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INTRODUCTION 
 

Cellular senescence is when a cell enters permanent 

cell cycle arrest and is unable to re-enter the cell cycle 

in response to various known stimuli. Cellular 

senescence, a state of permanent cell cycle 

termination, is one of the main hallmarks of ageing, 

and the main feature of senescent organs is the 

accumulation of senescent cells [1]. Stem cells play a 

crucial role in maintaining the regenerative capacity of 

normal tissues in the body. However, they are 

susceptible to various factors that can deplete their 

numbers, ultimately impacting the overall aging 

process of the body [2]. Cellular senescence is a 

cellular state that is induced by stress signals and 

exists in a specific physiological process, with four 

primary characteristics that are characteristic of cell 

cycle arrest, senescence-related secretory phenotypes, 

macromolecular damage, and metabolic problems [3]. 

Cellular senescence involves a variety of molecular 

mechanisms and can be caused by cellular stalling due 

to telomere length shortening, oxidative stress, 

autophagy dysregulation, mitochondrial disorders, 

DNA damage, inflammatory responses, metabolism, 

and dysregulation of the gut flora [4]. 

 

Chinese medicine was accumulated by the Chinese 

ancestors under specific natural and social environ-

mental conditions. Due to the special natural conditions 

and the special cultural background, Chinese medicine 

inevitably brings its own characteristics. Both have a 

unique triad of characteristics: ethnicity, regionality and 

tradition. In Chinese medicine, the cause of ageing is 

due to the gradual weakening of yin and yang, and the 

common denominator in the treatment of disease lies in 

maintaining the balance of yin and yang. Among other 

things, in Chinese medicine theory, the spleen is the 

foundation of the afterlife, providing nutrients for the 

normal functioning of the body, while the meridians are 

the substances that link the tissues of the internal organs 
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of the body [5]. If there is a dysfunction in both, it will 

affect the functions of the whole body, causing a 

dysregulation of yin and yang, which in turn leads to the 

onset of ageing. Radix astragali, Giant knotweed 

rhizome, Radix bupleuri, Fructus evodiae, Chinese 

ginseng are commonly used in Chinese medicine 

treatment to nourish the spleen and open the meridians. 

In this review, the above herb itself and its compounds 

are described for the prevention and control of cellular 

aging-related mechanisms (Supplementary Table 1, 

Figure 1). 

 

Radix astragali (Astragalus membranaceus 
(Fisch.) Bunge) 
 

Radix astragali is the dried root of Astragalus 

membranaceus (Fisch.) Bunge, a member of the 

legume family, with the properties of strengthening the 

spleen, tonifying the qi, raising the yang and lifting the 

sockets, and benefiting the guard and consolidating the 

surface [6]. In traditional Chinese medicine, it is used 

to treat deficiencies of Qi and blood. In modern 

medical research, Astragalus has been found to 

improve immune function, enhance antioxidant, anti-

radiation and anti-cancer effects, protect the 

cardiovascular, liver, kidney and lung, protect brain 

cells, diastole vascular smooth muscle, have hormone-

like effects, and have antibacterial and antiviral effects 

[7, 8]. Cycloastragenol, Astragaloside IV, Astragalus 

polysaccharide are extracts from the roots of 

Astragalus. 

Cycloastragenol is a cyclic compound that belongs to 

the flavonoid group and contains multiple hydroxyl 

groups. Due to its multiple hydroxyl groups, cyclo-

astragenol plays an important role in combating 

inflammation and oxidative reactions [9]. 

 

Astragaloside IV is a naturally occurring tetraterpene that 

belongs to the group of flavonoid glycosides. Its 

chemical structure is composed of a tetracyclic triterpene 

alcohol backbone and a sugar group. Additionally, 

Astragaloside IV contains multiple hydroxyl and sugar 

groups, which can stabilize free radicals through reaction, 

thereby reducing oxidation reactions [10]. 

 

Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by regulating 

telomerase activity 

 

Telomeres are the genomic ends of linear chromosomes 

that go through successive replications of DNA to 

produce chromosomes with progressively shorter 

telomeres. When telomeres reach a critical length, they 

are unable to attach enough telomere capping proteins, 

exposing the DNA ends to the environment, activating 

the DNA damage response (DDR) pathway, which 

inhibits cell proliferation by functioning as cell cycle 

inhibitors p21 and p16. P21 is a protein known as cell 

cycle protein-dependent kinase inhibitor 1. It is a key 

molecule in cell cycle regulation, and its main role is to 

inhibit the activity of cell cycle protein-dependent kinase 

(CDK), thereby regulating cell growth and division [11]. 

 

 
 

Figure 1. Derivatives chemical formula. 
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c-Myc also affects the regulation of p21. As a 

transcription factor, c-Myc regulates the transcription of 

multiple genes and is involved in processes such as cell 

cycle regulation, cell proliferation, and cell differen-

tiation. The aberrant expression of c-Myc is correlated 

with the occurrence and development of a variety of 

tumors, making it an important oncogene. Our study 

found that heat shock protein 90 kDaβ1 (HSP90B1) is a 

c-Myc interacting gene, which regulates p21 and 

consequently affects cancer cell senescence [12]. 

 

Its length is mainly regulated by telomerase, an enzyme 

responsible for the lengthening of telomeres in cells. 

Telomerase is a basic nuclear protein reverse 

transcriptase that adds telomeric DNA to the ends of 

eukaryotic chromosomes, filling in telomeres lost to 

DNA replication and allowing telomere repair to 

lengthen, which can keep telomeres from having to be 

lost to cell division, allowing for an increase in the 

number of cell divisions. Dysfunction of very short 

telomeres can trigger DNA damage signalling pathways 

[13]. Telomerase reverse transcriptase (TERT) is 

essential for maintaining telomerase activity, improving 

nuclear DNA damage and apoptosis by reducing mito-

chondrial reactive oxygen species (ROS) production, as 

well as maintaining ongoing cell division and delaying 

cellular senescence [8].  

 

In a study based on rat hepatocytes, Astragalus 

membranaceus was found to increase the expression 

level of hepatic TERT and to increase telomere length 

[14]. In contrast, in a high glucose (HG)-based stress 

response in nucleus pulposus cells (NPC), Astragalus 

membranaceus extracts cyclogalactol and astragaloside 

IV were found to upregulate TERT expression, activate 

telomerase, and improve telomere wear, protecting NPC 

from HG-induced senescence [15]. Astragaloside IV, a 

highly purified Astragalus root extract, is often used in 

current studies as a telomerase activator for relevant 

experimental model treatments. When Astragaloside IV 

is treated with haploid mouse embryonic fibroblasts, it 

activates telomerase, causing short telomere elongation 

in vivo [16]. Furthermore, including Astragaloside IV in 

the normal diet of mice boosted TERT levels in the liver 

while also increasing glucose tolerance, osteoporosis, 

and skin health. 

