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INTRODUCTION 
 

The overall incidence of Colorectal Cancer (CRC) ranks 

third in the world and is the second largest cause of 

cancer-related death [1]. In China, the proportion of 

advanced colorectal cancer in the first diagnosis is as high 

as 80%, of which more than 80% are difficult to accept 

radical surgery. Chemotherapy and immunotherapy 

provide possibilities for inhibiting CRC progression and 

R0-resection. However, due to drug resistance (DR), 
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ABSTRACT 
 

Background: Anoikis is a speed-limited procedure to inhibit tumor metastasis during epithelial-mesenchymal 
transition (EMT). Previous studies have explored anoikis-related genes (ARG) in predicting prognosis and 
distinguishing tumoral immunity in many types of cancer. However, the role of ARGs in regulating NK cell 
exhaustion (NKE) and in predicting chemotherapy sensitivity is not clear. Therefore, it is necessary to work on it. 
Methods: Gene expression profiles and clinical features are collected from TCGA and GEO, and data analysis is 
performed in R4.2.0. 
Results: The ARGs-based no-supervised learning algorithm identifies three ARG subgroups, amongst which the 
prognosis is different. WCGNA and Artificial intelligence (AI) are applied to construct an NKE-related drug 
sensitivity stratification and prognosis identification model in digestive system cancer. Pathways association 
analysis screens out GLI2 is a key gene in regulating NKE by non-classic Hedgehog signaling (GLI2/TGF-β/IL6). 
In vitro experiments show that down-regulation of GLI2 enhances the CAPE-mediated cell toxicity and 
accompanies with down-regulation of PD-L1, tumor-derive IL6, and snial1 whereas the expression of cleaved 
caspas3, cleaved caspase4, cleaved PARP, and E-cadherin are up-regulated in colorectal cancer. Co-culture 
experiments show that GLI2- decreased colorectal tumor cells lead to down-regulation of TIM-3 and PD1 in NK 
cells, which are restored by TGF-bate active protein powder. Besides, the Elisa assay shows that GLI2-decreased 
colorectal tumor cells lead to up-regulation of IFN-gamma in NK cells. 
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combination chemotherapy is still difficult to improve the 

5-year survival rate of advanced CRC (about 12%), 

among which about 54% of patients have recurrence 

[2, 3]. Therefore, identification of CRC-sensitive drugs 

and propelling personalized treatment strategies are 

important to improving the efficacy of CRC. 

 

The developing evidence shows that gene-based 

prognosis assessment systems have the potential 

abilities to predict the clinical outcome and give advice 

in making drug therapy regimens, such as ferroptosis-

related genes [4, 5], cuproptosis-related genes [6, 7] or 

pyroptosis-related genes [8], et al. Anoikis is a speed-

limited procedure for cancer metastasis and invasion 

[9], related genes of which are also reported to be used 

in constructing prognosis prediction models in 

colorectal cancer, and all of the related studies focus on 

prognosis assessment and immunotherapy response 

prediction [10, 11]. Therefore, it is necessary to explore 

the role of anoikis-related genes in assessing drug 

sensitivity in colorectal. 

 

Artificial intelligence (AI) is already applied in disease 

diagnosis, such as Imaging and ECG. In this study, non-

supervised and supervised AI algorithms are applied to 

construct a drug response assessment tool based on an 

anoikis-related gene (ARG) in colorectal cancer. Besides, 

a pivotal ARG is screened out, and is verified as a 

regulator of drug sensitivity and tumor immunity escape. 

 

MATERIALS AND METHODS 
 

Reagent 

 

The colorectal cancer cell line (Lovo) and gastric cancer 

cell line (AGS) are purchased from the Cell Bank of the 

Chinese Academy of Sciences. The alive and dead staining 

kit is purchased from YEASEN (Shanghai, China). 

Capecitabine is purchased from CSNpharm. Antibodies 

against GLI2 (DF7541), RhoD (DF4439), GAPDH 

(AF7021), PD-L1 (BF8035), TGF-b (AF1027), snail1 

(AF6032), E-cadherin (BF0219), IL6 (DF6087), cleaved-

caspase3 (AF7022), cleaved-caspase4 (AF5373), cleaved 

PARP (AF7023) and vimentin (AF7013) are purchased 

from Affinity. RPMI-1604, MEM, OPTI-MEM, and FBS 

are purchased from Gibco. Penicillin and streptomycin are 

purchased from Beyotime Biotechnology (China). CCK-8 

kit is purchased from Beyotime Biotechnology RNA 

transfection reagent is purchased from Polyplus. BCA 

kit is purchased from Beyotime Biotechnology. 

