3 0.813413 0.724-0.896 

 
Supplementary Table 8. Spearman correlation between immune cell subsets and ID3. 

Gene Immune cells Spearman coefficient P-value Type 

ID3 T cells CD4 naïve 0.298475 0.000508 Positive 

ID3 B cells naïve 0.294499 0.000608 Positive 

ID3 Mast cells activated 0.250909 0.003709 Positive 

ID3 Plasma cells  0.157024 0.072164 Positive 

ID3 Mast cells resting 0.147602 0.091227 Positive 

ID3 T cells CD8 0.144252 0.042889 Positive 

ID3 B cells memory 0.098591 0.260719 Positive 

ID3 Eosinophils 0.098383 0.261728 Positive 

ID3 NK cells activated 0.049993 0.569167 Positive 

ID3 T cells follicular helper 0.042843 0.325705 Positive 

ID3 T cells regulatory (Tregs) 0.034368 0.695634 Positive 

ID3 Macrophages M1 0.002334 0.978809 Positive 

ID3 Macrophages M2 -0.024199 0.813052 Negative 

ID3 Dendritic cells activated -0.024199 0.782991 Negative 

ID3 Monocytes -0.040177 0.647386 Negative 

ID3 T cells gamma delta -0.044457 0.615742 Negative 

ID3 NK cells resting -0.081861 0.350748 Negative 

ID3 Dendritic cells resting  -0.093088 0.288440 Negative 

ID3 T cells CD4 memory activated -0.145269 0.046517 Negative 

ID3 Macrophages M0 -0.150459 0.044066 Negative 

ID3 T cells CD4 memory resting -0.205632 0.018010 Negative 

ID3 Neutrophils -0.272768 0.001554 Negative 
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Supplementary Table 9. Spearman correlation between immune cell subsets and SLC22A4. 

Gene Immune cells Spearman coefficient P-value Type 

SLC22A4 Neutrophils 0.433053 2.15E-07 Positive 

SLC22A4 Monocytes 0.201701 0.647386 Positive 

SLC22A4 T cells CD4 memory resting 0.187821 0.018010 Positive 

SLC22A4 T cells regulatory (Tregs) 0.125462 0.151738 Positive 

SLC22A4 Mast cells resting 0.147602 0.091227 Positive 

SLC22A4 Macrophages M0 0.090918 0.042778 Positive 

SLC22A4 Plasma cells  0.061858 0.481046 Positive 

SLC22A4 Macrophages M1 0.054044 0.238245 Positive 

SLC22A4 Dendritic cells resting 0.029643 0.735808 Positive 

SLC22A4 B cells memory 0.029631 0.735908 Positive 

SLC22A4 T cells CD4 memory activated  0.027724 0.042336 Positive 

SLC22A4 NK cells resting 0.023939 0.785263 Positive 

SLC22A4 Dendritic cells activated 0.013793 0.875265 Positive 

SLC22A4 NK cells activated -0.001887 0.982866 Negative 

SLC22A4 T cells follicular helper -0.035754 0.684003 Negative 

SLC22A4 Macrophages M2 -0.074522 0.395746 Negative 

SLC22A4 T cells CD4 naïve -0.077318 0.022881 Negative 

SLC22A4 Mast cells resting -0.079647 0.363975 Negative 

SLC22A4 T cells gamma delta  -0.089833 0.305662 Negative 

SLC22A4 Eosinophils -0.144841 0.097515 Negative 

SLC22A4 Mast cells activated -0.193911 0.025889 Negative 

SLC22A4 B cells naïve -0.250896 0.003711 Negative 

SLC22A4 T cells CD8 -0.353914 3.14E-05 Negative 

 
Supplementary Table 10. Summary of immune-related genes extracted from the GeneCards (n=17664). 

 

 

 