 

Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by inhibiting 

oxidative stress 

 

Oxidative stress is a key factor in the ageing process 

and in the onset and development of age-related 
diseases. Superoxide dismutase (SOD), malondi-

aldehyde (MDA), thiobarbituric acid (TBA), 

8-hydroxy-2-deoxyguanosine (8-OH-dG) and matrix 

metalloproteinases (MMPs) are important indicators of 

organ important indicators regarding oxidative stress and 

oxidative damage. Free radicals and peroxides are 

produced during biological metabolism as a result of 

redox reactions, and if cells are unable to scavenge free 

radicals and peroxides in a timely manner due to 

environmental stress, this leads to lipid peroxidation, 

protein peroxidation, and impaired defense systems 

caused by excess ROS, which gradually damage the 

structure and function of cells, eventually leading to 

cellular senescence [17, 18]. ROS can lead to DDR and 

induce cellular senescence through both mitochondrial 

and non-mitochondrial pathways, and, ROS-induced 

senescence can generate additional mitochondrial (MT) 

mutations and ROS, further amplifying the positive 

feedback loop of senescence signalling and ultimately the 

senescence phenotype [19]. Furthermore, ROS can 

stimulate autophagy, and activated autophagy in turn 

limits oxidative stress [20]. Free radicals are physiological 

by-products of metabolism that promote oxidative stress 

and can be converted to hydrogen peroxide and ultimately 

to water by a variety of antioxidant enzymes [21]. In a 

study based on rat hepatocytes, Astragalus membranaceus 

was found to inhibit oxidative stress by reducing the 

levels of hepatic pro-oxidants [14]. The regulatory subunit 

p85 and the catalytic subunit p110 of phosphoinositol 3-

kinase (PI3K) form a dimer. When it binds to the growth 

factor receptor, it changes the protein structure of protein 

kinase B (Akt) and activates it, as well as activating or 

inhibiting the activity of a number of downstream 

substrates, including apoptosis-associated proteins Bad 

and Caspase9, regulating cell proliferation, differen-

tiation, apoptosis, and migration. The PI3K/AKT 

signalling pathway is a signalling pathway associated 

with proliferation, differentiation and apoptosis, and is 

important for delaying cellular senescence and inhibiting 

oxidative stress and inflammatory responses [22]. 

Mammalian target of rapamycin (mTOR) is PI3K/Akt's 

downstream target, and the PI3K/AKT/mTOR pathway is 

crucial for controlling inflammatory responses and 

glycolipid metabolism [23]. 
 

In a mouse model of D-galactose (D-Gal)-induced aging, 

Astragalus can inhibit oxidative stress by scavenging free 

radicals and activating the PI3K-Akt signaling pathway, 

thereby delaying aging [24] In a study based on UVB 

(ultraviolet radiation b)-induced senescence in primary 

rat dermal fibroblasts, astragaloside was found to delay 

cellular senescence by inhibiting oxidative stress and 

thereby [25]. The aryl hydrocarbon receptor (AhR) is an 

important receptor in response to immune responses and 

can cause oxidative stress by promoting the production of 

ROS. In a study based on IS-induced oxidative stress in 

human renal cortical proximal tubule epithelial barrier 

cells, Astragaloside IV was found to inhibit oxidative 

stress by targeting the AhR [25]. 
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Sirtuins (SIRTs) are a class of NAD-dependent 

deacetylases that are found in a wide variety of 

organisms, including bacteria and humans. They play a 

special role in the regulation of specific cellular 

functions by deacetylating histones and non-histones. It 

plays an important role in cellular senescence and 

biological aging by acting as a deacetylase that is 

directly or indirectly involved in the regulation of 

multiple pathways of nuclear factor-κB protein (NF-

κB), P53, AMP-activated protein kinase (AMPK), 

mTOR, and hypoxia-inducible factor 1α (HIF-1α) 

through the deacetylation of certain key proteins 

[26, 27]. AMPK, an AMP-dependent protein kinase, is a 

key molecule in the regulation of biological energy 

metabolism and plays a critical role in the regulation of 

tissue energy metabolism and the immune system to 

delay cellular senescence [28]. In HG-induced 

senescence of human umbilical vein endothelial cells 

(HUVEC), astragaloside was found to inhibit oxidative 

stress through the SIRT1/AMPK pathway, thereby 

delaying senescence [29]. 

 

Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by improving 

autophagy 

 

The process of autophagy involves engulfing one's 

own proteins or organelles and encapsulating them 

into vesicles that fuse with lysosomes to form 

autophagic lysosomes that degrade their contents. By 

doing this, the cell can meet its own metabolic needs 

and renew some organelles that can help the organism 

maintain homeostatic balance. In a variety of 

experimental animals, dysfunctional autophagy can 

lead to a shortened lifespan, while enhanced or 

restored autophagy facilitates lifespan and healthy 

lifespan extension in a variety of organisms. The core 

process of its inhibition of senescence lies in the 

inhibition of mTOR or activation of AMPK [30]. 

Additionally, by reducing ROS production from DNA 

damage and encouraging the recycling of DNA repair 

proteins, autophagy can lessen the impacts of genomic 

instability and oxidative stress, as well as selectively 

degrading affected molecules and organelles to 

protect cells from ongoing DNA damage [31, 32]. 

Although autophagy does not restore or stop telomere 

attrition, studies have shown that telomere dys-

function directly stimulates autophagy and promotes 

precancerous cell death [33]. mTOR belongs to the 

PI3K family and is present in at least two protein 

complexes: mTOR complex 1 (MTORC1) and 

mTORC2 [34]. Endotoxin can down-regulate 

macrophage autophagy and up-regulate IL-6 via the 

Akt/mTOR pathway, whereas Astragalus injection 

reverses these phenomena and enhances autophagy by 

activating AMPK [35]. 