 

Biological experiments 

 

Cell culture 

Lovo and AGS are cultured in RPMI-1640 with 10% 

FBS 1% penicillin and 1% streptomycin at 37°C and 

5% humidity. NK-92 is cultured in MEM with 15% 

FBS, 1% penicillin, 1% streptomycin, 200 U/ml IL2, 

and 0.02 mM Folic Acid at 37°C and 5% humidity. 

 

Alive and dead staining 

According to protocol, cells are washed with PBS 3 

times, followed by being washed with a 1-fold staining 

buffer for 5 mins. Then dilute working dye: 5 ml 1-fold 

buffer with 5 µl PI and 10 µl Calcein-AM. Adding 

working dye for another 30 mins culture. Next, wash 

the cell with PBS three times. Detect red and green 

fluorescence with a microscope. The positive area and 

the strength of staining are assessed by Image J. 

 

Small interfere RNA transfection 

40,000 cells are transplanted into a 6-well plate 24 h 

beforehand, followed by being cultured with OPTI-

MEM for at least 2 h. Transfection system: 200 µl 

transfection buffer with 6 µl siRNA (20 µM) and 6 µl 

transfection reagent. Mix and stand for 15 minutes. Add 

it into cells. After 48 h, cells are harvested for western 

blot assay. 

 

Western blot assay 

Simply, cells are harvested by cell brush, and washed 

by precooling PBS. After centrifugation, cell 

precipitation is cleaved by RIPA for 30 minutes in ice 

water. 12000 g centrifugation to collect the supernatant. 

BCA kit is used to adjust total protein concentration as 

1 ug/ul, for further electrophoresis and immunoblotting. 

 

Cell viability detection cells 

Are treated with different treatments in a 96-well plate 

and then cultured with CCK-8 dye for 4 h. Cell viability 

is calculated as follows: 

 

 
value (experimental group blank group)

cell viability (%)
value (control group blank group)

−
=

−
 

 

Biological informatics analysis 

 

Data collection 

Gene expression array and clinical data are collected 

from The Cancer Genome Atlas (TCGA), Gene 

Expression Omnibus (GEO). UALCAN (The 

University Alabama at Birmingham Cancer Data 

Analysis Portal) is used to collect prognosis data. Gene 

lists of anoikis are collected from GeneCard 

(https://www.genecards.org). GSE39582 (n = 578) 

cohort is used for independent verification. 

 

Multiple-genes-based risk model 

Simply, Least Absolute Shrinkage and Selection 

Operator (LASSO) is used to screen out prognosis-

related anoikis-related genes (ARGs). Multivariate Cox 

regression is used to construct a multiple genes risk 

https://www.genecards.org/
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model. The receptor operating curve (ROC) is 

performed to assess the prediction efficiency of the 

model. 

 

Non-supervised machine learning 

ARGs are put into consensus cluster with package 

ConsensusClusterPlus in R4.2.0. 

 

Supervised artificial intelligence 

Result of consensus-cluster-mediated pan-cancer 

grouping is as the baseline for five types of artificial 

intelligence algorithms, which include random forest 

(randomForest), Extreme Gradient Boosting (xgboost), 

Support Vector Machine (e1071), multi-logistic (nnet), 
and deep learning (h2o). During the analysis process, 

75% of the TCGA cohort is put into the training cohort, 

and the last 30% is put into the test cohort. 

 

Immune cell infiltration 

Is predicted by CIBERSORT, p < 0.05 is used for 

selecting significant samples. 

 

B/NK/T cell exhaustion single sample GSEA analysis 

Is performed in R4.2.0, the markers of B cell 

exhaustion, NK cell exhaustion, and T cell exhaustion 

are displayed in Supplementary Table 1. 

 

Drug sensitivity prediction 

Drug score is calculated by OncoPredict package in 

R4.2.0. 

 

Nomogram 

Monogram is the visualization of multivariate Cox 

regression, and it is constructed by the regplot package 

in R4.2.0. 

 

Statistics 
 

Big data analysis is performed by at least two 

researchers, independently. All analysis is performed in 

R4.2.0. In vitro experiments, data is performed at least 

three times independently. P < 0.05 is regarded as a 

statistically significant difference. 

 

Data availability statement 
 

The raw data can be acquired from corresponding authors. 

 

RESULTS 
 

Construction of anoikis-related-gene-based prognosis 

model in digest system cancers 

 
In order to assess the function of anoikis-related genes 

(ARGs) in predicting prognosis of digest system 

cancer, we firstly use LASSO (Figure 1A), by which 

we filter out 26 prognosis-related ARGs (Figure 1B). 

These ARGs are put into multivariate cox regression, 

and ROC analysis is performed to assess the prediction 

efficiency. For example, AUC value of READ is 0.86 

for 1-year survival prediction, 0.76 for 2-year survival 

prediction, 0.88 for 3-year survival prediction, 0.94 for 

5-year survival prediction, 0.91 for 7-year survival 

prediction and 0.82 for 10-year survival prediction 

(Figure 1C). Then, ARGs-based multiple gene 

riskscore is put into Kaplan-Meier analysis, and the 

results show that higher riskscore group is 

accompanied with worse prognosis in all types of 

digest system cancers (Figure 1D). 