In a study based on the establishment of a pulmonary 

toxicity model based on the injection of fine airborne 

particulate matter2.5 (PM2.5) into rats through the 

trachea and PM5. 8383 into cells, Astragaloside IV was 

found to regulate the degradation of autophagosomes 

through PI3K/Akt/mTOR signalling, thereby restoring 

autophagic flux [36]. In a study based on the Type 2 

diabetes mellitus (T2DM) rat diabetic liver injury and 

neonatal rat cardiomyocyte injury model, a mouse heart 

failure model, Astragalus polysaccharide and Astra-

galoside IV were found to restore normal autophagy 

through the AMPK/mTOR pathway [37]. 

 

Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by improving 

mitochondrial disorders and DNA damage 

 
Mitochondrial calcium levels, NAD+/NADH ratio, 

cardiolipin levels, mitochondrial phagocytic protein 

(Mieap) levels, electron transport chain function and 

iron metabolism are important factors affecting 

mitochondrial function [38]. The most prominent role of 

mitochondria is to generate energy for the cell to 

coordinate its response to environmental changes [8]. 

Mitochondria, a key factor in aerobic biometabolism, 

are the source site of oxidative stress and cellular 

autophagy, so mitochondrial dysfunction and reduced 

mitochondrial content are hallmarks of ageing and play 

an important role in promoting it [39, 40]. In senescent 

cells, decreased phosphorylation of the pyruvate 

dehydrogenase complex distributed in the mitochondrial 

matrix increases the use of pyruvate in the tricarboxylic 

acid cycle, leading to accelerated catabolism and redox 

stress, pathways that together promote cell cycle arrest 

[41]. Mitochondrial dysfunction is driven by loss of 

NAD+ for nuclear DNA repair, defective mitochondrial 

autophagy induced by DNA damage and altered 

expression of mtDNA polymerase which in turn affects 

mtDNA replication and can lead to cellular senescence 

[42]. A novel isoflavonoid called formononetin (FMN) 

was discovered in the Astragalus membranes. In a 

study based on HG-induced mitochondrial dysfunction 

in HK-2, FMN was found to reverse mitochondrial 

membrane depolarization and ameliorate mitochondrial 

damage by modulating the Sirt1/peroxisome proli-

Ferators-activated receptor γ coactivator Lalpha (PGC-

1α) pathway [43]. 

 

Mitochondrial autophagy is regulated by multiple 

pathways, one of which is the PINK1/Parkin pathway. In 

depolarized mitochondria, PTEN-induced kinase 1 

(PINK1) is a molecular sensor of damaged mitochondria, 

triggering a signal for the initiation of mitochondrial 

autophagy [44]. Astragaloside effectively mitigates 

oxidative stress and excessive activation of mitochondrial 

autophagy through the PINK1/Parkin pathway to 
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maintain mitochondrial function in Schwann Cells based 

on HG-induced oxidative stress [45]. Ononin is a 

flavonoid isolated from Astragalus root, and in LPS-

treated THP-1 cell-based inflammation, Ononin 

ameliorates mitochondrial damage and delays the 

inflammatory response by triggering mitochondrial 

autophagy [46]. In a study based on HG-induced senes-

cence in rat aortic endothelial cells, Astragalus 

polysaccharide ameliorated mitochondrial disorders by 

modulating mitochondrial Na+/Ca2+ [47]. 

 

Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by inhibiting 

inflammatory responses 

 

Increased persistent inflammation promotes the release 

of interleukin 6 (IL-6), interleukin 1β (IL-1β) pro-

inflammatory factors and inflammatory mediators, for 

which upregulation can lead to immune system 

dysfunction, reduced cellular autophagy and thus 

promote aging [48]. The p53 protein is closely related to 

the mechanisms of aging [49]. It was found that when 

iron is overloaded, ROS present high levels that 

promote p53 acetylation, stabilize p53 by enhancing 

p53 binding to DNA, polarize macrophages to an M1 

pro-inflammatory phenotype, promote inflammation, 

and in turn promote cellular senescence [50]. SIRT1 

performs the function of a histone deacetylase on p53, 

which operates to deacetylate p53 so that inflammation 

is inhibited and thus slows down ageing [51]. In a study 

based on a D-Gal-induced senescence model of HK-2 

cells, Astragaloside IV was found to alleviate the 

inflammatory response through the SITR1-p53 

pathway, thereby delaying cellular senescence [52]. In 

studies based on IL-3β-induced RSC-1 inflammatory 

response and ovalbumin-induced asthma model in mice, 

Astragalus polysaccharide A and Astragaloside IV 

exerted anti-inflammatory effects to alleviate the 

inflammatory response by inhibiting PI3K/AKT/ 

mTOR autophagic pathway [53, 54]. Toll-like receptors 

(TLRs), which recognize various molecular patterns 

associated with pathogens, are crucial for the innate 

immune response. They serve a crucial function in 

inflammation, immune cell regulation, survival, and 

proliferation and are the first line of defense against 

pathogen invasion. They also activate NF-κB [55]. In 

contrast, NF-κB is a key regulator of natural and 

acquired immune responses, with functions in 

promoting cell proliferation, inhibiting apoptosis, 

promoting cell migration and invasion, and stimulating 

angiogenesis and metastasis. As an upstream gene for a 

variety of inflammatory factors, activation of NF-κB 

promotes the release of a variety of pro-inflammatory 
factors (IL1, IL6 and IL8), which in turn promotes 

cellular senescence [56]. In a study on the construction 

of a mouse model of idiopathic pulmonary fibrosis 

based on bleomycin (BLM), Astragalus polysaccharide 

was found to attenuate the inflammatory response by 

inhibiting the TLR4/NF-κB signaling pathway [57]. 

 

Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by regulating 

metabolism 

 

The broad name for the orderly succession of chemical 

events that take place in living things to sustain life is 

metabolism, sometimes known as metabolism. These 

reactionary mechanisms enable organisms to develop 

and reproduce, preserve their structure, and react to 

their environment. Catabolism, which uses energy to 

break down big molecules, and anabolism, which uses 

energy to synthesise parts of the cell like proteins and 

nucleic acids, are the two categories into which meta-

bolism is typically classified. An organism's metabolism 

can be conceived of as the continuous interchange of 

matter and energy within it; when this exchange stops, 

the organism's structure disintegrates. 

 

Glucose and lipid metabolism are by far the largest 

factors affecting cellular senescence, and disorders of 

glucolipid metabolism can lead to inflammation, 

intestinal flora disorders, and mitochondrial dysfunction 

[58–60]. While calorie restriction (CR), which decreases 

telomere wear, boosts antioxidant capacity, and lowers 

ROS production, is the most efficient regulated metabolic 

strategy to delay aging. Other studies have demonstrated 

that CR can promote mitochondrial proliferation by 

activating the PGC-1 in mitochondria to promote mito-

chondrial proliferation and thus mitigate oxidative 

damage by generating energy. CR can also promote ATP 

synthesis by balancing respiratory movements [8]. 

 

T2DM is a systemic metabolic disorder characterized by 

insulin deficiency and insulin resistance. In a study based 

on a T2DM mouse model, astragaloside and astragaloside 

polysaccharide were found to improve the disruption of 

glucolipid metabolism in T2DM mice, and astragaloside 

polysaccharide protected the intestinal barrier by suppres-

sing intestinal inflammation and oxidative stress levels, 

inhibiting the potential intestinal pathogen Shigella, and 

promoting the growth of beneficial bacteria ectopic and 

lactobacilli [61, 62]. Sweet taste receptors (STR) play an 

important role in glucose metabolism and can act as 

glucose sensors, expressed in intestinal sweet cells and 

intestinal cell populations involved in sugar transport 

in vivo, with downstream targets of taste receptor family 1 

member 2 (T1R2), α-gustadusin (Gα) and transient 

receptor potential cation channel subfamily member 5 

(TRPM5) [63]. In a study based on T2DM rats, Astragalus 
polysaccharides were found to promote glucose transport 

and lipogenesis through activation of the STRs pathway to 

promote glucose metabolism [64]. 
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Astragalus membranaceus (Fisch.) Bunge and its 

compounds delay cellular senescence by improving 

intestinal flora dysbiosis 

 

In general terms, the microorganisms in the gut are 

divided into three main groups: beneficial, harmful and 

neutral bacteria. The microorganisms in the gut are 

divided into several phyla, namely Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, Verruco-

microbia, etc., of which Firmicutes and Bacteroidetes 

dominate in number. The dominant phyla are Firmicutes 

and Bacteroidetes [65]. Intestinal motility and diet 

structure can lead to changes in the distribution and 

structure of the intestinal flora [66]. Ageing is 

associated with intestinal flora. If the intestinal flora is 

disturbed, it can trigger oxidative stress, inflammatory 

responses and consequently cellular senescence [67]. In 

the study, it was found that the associated increase in 

gut flora, affects cellular senescence, as well as 

affecting oxidative stress and mitochondrial dysfunction 

in cells [68]. RSS produced by the intestinal flora 

enhances the antioxidant capacity of the host [69].  

In contrast, intestinal flora maintains intestinal 

homeostasis through the release of short-chain fatty 

acids (SCFAs). Following the fermentation of dietary 

fiber and resistant starch, certain colonic anaerobic 

bacteria create SCFAs, which mostly consist of acetic 

acid, propionic acid, and butyric acid. The formation of 

SCFAs is the result of complex interactions between 

diet and intestinal flora in the intestinal luminal 

environment and has an important role in the immune, 

metabolic and endocrine aspects of the body [68, 70]. 

The production of SCFAs is a fermentation reaction that 

occurs in the lumen of the large intestine, and the main 

bacteria that produce SCFAs are anaerobic bacilli, 

bifidobacteria, eubacteria, streptococci and lactobacilli 

[71]. 

 

In a study based on a high-fat diet-induced non-

alcoholic fatty liver disease (NAFLD) rat model, 

Astragalus polysaccharides ameliorated liver inflam-

mation and lipid accumulation in NAFLD by 

modulating gut microbiota signalling pathways [72]. In 

a BLM (BLM)-based mouse model of idiopathic 

pulmonary fibrosis (IPF), Astragalus polysaccharides 

were found to attenuate the inflammatory response by 

inhibiting the TLR4/NF-κB signalling pathway and to 

balance the gut microbiota by regulating metabolic 

pathways [57]. In a study based on a mouse model of 

T2DM, Astragalus polysaccharide was found to 

improve disorders of glucolipid metabolism in T2DM 

mice and protect the intestinal barrier by suppressing 

levels of intestinal inflammation and oxidative stress, 
inhibiting the potentially pathogenic intestinal bacteria 

Shigella and promoting the growth of the beneficial 

bacteria Fusobacterium and Lactobacillus [57]. In a 

mouse model of cholesterol gallstones, Astragalus 

polysaccharide enhanced bile acid synthesis and 

improved intestinal microbiota, increasing the relative 

abundance of the phylum Bacteroides [73]. 

 

Giant knotweed rhizome (Reynoutria japonica 
Houtt.) 
 

The Giant knotweed rhizome of the plant Reynoutria 
japonica Houtt. is used in traditional Chinese medicine 

to dispel wind, promote dampness, break up blood stasis 

and clear the channels [6]. In modern research, it is 

important in combating cellular ageing and in 

orthopaedic and gynaecological diseases [74, 75]. 

Resveratrol, Polydatin, Polysaccharide and Thujaplicins 

are all extracts of the Chinese wildflower. Resveratrol is 

a natural product belonging to the class of compounds 

known as flavonoids. Its chemical structure comprises 

two benzene rings and a propenyl side chain. The 

benzene ring structure and propenyl side chain enable it 

to effectively stabilize free radicals, consequently 

mitigating cellular damage caused by them [76]. 

Polydatin is a naturally occurring polyphenol 

compound. Polydatin's antioxidant properties are mainly 

attributed to the benzene ring and glucose moiety in its 

chemical structure. The hydroxyl group in the benzene 

ring structure has a powerful free radical scavenging 

ability that neutralizes and stabilizes free radicals, 

thereby reducing free radical damage to cells and 

tissues. In addition, the presence of the glucose moiety 

makes Polydatin more water-soluble for better 

antioxidant effects in the body [77]. 