 

Out of its best performance of ARGs in predicting 

prognosis in READ, we choose the READ cohort to 

further analysis. Firstly, 705 ARGs are filtered by 

univariate cox regression, amongst which 51 are 

prognosis-related (Figure 2A). Then, multivariate cox 

regression selects CD63 (HR = 2.81, p = 0.022), CLU 

(HR = 1.46, p = 0.015), HSPB1 (HR = 1.26, p = 0.321) 

and PAK1 (HR = 0.44, p = 0.029) to construct riskscore 

(Figure 2A). The AUC value of training cohort is 0.87 

for 6-month survival prediction, 0.86 for 1-year survival 

prediction, 0.88 for 3-year survival prediction, 1.00 for 

5-year survival prediction, 1.00 for 7-year survival 

prediction (Figure 2B), and the AUC value in testing 

cohort is displayed in Figure 2C. Next, multivariate cox 

regression selects Age, N-stage, M-stag and ARG 
riskscore to construct final prognosis prediction model 

(Figure 2D). ROC analysis of overall survival (OS) 

prediction and recurrence free survival (RFS) are 

performed, and the results are displayed in Figure 2E. 

Besides, we also explore the above model in predicting 

RFS, the results are showed in Figure 2F. To further 

verify the prediction efficiency of ARG-based riskscore, 

we apply GEO cohorts (Figure 2G). ROC analysis 

shows that the AUC value of OS prediction is 0.79 for 

6-month survival, 0.76 for 1-year survival, 0.77 for 3-

year survival, 0.74 for 5-year survival, 0.76 for 7-year 

survival (Figure 2H), and the RFS prediction efficiency 

is also displayed in Figure 2I. 

 

To further describe the prediction efficiency of ARG-

based riskscore, calibration analysis is performed for 

assessing OS prediction (Figure 2J) and RFS prediction 

(Figure 2K). Besides, the ARG riskscore of OS (Figure 

2L) and RFS (Figure 2M) are visualized. 

 

Non-supervised machine learning to recognize 

subpopulation of digest system cancer 

 

Based on the above results, we apply these ARGs to 
identify subpopulations of digestive system cancer. 

Consensus cluster analysis gives out grouping 

suggestions, in which three-grouping is the best strategy 
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(Figure 3A–3D). Then, we explore the prognosis 

differences amongst ARG subpopulations, and a 

significant prognosis difference is observed in the 

whole digest system cohort (p < 0.0001, Figure 3E), 

PAAD cohort (p = 0.013, Figure 3E), and STAD cohort 

(p = 0.017, Figure 3E). 

 

 
 

Figure 1. Anoikis-related genes construct prognosis model in digest system carcinomas. (A) LASSO analysis screens out (B) 26 

prognosis-related ARGs, amongst which ABHD4, BMI1, BMP2, CRYAB, EPO, ERBB4, HMGA1, INHBB, INSR, KIF18A, LAMB1, LDHA, MPO, 
NQO1, SERPINE1, TSG101 and VEGFA are risk factors whereas ARVCF, CDH1, GDF2, GNE, PRKCQ, SIK2, TDGF1, TNF and TP53 is protective 
factors. (C) ROC analysis of ARGs-based prognosis model of the whole digest system cancer and single type of digest system cancer, 
including CHOL, COAD, ESCA, LIHC, ESCA, LIHC, PAAD, READ, STAD. (D) K-M analysis of ARGs-based prognosis model. 

 

 
 

Figure 2. ARGs-based prognosis prediction model. (A) Multiple gene risk model in TCGA cohort, and its ROC analysis in (B) training cohort 
and (C) testing cohort. (D) Prognosis prediction model constructed with clinical characteristics and multiple gene riskscore, and its ROC analysis 
of (E) overall survival and (F) Recurrence free survival. (G) Prognosis prediction model constructed with clinical characteristics and multiple gene 
riskscore, and its ROC analysis of (H) overall survival and (I) Recurrence free survival, in GSE39582 cohort. Calibration of prognosis prediction 
model of (J) overall survival and (K) Recurrence free survival. Nomogram of (L) overall survival and (M) Recurrence free survival. 
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Supervised artificial intelligence constructs ARG 

recognition model with significant hierarchical 

prognosis differences 

 