 

Thujaplicins are natural compounds that belong to the 

saponin group. Its chemical structure is composed of a 

sugar group and a saponin backbone. The hydroxyl 

group in the sugar group and the unsaturated bond in the 

fatty acid group of Thujaplicins can supply hydrogen to 

participate in the neutralization reaction of free radicals, 

thereby inhibiting the oxidation reaction. Additionally, 

saponins can inhibit metal-catalyzed oxidation reactions 

by binding to metal ions [78]. 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by enhancing telomerase activity 

 

p53 is a common human tumour suppressor protein 

and transcription factor involved in the regulation of 

genome integrity, cell cycle arrest, apoptosis, and 

autophagy [79]. Endogenous wild-type p53 promotes 

senescence by inhibiting TERT, which in turn down-

regulates telomerase activity [80]. Resveratrol, a tiger 

cane extract, was found to increase telomerase activity 
by reducing p53 levels in a study based on mechanical 

overload-induced senescence in human myeloid cells 

[81]. Resveratrol, the main extract of Eryngium 
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tigrinum, has been found to delay cellular senescence 

by activating the PI3K-Akt signaling pathway and 

increasing telomerase activity in studies based on 

naturally aging endothelial progenitor cells (EPCs) 

[82]. 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by inhibiting oxidative stress 

 

In angiotensin II (AngII)-based induced vascular 

smooth muscle cell senescence, resveratrol can increase 

the expression of antioxidants and inhibit oxidative 

stress by activating the AMPK-sirt1 signaling pathway, 

thereby delaying aging [83]. In addition, resveratrol 

inhibits bone marrow stromal stem cells via the 

mitogen-activated protein kinase (MAPK) pathway, an 

upstream activation signal for Akt and AMPK, reducing 

senescence-related phenotypes and oxidative stress [28, 

84]. The MAPK pathway includes the classical MAPK 

pathway, the c-Jun amino-terminal kinase (JNK)/p38 

mitogen-activated protein kinase (p38 MAPK) pathway 

and extracellular signal-regulated kinase 5 (ERK5). 

Among these, ERK primarily controls cell growth and 

differentiation whereas JNK and p38 mostly control 

inflammation, apoptosis, and proliferation [85]. 

Peroxisome proliferator-activated receptor γ (PPARγ) is 

a key regulator of adipogenesis and adipose tissue 

development and has an important role in the inhibition 

of oxidative stress due to lipid peroxidation [86, 87]. In 

studies based on lipopolysaccharide-induced senescence 

in endothelial progenitor cells, resveratrol inhibits 

oxidative stress and thus delays senescence through the 

PPAR-γ pathway [88].  

 

NRF2 has been identified as a crucial transcription factor 

that mediates oxidant defense and improves cell viability 

in numerous tissues [89]. NRF2 deficiency results in 

delayed proliferation of maternal hepatocytes with 

associated dysregulation of cell cycle protein activation 

[90]. And NRF2 plays an important role in maintaining 

normal oxygen dynamic homeostasis and restoring 

normal dynamic homeostasis after oxidative damage. The 

glutathione pathway is a key pathway for the restoration 

of redox homeostasis, and when glutathione (GSH) levels 

are reduced, this can lead to disruption of the cellular 

antioxidant system and the inability to eliminate ROS, 

leading to a build-up of ROS [91]. The interaction of 

NRF2 with NF-κB is essential for integrating the 

inflammatory response. In the presence of inflammation, 

NF-B is upregulated and consequently its target NRF2 

transcription is reduced, allowing for a sustained increase 

in the production of pro-inflammatory cytokines that 

underlie these diseases. The removal of NRF2 increases 

the activity and cytokine production of NF-B, which can 

positively or negatively regulate the transcriptional 

activity of NRF2 [92].  

HIF-1α expression is increased during hypoxia and can 

reduce ROS levels during hypoxia through multiple 

pathways, including direct targeting of mitochondria to 

prevent oxidative stress [93]. Nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX) is 

composed of a membrane subunit (NOX1, NOX2, 

NOX3, NOX4 or NOX5) and a catalytic subunit 

(p22phox, p47phox, p67phox) and is one of the main 

sources of ROS production in cells [94]. Nuclear factor 

(erythroid-derived 2) like 2 (NRF2) is a member of the 

basic leucine transcription factor family, which is 

implicated in redox regulation, protein stabilization, 

DNA repair, and prevention of apoptosis [95]. When 

NOX levels are increased, HIF-1α can be activated [96]. 

In HG-induced glomerular podocyte and human retinal 

epithelial cell injury, Polydatin and Thujaplicins can 

modulate the NRF2 signalling pathway and alleviate 

oxidative stress by inhibiting HIF-1α/NOX4 [97, 98]. In 

studies based on D-gal-induced cardiac senescence in 

mice and renal senescence in rats, Thujaplicins 

attenuated cardiac and renal senescence by inhibiting 

oxidative stress [99, 100]. In a study based on ethanol-

induced liver injury in mice, aqueous extracts of C. 

tigrinus inhibited hepatic oxidative stress by modulating 

NRF2 [101]. 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by improving autophagy 

 

In a study based on palmitic acid-induced muscle cell 

senescence, resveratrol was found to inhibit cellular 

senescence by restoring autophagic flux [102]. Neuro-

genic locus notch homolog protein 1 (Notch1) is a 

transmembrane receptor that can be involved in 

apoptotic activity by regulating autophagy [103]. In 

studies based on cigarette smoke-treated endothelial 

cells, resveratrol reversed the decrease in mTOR 

expression caused by cigarette smoke through Notch1 

signalling, thereby promoting autophagy (Zong DD, Liu 

XM, Li JH, Ouyang RY, Long YJ, Chen P, Chen Y. 

Resveratrol attenuates cigarette smoke induced 

endothelial apoptosis by activating Notch1 signaling 

mediated autophagy. Respir Res. 2021 Jan 19; 

22(1):22.). 

 

Inflammatory vesicles are cytoplasmic multiprotein 

complexes that primarily mediate the host immune 

response to microbial infection and cellular damage. 

Pattern recognition receptor (PRR) is one of the 

components of inflammatory vesicles, and NLRP3 

belongs to the family of NOD-like receptor proteins 

(NLRs) among the PRRs that form inflammatory 

vesicles. NLRP3 inflammatory vesicles are activated by 
two main signals: the first initiation signal is provided 

by microbial or endogenous molecules that induce 

NLRP3 inflammatory vesicle expression by activating 
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NF-κB; the second activation signal is triggered by 

adenine nucleoside triphosphate, pore-forming toxins, 

viral RNA or particulate matter (DING Yang (丁杨), 

HU Rong. Research Progress in Mechanisms of NLRP3 

Inflammasome Activation and Regulation[J]. Progress 

in Pharmaceutical Sciences, 2018, 42(4):294-302 (in 

Chinese). When the environment is hypoxic, it reduces 

the binding of NLRP3 and mTOR and activates 

autophagy to improve the inflammatory response 

(Cosin-Roger, J., Simmen, S., Melhem, H., Atrott, K., 

Frey-Wagner, I., Hausmann, M., de Vallière, C., 

Spalinger, M.R., Spielmann, P., Wenger, R.H., Zeitz, J., 

Vavricka, S.R., Rogler, G., Ruiz, P.A., 2017. Hypoxia 

ameliorates intestinal inflammation through 

NLRP3/mTOR downregulation and autophagy 

activation. Nat. Commun. 8, 98. https://doi.org/10.1038/ 

s41467-017-00213-3). Polydatin is a bioactive 

component of thuja, a natural precursor of resveratrol. 

Polydatin prevented the activation of NLRP3 

inflammatory vesicles, restricted the production of 

inflammatory cytokines, and promoted autophagy via 

the NLRP3/mTOR pathway in atherosclerotic lesions 

generated in mice based on feeding high fat (Zhang X, 

Wang Z, Li X, Chen J, Yu Z, Li X, Sun C, Hu L, Wu 

M, Liu L. Polydatin protects against atherosclerosis by 

activating autophagy and inhibiting pyroptosis mediated 

by the NLRP3 inflammasome. J Ethnopharmacol. 2023 

Jun 12; 309:116304). 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by ameliorating mitochondrial 

disorders and DNA damage 

 

In studies based on human embryonic lung fibroblasts 

and human peritoneal mesothelial cells (HPMC), 

resveratrol treatment was found to delay cellular 

senescence by attenuating oxidative DNA damage, 

mitochondrial dysfunction [104, 105]. In studies based 

on hydrogen peroxide-induced senescence in HUVEC 

and human nucleus pulposus cells (NPC), resveratrol 

was found to attenuate mitochondrial dysfunction 

through autophagy, thereby delaying cellular 

senescence [106, 107]. In human nasal epithelial cell 

stress-based and mouse allergic rhinitis models, 

Polydatin ameliorated mitochondrial damage through 

PINK1-Parkin-mediated mitochondrial autophagy and 

exerted a protective effect against allergic rhinitis by 

inhibiting NLRP3 inflammatory vesicles [108]. 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by inhibiting inflammatory 

responses 

 
miRNAs are a class of endogenous non-coding small 

molecule RNAs involved in the regulation of meta-

bolism, inflammatory responses, mitochondrial 

disorders, oxidative stress responses and other 

mechanisms related to cellular senescence [109]. In a 

study based on cigarette smoke extract (CSE)-induced 

senescence in human airway epithelial cells (BEAS-

2B), resveratrol was found to delay cellular senescence 

by modulating the miR-2a/SIRT1/NF-κB pathway 

[110]. In a study based on inflammatory cytokine-

induced inflammatory responses in nucleus pulposus 

(NP) cells, resveratrol was found to increase telomerase 

activity and reduce the expression of inflammatory 

proteins, thereby delaying cellular senescence [111]. In 

studies based on an anterior cruciate ligament 

transection-induced osteoarthritis rat model and IL-1β 

treatment of rat chondrocytes, Polydatin attenuated 

inflammation by inhibiting the NF-κB signalling 

pathway in vitro [112].  

 

The signal transducer and activator of transcription 

protein signal transduction and activator of transcription 

(STAT) is a unique family of proteins that bind to DNA 

and have an important role in cancer progression  

and inflammatory responses [113]. In a study based  

on dextran sodium sulfate (DSS) and 2,4,6-

trinitrobenzenesulfonic acid (TNBS)-induced colitis in 

mice, polydatin inhibited Th3 cell differentiation and 

attenuated the inflammatory response by directly 

inhibiting signal transduction and activator of 

transcription 17 (STAT17) [114]. 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by regulating metabolism 

 

In studies based on HG and hyperinsulin-induced 

inflammation in adipocytes, thuja polysaccharide could 

regulate glucolipid metabolism and alleviate the 

inflammatory response by promoting NRF2 expression 

[115]. In Oxidized Low Density Lipoprotein (ox-LDL)-

based stimulation of HUVEC, polydatin reversed ox-

LDL-induced apoptosis and inhibition of lipid 

accumulation and angiogenesis in HUVEC cells by 

modulating the miR-26a-5p/BID axis to ameliorate 

dysfunctional lipid metabolism [116]. Interleukin-1 

receptor-associated kinase 3 (IRAK3) is an important 

negative regulator of TLR-mediated cell signaling that 

inhibits activation of the NF-κB signaling pathway and 

has an important role in the inflammatory response [117]. 

 

In palmitate-based treatment of INS-1 insulinoma cells 

and diabetic mouse models, polydatin alleviated 

dyslipidemia and reduced insulin resistance by 

enhancing insulin secretion and expression of diabetes-

related genes [118].  

 
Similarly, also in studies of the myotubular insulin 

resistance model induced by palmitic acid, Thujaplicins 

ameliorated glucose metabolism disorders and 

https://doi.org/10.1038/s41467-017-00213-3
https://doi.org/10.1038/s41467-017-00213-3


www.aging-us.com 14481 AGING 

ameliorated HG-induced inflammatory responses by 

modulating miR-6-340p/IRAK3 [119]. Scholesterol 

regulatory element binding proteins (SREBPs) and 

peroxisome proliferator-activated receptor alpha 

(PPARα) [120]. It has an important role in lipid 

metabolism and can act as a signalling factor for normal 

or abnormal lipid metabolism [120, 121]. In studies based 

on hyperlipidemic and obese mouse models, Thujaplicins 

reduced the expression levels of SREBPs and PPARα 

and exerted regulatory lipid metabolism and anti-

inflammatory effects through activation of the AMPK 

signaling pathway [122, 123]. In studies based on T2DM 

mice, Thujaplicins and aqueous extracts of C. tigris 

reduced blood glucose levels and blood lipid levels in 

mice, and Thujaplicins also repaired pancreatic β-cells to 

improve disorders of glucolipid metabolism [124, 125]. 