In order to recognize ARG subpopulation in independent 

cohorts, we use artificial intelligence (AI) to construct a 

model. Firstly, we use WCGNA analysis to filter 

hubgenes. As results show, genes are divided into 11 

modules within a threshold value of 0.25 (Figure 4A, 

4B), and module Blue (MEblue) is recognized as the 

most important to ARG subgroup identification (R = 

−0.75, p = 3.0e-313, Figure 4C, 4D). Next, CytoScape 

shows that ODZ3, BAI2, and SLC24A3, et al. are key 

genes (Figure 4E). Following, genes in MEblue module 

are put into pearson test and venn analysis to filter out 

220 NK cell exhaustion related, T cell exhaustion related 

and B cell exhausted relation genes (Figure 4F). After 

univariate analysis, 10 genes (ODZ4, PDZRN3, RSPO3, 

SHISA2, SLC24A3, BNC2, CPZ, FNDC1, GFPT2, 

GLI2) are finally filtered out (Figure 4F). These genes 

are related to Hedgehog signaling, TGFβ signaling, and 

immunity processes by KEGG and GO analysis (Figure 

4G, 4H). Besides, the expression of these genes is 

displayed in Figure 4I, likewise the relationship between 

these genes and immune cell infiltration. 

The expression profile of the aforesaid 10 genes is 

displayed in Figure 5A, which shows an obvious 

significant difference (Figure 5A), and all of these 

genes are risk factors, except PDZRN3 (Figure 5B). 

Following, Five AI algorithms are applied to construct 

models. As results show, XGboost performs best 

(training AUC is 1.000, and testing AUC is 0.9311) 

(Figure 5C), and subgrouping shows a significant 

prognosis difference of prognosis (p = 0.01, Figure 5C). 

As in the single type of digest system cancer, XGboost-

identified AGR subgroup shows significant prognosis 

differences in CHOL (p = 0.038), READ (p = 0.028) 

and STAD (p = 0.0017) (Figure 5D). Then, immune cell 

infiltration is explored (Figure 5E–5G). As the Figure 

5E–5G show, NK cell infiltration differences are 

observed in READ cohort (Figure 5E–5G). 

 

Following, independent cohort (GSE39582) is applied 

to further verify the above AI model. As the heatmap 

shows, all of these 10 hubgenes are differently 

expressed in subpopulations (p < 0.001, Figure 6A), and 

FNDC1 (HR = 1.20, p = 0.01), GLI2 (HR = 1.58, p = 

0.01) and ODZ4 (HR = 2.36, p = 0.01), et al. are risk 

factors in the male cohort (male-GSE39582) (Figure 

6B). However, no significant difference is observed in 

 

 
 

Figure 3. Supervised machine learning recognizes subpopulations in digest system cancer. (A–D) Consensus cluster analysis 

identifies three ARG subpopulations by ConsensusClusterPlus package in R4.2.0 (E) K-M analysis explores prognosis differences amongst 
ARG subpopulations, in which it shows significance in whole cohort of digest system cancers, PAAD cohort and STAD cohort. 
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female cohort (Figure 6C). Besides, K-M analysis 

shows significant difference of prognosis only in cohort 

of GES39582 (Figure 6D) and male cohort of 

GSE39582 (Figure 6E), but not in female cohort of 

GSE39582 (Figure 6F). Besides, NK cell infiltration is 

significant different in subgroup (Figure 6G). Single- 

sample GSEA analysis shows significant differences in 

NK cell exhaustion (NKEX) and checkpoints score 

(consisting of PD1, PD-L1, TIGIT, TIM3, and LAG-3) 

amongst subpopulations (Figure 6H). More details are 

displayed in subpopulation-1 and subpopulation-2 

(Figure 6I–6K). 

ARGs-based AI model is an efficient tool to assess 

drug response in colorectal cancer 

 

Significant differences in drug score (5-Fu, L-OHP-1, 

L-OHP-2, JQ1) are observed in ARG subpopulations in 

the TCGA cohort (Figure 7A). Same results are 

observed in GSE39582 cohort (Figure 7B). In clinical 

trials, we only find the significant difference of drug 

response in the male cohort (p = 0.0366, Figure 7C). 

Next, we explore the popular small molecule targets. As 

the results display, significant expression differences of 

JAKs (JAK1, JAK2, JAK3), EGFR, IGFR, VEGFRs

 

 
 

Figure 4. Screening ARG stratification hubgenes. WCGNA analysis is performed to collect ARG grouping-related genes, in which (A) 

dynamic tree shows simple sample distribution, and the algorithm finally divides genes into (B) 10 groups. (C, D) Modules show MEblue is 
closest to ARG grouping (R = −0.75, p = 3.0e-313). (E) CytoScape constructs network of genes in MEblue, in which ODZ3, BAI2, SLC24A3, 
PDZRN3, PPAPDC1A, GLI2, SHISA2, CPZ, ODZ4, GFPT2, RSPO3, FNDC1, BNC2, FAM106A and LOC220594 are key genes in ARG grouping. (F) 
Select NK cell exhaustion, B cell exhaustion and T cell exhaustion co-correlated genes in MEblue module, and screened by univariate cox 
regression, after which 10 genes are selected (ODZ4, PDZRN3, RSPO3, SHISA2, SLC24A3, BNC2, CPZ, FNDC1, GFPT2, GLI2). (G) GO pathway 
analysis shows 10 genes are related to Hedgehog signaling. (H) KEGG analysis shows 10 genes are related to Hedgehog signaling. (I) Gene 
expression and immune cell infiltration features in each sample, and GLI2 is selected to display relationship with tumor immunity. 
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Figure 5. Machine learning constructs a ARG subpopulation identification model. (A) Expression and (B) Hazard ratio of ten 

Hubgenes in ARG subgroup. (C) Five types of machine learning algorithms are performed to construct ARG grouping models based on 
supervised learning, and XGBoost displays best results that its training AUC is 1.0000 accompanied with testing AUC is 0.9311, and K-M 
analysis shows difference in prognosis amongst XGBoost identified ARG subpopulations (p = 0.01). (D) K-M analysis in single type of cancer. 
Immune cell infiltration in ARG subpopulations in (E) whole digest system cohort, (F) READ cohort and (G) STAD cohort. 

 

 
 

Figure 6. Independent cohort verification of ARG-based AI model. (A) Gene expression heatmap. (B, C) Hazard ratio of hubgenes in 
male cohort and female cohort in GSE39582. (D) Prognosis differences in AI model identified ARG subpopulations, in which overall survival 
(p = 0.021) and recurrence free survival (p = 00.019) are different in whole cohort, also different in (E) male cohort while no significance in 
(F) female cohort. (G) Immune cell infiltration in ARG subpopulations in GSE39582 cohort. (H–K) Immunity checkpoints expression features 
in ARG subpopulations. 
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(VEGFR1, VEGFR2, VEGFR3) are observed in 

XGboost-identified ARG subpopulations in TCGA 

cohort (Figure 7D). In GEO cohort (GSE39582), we 

observed same results, and ERKs (ERK1, ERK2, 

ERK3) are expressed differently in ARG sub-

populations (Figure 7E). Then we explore those targets’ 

corresponding inhibitors. Results show that the score of 

small molecule inhibitors target IGFR (Linsitinib), 

EGFR (Afatinib, Gefitinib, Lapatinib, Sapitinib), and 

MAPK (Ulixertinib), is significantly different amongst 

ARG subpopulations in TCGA cohort (Figure 7F) and 

GEO cohort (GSE39582, Figure 7G). 

 

GLI2 is a key ARG in regulating NK cell exhaustion 

and drug tolerance by non-classical Hedgehog in 

colorectal cancer 

 

In order to uncover the mechanisms of ARGs in 

regulating drug resistance and immunity escape in 

digest system carcinomas, network analysis is 

performed. As Figure 8A shows, GLI2 is corelated with 

prognosis and KEXT (Figure 8A). Results shows that 

higher expression of GLI2 is related to worse prognosis 

in READ, both in the TCGA cohort and GEO cohort 

(Figure 8B, 8C), and the expression level of GLI2 is 

higher in colorectal cancer tissues as compared with 

normal tissues (p < 0.001, Figure 8D). Pearson test 

shows GLI2 is positively correlated with NKEX (r = 

0.23, p = 2.7e-8). According to the KEEG and Go 

analysis results in Figure 4, we explore the differences 

of this pathway in XGboost-identified ARG 

subpopulations, and the results show that Hedgehog 

signaling score is different amongst ARG subgroups 

(p < 2.0e-16, Figure 8F). As previous studies report, 

GLI2 is closely related to Hedgehog in regulating tumor 

progression [12, 13], so GLI2 is put into further 

analysis. We explore the correlation between Hedgehog 

signaling score and drug score, and the results show that

 

 
 

Figure 7. ARGs-based AI model recognizes drug efficiency. (A) Drug scores of 5-Fu, L-OHP-1, L-OHP-2, CPT-11 and JQ1 in ARG sub 

groups, calculated by OncoPredict package in R4.2.0., data from TCGA, (B) GSE39582. (C) Clinical trials response in ARG subpopulations 
identified by AI. Small molecule inhibitor targets expression level in ARG subpopulations in (D) TCGA cohort and (E) GES39582 cohort. Small 
molecule inhibitors sensitivity in ARG subpopulations, in which IGFR, EGFR and MAPK inhibitors hold significant differences in (F) TCGA 
cohort and (G) GSE39582. 
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Hedgehog signaling score is positively correlated with 

5-Fu (r = 0.27, p < 0.001), L-OHP-1 (r = 0.45, p < 

0.001), L-OHP-2 (r = 0.26, p < 0.001) (Figure 8G). 

Besides, Hedgehog signaling score is positively 

correlated with NKE (Figure 8H). Those results imply 

that GLI2 probably regulates Hedgehog signaling to 

interfere NK cell immunity and drug resistance in 

colorectal cancer. 