 

Reynoutria japonica Houtt. and its compounds delay 

cellular senescence by improving intestinal flora 

dysbiosis 

 

Reynoutria japonica Houtt. has an important role in 

improving the dysbiosis of intestinal flora, but no more 

detailed regulatory mechanism has been proposed in the 

current study. In a study of an immunosuppressed mouse 

model based on cyclophosphamide, ethanolic extracts of 

C. tigrinus restored the gut microbial community 

disturbed by cyclophosphamide [126]. In a study based 

on a high-fat diet-induced obesity in mice, resveratrol 

treatment significantly modulated the composition and 

metabolic function of the intestinal flora and exerted an 

anti-obesity effect [127]. Resveratrol was discovered to 

lower inflammatory responses and regulate the 

expression of target genes related to lipid metabolism by 

regulating intestinal microecological balance and 

encouraging the growth of probiotic bacteria in a study 

of rats with metabolic syndrome (MS) induced by a 

high-fat, high-salt, high-sugar diet [128]. In a study of 

mice fed a high-fat diet, resveratrol was found to alter 

the intestinal microbial composition, reducing the 

proportion of thick-walled bacteria that could be pro-

inflammatory and the ratio of thick-walled bacteria to 

anaphylactic bacteria [129]. In cyclophosphamide-based 

mouse studies, ethanol extracts of C. tigrinus restored 

disturbed intestinal flora [126]. 

 

Radix bupleuri (Bupleurum scorzonerifolium.) 
 

Radix bupleuri is the dried root of Bupleurum 
scorzonerifolium. family Umbelliferae, which has the 

effect of reconciling the exterior and interior, draining 

the liver and Qi, and raising Yang [6]. Modern research 

has shown that its antidepressant, anti-inflammatory, 

immunomodulatory, hepatoprotective, and anti-aging 

effects are important in the prevention and control of 

cellular aging [130]. Quercetin, Caihu polysaccharide 

and Caihu saponin are the main active ingredients of 

Caihu.  

 

Quercetin is a naturally occurring flavonoid that 

possesses multiple phenolic hydroxyl groups and double 

bonds in its chemical structure. These features enable it 

to effectively trap and neutralize free radicals, thus 

reducing oxidative stress and cellular damage [131]. 

 

Caihu saponin is a natural compound extracted from 

Bupleurum scorzonerifolium. It is a triterpenoid. Caihu 

saponin's chemical structure consists of a benzene ring 

and a hydroxyl group. With its high electron density, it 

can effectively absorb and neutralize free radicals. 

Consequently, it mitigates oxidation reactions induced 

by free radicals [132]. 

 

Bupleurum scorzonerifolium. and its compounds 

delay cellular senescence by regulating telomerase 

activity 

 

Quercetin is one of the active ingredients of radix 

bupleuri. In a study of Oxidized Low Density 

Lipoprotein (ox-LDL)-induced senescence in human 

aortic endothelial cells (HAEC), quercetin was found to 

reduce the increase in telomerase activity in endothelial 

cells caused by ox-LDL In a study of human aortic 

endothelial cell (HAEC) senescence, quercetin was 

found to reduce the increase in telomerase activity in 

endothelial cells caused by ox-LDL, thereby delaying 

senescence [133]. 

 

Bupleurum scorzonerifolium. and its compounds 

delay cellular senescence by inhibiting oxidative 

stress 

 

In H2O2-induced vascular smooth muscle cell (VSMC)-

based senescence, quercetin inhibits oxidative stress by 

activating AMPK, which in turn inhibits VSMC 

senescence [134]. Chai Hu polysaccharide, the main 

active ingredient in Chai Hu, has significant in vitro 

antioxidant effects, and it can significantly delay 

hydrogen peroxide (H2O2)-induced senescence in 

mouse lung epithelial cells [135]. Chaihu saponin D can 

regulate PI3K/NRF2, p38-MAPK signaling pathway 

and thus inhibit senescence in each cell by reducing 

oxidation levels in studies based on neuronal cell 

inflammation, cardiomyocyte inflammation, and hose 

cell inflammation [136–138]. 

 

Bupleurum scorzonerifolium. and its compounds 

delay cellular senescence by improving autophagy 

 
In a study based on a tert-butyl hydroperoxide 

(TBHP)-induced oxidative stress model of NPC, 

quercetin was found to enhance autophagy through 
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modulation of the p38MAPK/mTOR signaling 

pathway to protect NPC from apoptosis and thus delay 

cellular senescence [139]. Caihu saponin D was 

discovered to reduce the release of inflammatory 

factors in mice in a study based on carbon 

tetrachloride-induced liver fibrosis in mice through 

enhancing autophagy [140]. 

 

Bupleurum scorzonerifolium. and its compounds delay 

cellular senescence by ameliorating mitochondrial 

disorders and DNA damage 

 

The mitochondrial membrane potential of aged HDL 

fibers treated with quercetin was found to be restored to 

levels comparable to those of young HDL fibers in a 

study using human dermal fibroblasts (HDF), indicating 

that quercetin reversed age-related changes in 

mitochondrial membrane potential and improved 

mitochondrial dysfunction [27]. In a rat neuronal cell-

based study, Caihu saponin D ameliorated 

mitochondrial damage by modulating mitochondrial 

translocation and chromosome-dependent pathways 

[141]. 

 
Bupleurum scorzonerifolium. and its compounds 

delay cellular senescence by inhibiting inflammatory 

responses 

 

Ethanolic extracts of C. tibetica reduced inflammation 

by blocking the NF-κB signaling pathway, which in 

turn reduced inflammation in tests using lipopoly-

saccharide to produce inflammation and neuritis in rats 

[142]. In IL-1β-based treatment of senescent 

nasopharyngeal carcinoma cells, quercetin was found to 

retard senescence by increasing NRF2 levels and 

impeding NF-κB signaling [143]. In studies based on 

cigarette smoke and lipopolysaccharide-induced lung 

inflammation in mice and endometritis in mice, 

respectively, Chai Hu saponin A inhibited the 

inflammatory response through the NRF2/NF-κB 

pathway [144, 145]. In lipopolysaccharide-induced 

acute lung Injury-based mice, chaihu saponin A and 

chaihu saponin b1/b2, inhibited the inflammatory 

response by suppressing the NF-κB/TLR4 signalling 

pathway [146]. Similarly, in mice with lipopoly-

saccharide-based induced macrophage inflammation 

and acute liver injury, Chaihu saponin B reduced Sirt6 

expression levels and thus inflammation levels by 

inhibiting NF-κB signaling [147, 148]. 

 

In response to osmotic pressure gradients, the selective 

water channel protein aquaporin 1 (AQP1), which is 

confined to glial cells in the human peripheral nervous 

system, makes it easier for water to penetrate cell 

membranes [149]. AQP1 activates ras homolog family 

member A (RhoA), which is expressed at the plasma 

membrane, and the RhoA/Rho-related protein kinase 

(ROCK) signalling pathway plays an important role in 

glycolipid metabolism [150, 151]. In studies based on 

depressed mice and rats with streptozotocin and high-

fat diet-induced diabetes, Chai Hu saponin C inhibited 

inflammatory responses by suppressing inflammatory 

factor secretion and by modulating the AQP1/ 

RhoA/ROCK signaling pathway [149, 152]. In studies 

based on LPS-induced neuroinflammation/microglia 

activation in mice and carbon tetrachloride-induced 

liver fibrosis in mice, chaihu saponin D suppressed 

inflammatory responses by regulating the NF-κB/ 

TLR4 signaling pathway, and by inhibiting NLRP3 

inflammatory vesicle expression [153–156]. 