After a literature review, we collect factors that directly 

regulate the function of NK cells, and the gene list is 

IL2, IL15, IL18, IL21, all of which promote NK cell-

mediated tumor death, while IL6, TGFβ and TNFα 

promote NK cell exhaustion [14–16]. In the heatmap, 

we find different expressions of IL15, IL18, IL6 and 

TGFβ in XGboost-identified ARG subpopulations in the 

GEO cohort (Figure 8I). Pearson test analysis shows 

 

 
 

Figure 8. GLI2 potentially regulates NKE by non-classic Hedgehog signaling to promote drug tolerance and colorectal 
immunity escape. (A) Multi-cohort association analysis screens out GLI2 and ODZ4 as the closest genes in regulating NKE. K-M analysis 

for GLI2 in (B) TCGA cohort and (C) GSE39582 cohort. (D) GLI2 expression between colorectal tissues and adjacent tissues. (E) Correlation 
analysis between GLI2 and NKE score. (F) Pathways score in ARG subpopulations, and Hedgehog pathway score displays significant 
differences amongst ARG subpopulations (p < 2.0e-16). (G) The correlation between Hedgehog pathway score and drug scores. (H) 
Correlation between NKE score and Hedgehog pathway score. (I) NKE-related inflammation factors expression in ARG subpopulations. (J) 
Correlation between GLI2 and NKE regulators (IL6, TGFβ). (K) Correlation between KNE and NKE regulators (IL6, TGFβ). (L) Pathway network 
between GLI2 and classic Hedgehog pathway. Gene expression characteristics of non-classic Hedgehog signaling in ARG subgroups in (M) 
TCGA cohort and (N) GSE39582 cohort. 
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that GLI2 expression is closely correlated with IL6 (r = 

0.45, p < 0.0001) and TGFβ (r = 0.77, p < 0.0001) in 

TCGA cohort, and same results are observed in GEO 

cohort (Figure 8J). Besides, there is significant 

correlation between NKEX and IL6 (r = 0.34, p < 

0.0001) or TGFβ (r = 0.46, p < 0.0001) (Figure 8K). 

 

As Figure 8L shows, the expected Hedgehog-mediated 

GLI2 change isn’t consistent with the real change of 

GLI2 (Figure 8L). This implies classic Hedgehog 

signaling is not key in GLI2-induced drug resistance 

and NEXT. For non-classic Hedgehog signaling, we 

enroll PI3K/AKT, TGFβ signaling, HDACs, 

MAPK/Ras, and other reported targets which are 

involved in Hedgehog signaling in cancer. In TCGA 

cohorts, we observe that almost all of the above genes 

are differently expressed in XGboost-identified ARG 

subpopulations (Figure 8M), while only TGFβ (TGFβ1-

3) and FOXC1 are different expression in ARG 

subpopulations in GEO cohort (Figure 8N). 

 

Down-regulation of GLI2 decreases drug tolerance 

in colorectal cancer and gastric cancer 

 

Small interfere RNA (siRNA) technology decreases the 

GLI2 expression in lovo cells and AGS cells (Figure 9A, 

9B). And the down-regulation of GLI2 significantly 

decreases the cell viability as being treated with CAPE 

in different concentration (Figure 9C). Then, alive and 

dead assay is performed, and results show that down-

regulation of GLI2 enhances the cell toxicity of CAPE in 

colorectal and gastric cancer cell lines (Figure 9D, 9E). 

 

GLI2-TGF-beta axis promotes NKEX by non-

classical Hedgehog pathway in READ 

 

Down-regulation of GLI2 in LOVO cells decreases the 

expression level of TGF-beta, PDL1, IL6 and snail1, 

while the expression level of E-cadherin and vimentin 

are not interfered (Figure 10A–10D). Then, we apply 

recombinant plasmid to increase the expression of 

GLI2, and results show that TGF-beta, PDL1 and IL6 

are obviously increased, while no significant change is 

observed in E-cadherin, vimentin and snail1 (Figure 

10E–10H). To further uncover the GLI2-TGF-beta 

pathway in NEXT, we performed co-culture (Figure 

10I). As Figure 10J shows, down-regulation of tumor-

derived GLI2 leads down-regulation of PDL1, TGF-

beta and IL6 in lovo cells, and it also leads down-

regulation of TIM-3, PD1 and IFN-gamma in NK cell 

line (NK-92) (Figure 10J–10L). Then, we apply TGF-

beta active protein powder. As the results displayed in 

Figure 10, TGF-beta protein restores the decreased 

expression of tumor-derived PDL1 and IL6 and NK-

derived TIM-3 and PD1 (Figure 10J–10L). Collectively, 

we find down-regulation of tumor-derived GLI2 leads 

up-regulation of NK-derived IFN-gamma (co-culture) 

(Figure 10M). 

 

 
 

Figure 9. GLI2 promoted drug tolerance. (A) Expression level of GLI2 after siRNA treatment in colorectal cancer cell (lovo) and gastric 

cancer by (a) PCR assay and (B) WB. (C) CCK-8 assay. Alive and dead cell staining in (D) colorectal cancer and (E) gastric cancer. 
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DISCUSSION 
 

Due to the delayed diagnosis, colorectal cancer is 

developing as a formidable disease in tumor treatment, 

which means more than 80% of patients with colorectal 

cancer are in the advanced stage at first diagnosis [2]. 

Although microsatellite instability (MSI) detection is 

useful for the determination of making drug therapy 

strategy in CRC, partial patients with a high score of 

MSI still response to immunotherapy weakly [17], and 

low score of MSI with a weak response to 5-fu-based 

chemotherapy [18]. Therefore, it’s necessary to 

 

 
 

Figure 10. GLI2 promotes NEXT by regulating TGF-beta-mediated non-classical Hedgehog signaling. (A–D) Down-regulation of 

GLI2 is accompanied by down-regulation of PD-L1, TGF-beta, IL6 and snail1. (E–H) Up-regulation of GLI2 is accompanied with increased 
expression of PD-L1, TGF-beta, and IL6. (I) Co-culture process. (J–L) Down-regulation of tumor-derived GLI2 decreases tumor-derived TGF-
beta, PDL1 and IL6, likewise the NK-derived TIM-3 and PD1, while NK-derived IFN-gamma is increased. TGF-beta active protein powder 
restores the expression of tumor-derived PDL1 and IL6, and NK-derived TIM-3 and PD1. (M) Down-regulation of tumor-derived GIL2 leads 
increased secretion of NK-derived IFN-gamma, detected by Elisa. 
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construct a new drug sensitivity assessment system as 

additional evidence for making individual therapy 

regimens in colorectal cancer. 

 

Multi-gene-based models are reported in various kinds 

of tumors, such as liquid-liquid related gene-based risk 

model in breast cancer [19]. Besides, ferroptosis-

derived, immunogenic cell death-derived, autophagy-

derived, and cuproptosis-derived genes are also applied 

in making a tool to assess prognosis and drug response 

[20–22]. Recently, Anoikis-related genes are reported to 

be used in assessing prognosis and immune cell 

infiltration in liver cancer, lung cancer, and also in 

colorectal cancer [10, 23]. To our knowledge, 

overcoming anoikis is a necessity during tumor 

metastasis and invasion. In fact, developing evidence 

implies that anoikis is also involved in drug resistance 

in tumors, and also related to immunotherapy [24]. In 

this study, ARGs are applied to construct a prognosis 

model, and it shows a relative more efficient ability of 

prognosis prediction in CHOL, READ, and LIHC 

(Figure 1C). In further exploration, independent cohort 

of READ (GEO data) is applied, and independent 

verification shows ARGs hold potential in predicting 

clinical outcomes, such as OS and RFS (Figure 2J–2M). 

Those results imply that the ARG-based risk model can 

be considered as the adjuvant tool in clinical outcome 

assessment. 

 

AI is already applied in medicine, such as imaging-

assisted interpretation. Nowadays, more and more 

studies show that AI is powerful in identifying or 

redefining tumor subtypes. For an illustration, the AI-

based immunotherapy response assessment system 

recognizes the responsiveness of anti-PD-L1 treatment 

in melanoma, kidney cancer, and thyroid cancer [25–

27]. To the importance of the immune cell exhaustion in 

immunotherapy resistance, WCGNA is used to find 

hubgenes that play key roles in ARG subpopulations 

identification and immunity escape (Figure 4F). And 

following, five types of supervised AI algorithms are 

applied to construct models, all of which have pretty 

efficient in recognizing ARG subgroups, especially for 

XGboost (training AUC is 1.000 and testing AUC is 

0.9311, ARG1-AUC is 0.95, ARG2-AUC is 0.99, and 

ARG3-AUC is 0.94. Figure 5C). In external cohort 

verification, constructed AI model recognizes ARG 

subpopulations and also distinguishes prognosis 

differences in colorectal cancer (Figure 6A, 6D). 

Interestingly, there are no significant prognosis 

difference amongst AI-recognized ARG subgroups in 

the female cohort (Figure 6F). To our knowledge, the 

tumoral biology of CRC is significantly different 
between female and males [28]. For example, 

significant differences in progression-free survival 

(PFS) are observed in the male cohort with combining 

treatment of capecitabine and bevacizumab, while it’s 

no significant difference in the female cohort [28]. In 

fact, a higher incidence and death rate of CRC is 

observed in male cohorts as compared to females [1]. 

 

To further explore the role of AI in assessing drug 

response, the OncoPredict algorithm is applied. And the 

results show a significant hierarchical stratification of 

drug score in the CRC cohort, both in the TCGA cohort 

and GEO cohort (Figure 7A, 7B). And, that is also 

verified in clinical trials in the male cohort (Figure 7C). 

Besides, the response of small molecule inhibitors 

(SMI) in CRC is also explored. Excitingly, the 

expression level of IGFR, EGFR, and MAPK show 

significant differences amongst ARG subtypes, 

accompanied by significant differences in SMI score 

(Figure 7F, 7G). Those foregoing results imply that 

ARG combining AI exhibits powerful potential ability 

in drug responsivity prediction and prognosis 

prediction. 

 

In order to uncover the mechanisms of ARG in 

regulating drug resistance and immune cell exhaustion, 

venn analysis is performed to screen out GLI2 as a 

candidate in determining immune cell destiny in CRC 

(Figure 8A–8E). In fact, GLI2 is reported to promote 

chemotherapy resistance via regulating HIF-1α and 

TGF-β2 in CRC [29], and it also enhances Hedgehog 

signaling to lead to GLI2-dependent drug tolerance in 

CRC [30]. In this study, the Hedgehog signaling score 

is highest in the ARG1 subgroup, in which group it also 

holds the highest drug score (Figures 7A, 7B, and 8F). 

Meantime, the correlation between the Hedgehog 

signaling score and NEXT is positive (Figure 8H). That 

result implies that Hedgehog signaling is close to drug 

resistance in ARG-mediated drug tolerance. In further 

analysis, the direct regulators of NK cell viability and 

ability are collected by a literature review (Figure 8I) 

[14]. And it is explicit that viability inhibitors (IL6, 

TGFβ) of NK cells are higher expression in the ARG1 

subpopulation, and the correlation between those 

regulators and NKEX is positive (Figure 8K). In 

addition, the correlation between GLI2 and direct 

regulators of NK cells is also positive (Figure 8J). 

Based on the above evidence, GLI2 probably regulates 

NEXT through non-classical Hedgehog signaling in 

CRC, and this hypothesis is verified by in vitro 

experiments. As the results show, down-regulation of 

GLI2 decreases the expression of TGF-beta, while the 

up-regulated TGF-beta restores the expression of 

siRNA-mediated down-regulation of GLI2. This implies 

that a cooperative expression model exists in GLI2 and 

TGF-beta. Besides, we find down-regulation of tumor-
derived GLI2 decreases the expression of tumor-derived 

PDL1 and IL6, and it also leads down-regulation of NK 

cell-derived PD1 and TIM-3, all of which are restored 



www.aging-us.com 14745 AGING 

by adding TGF-beta active protein (Figure 10). These 

aforesaid results imply that TGF-beta-mediated non-

classical Hedgehog pathway is pivotal in GLI2-

mediated NEXT. 

 

CONCLUSION 
 

In this research, we apply AI to construct a prognosis 

prediction model and drug response prediction tools. 

We screen out GLI2 is a key ARG that promotes drug 

tolerance and tumor immunity escape via the TGF-

beta/non-classical Hedgehog signaling pathway. 

However, this study doesn’t uncover the mechanisms of 

how tumor-derived GLI2/TGF-beta axis regulates NK 

cell activity. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The markers of immune cell. 

TEX BEX NEX 

TIGIT PDCD1 TIGIT 

LAG3 FCRL4 LAG3 

HAVCR2 SIGLEC6 HAVCR2 

PDCD1 LAIR1 PDCD1 

BTLA FCGR2B KLRC1 

CD160 CD38 FCGR3A 

CD244 CD70 CD96 

CTLA4 CD72 KLRK1 

IFNA1 CD86 NCR3 

INFB FAS NCR2 

IL2 ITGAX NCR1 

GZMA CXCR3 DNAM1 

TNF CXCR4 FCGR3B 

PRF1 CXCR5 ITGA2 

GZMB TNFRSF13C LAMP1 

IFNA1 CCR6 IFNG 

IFNA2 CCR7 TNF 

IFNA4 CR2 PRF1 

IFNA5 CD22 GZMA 

IFNA6 PMP22 KIR2DL1 

IFNA7 SELL KIR2DL2 

IFNA8 LILR1 KIR2DL3 

IFNA10 LILR3 KIR2DL4 

IFNA11P LILR4 KIR2DP1 

IFNA12P LILR5 KIR2DS4 

IFNA13 LILR6 KIR2DS6 

IFNA14 LILRB1 KIR3DL0 

IFNA16 LILRB2 KIR3DL1 

IFNA17 LILRB3 KIR3DL2 

 LILRB4 KIR3DL3 

 LILRB5 KIR3DL7 

 LILRB6 KIR3DP1 

 LILRB7 KIR3DX1 

  KIR3DS2P 

  GZMB 

 

 