 

Bupleurum scorzonerifolium. and its compounds slow 

down cellular senescence by regulating metabolism 

 

In studies based on a high-fat, HG diet-induced disorder 

of glucolipid metabolism model, Chai Hu total saponin, 

Chai Hu saponin A, and Chai Hu saponin D all reduced 

triacylglycerol (TG) or Serum total cholesterol (TC) 

levels by enhancing metabolism [157, 158]. Among 

them, Caihuosaponin A and Caihuosaponin D could 

affect metabolism by regulating the PPAR pathway. In 

addition, in a study of lipopolysaccharide/galacto-

samine-induced acute liver injury in mice, chaihu 

saponin b2 enhanced metabolism by upregulating Sirt6, 

and increasing the expression of Na+-K+-ATPase, Ca2+-

Mg2+-ATPase [148]. 

 

Bupleurum scorzonerifolium. and its compounds 

delay cellular senescence by improving dysbiosis of 

the intestinal flora 

 

In a study based on sodium taurocholic acid-induced 

severe acute pancreatitis in rats, Caihu saponin A could 

regulate intestinal flora distribution through activation 

of the NRF2 pathway [159]. In contrast, in a study of 

dextran sodium sulfate-induced ulcerative colitis in 

mice, chaihu saponin D reduced the expression of IL-

1β, NF-κB inflammatory factors, and increased the 

levels of enteric beneficial bacteria while decreasing the 

levels of harmful bacteria [160]. 

 

Fructus evodiae (Evodia rutaecarpa (Juss.) Benth) 
 

Fructus evodiae is the dried fruit of the plant Evodia 

rutaecarpa (Juss.) Benth. It has the effect of regulating 

Qi, warming the middle and relieving pain [6]. In 

modern research, Cornus officinalis has been shown to 

have good anti-inflammatory, anti-tumor, antioxidant 

and anti-aging effects, which are important in the 

prevention and control of cellular aging [161]. 

Evodiamine and rutin are the primary active compounds 

found in Evodia rutaecarpa (Juss.) Benth. 
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Evodiamine is a plant compound that exhibits a broad 

spectrum of biological activities. It possesses a chemical 

structure comprising multiple aromatic rings and 

hydroxyl groups, which confer antioxidant activity and 

the capacity to scavenge free radicals, consequently 

mitigating oxidative reactions induced by free radicals 

[162]. Rutin is a naturally occurring flavonoid that 

contains a sugar group. The hydroxyl group in the sugar 

group and the unsaturated bond in the fatty acid group 

provide hydrogen, which is involved in neutralizing free 

radicals and inhibiting the oxidation reaction [163]. 

 

Evodia rutaecarpa (Juss.) Benth and its compounds 

delay cellular senescence by inhibiting oxidative stress 

 

Phosphoglycerate kinase 1 (PGK1) is an important 

enzyme for ATP production and plays an important role 

in metabolism [164]. When PGK1 activation is 

inhibited, NRF2 expression can be promoted [165]. 

 

In a study based on traumatic brain injury (TBI) caused 

by controlled cortical shock, evodiamine extract 

evodiamine was found to inhibit oxidative stress 

responses by targeting PGK1/NRF2 signaling [166]. In a 

study based on HG-induced endothelial cell senescence, 

evodia extract rutine can exert antioxidant activity by 

upregulating SIRT1 expression, thereby delaying 

cellular senescence [167]. In addition, rutine can 

upregulate NRF2 expression and inhibit PIK3 expression 

in mice with ethanol-induced gastric mucosal injury, 

inflammatory bowel disease, and cerebral ischemia-

reperfusion rats. This inhibits oxidative stress and delays 

the inflammatory response [168–170]. 

 

JNK is a member of the mitogen-activated protein 

kinase family, which has the function of phosphor-

rylating and activating the protein cJun, which reduces 

fatty acid oxidation, ketone production, and promotes 

steatosis during diet-induced obesity, which can 

eventually lead to a series of pathological changes 

[171]. In studies based on renal ischemia-reperfusion 

mice, rutine can reduce oxidative stress through the 

p38-MAPK and cJun-MAPK signaling pathways 

[172]. 

 

Furthermore, in studies based on HG and doxorubicin-i

nduced cardiomyocytes and cardiotoxic mice, respectiv

ely, rutine can reduce oxidative stress and inhibit inflam

mation through the MAPK signaling pathway and incre

ase NRF2 expression levels [173, 174]. 

 

Evodia rutaecarpa (Juss.) Benth and its compounds 

delay cellular senescence by improving autophagy 

 

There is less research on the regulation of autophagy 

and its compounds in regulating autophagy and thus 

delaying cellular aging, mainly related to brain diseases 

and colon diseases. In astrocytes-based studies, 

evodiamine enhances autophagy by regulating the 

JNK/p38 MAPK signaling pathway [175]. In the study 

of dextran sulfate-induced colitis in mice, evodiamine 

can inhibit the inflammatory response by inhibiting the 

expression levels of NF-κB and NLRP3, and can also 

upregulate the number of autophagosomes, thereby 

enhancing autophagy [176].  

 

Evodia rutaecarpa (Juss.) Benth and its compounds 

delay cellular aging by improving mitochondrial 

disorders and DNA damage 

 

In studies of hydrogen peroxide-stimulated mouse 

hepatocytes, rutine can improve DNA damage by 

regulating the JNK/p38 MAPK signaling pathway and 

the PI3K/Akt signaling pathway [177].  

 

In addition, in studies of endothelial inflammation and 

DNA damage in human umbilical vascular endothelial 

cells based on 25-hydroxycholesterol, tumor necrosis 

factor α(TNFα), and tert-butyl hydrogen peroxide-

stimulated hepatocytes, rutine can improve DNA 

damage by upregulating NRF2 expression levels and 

inhibiting the increase of oxide levels [178, 179]. 

 

TGFβ is the main regulator of extracellular matrix 

accumulation and a potential key driver of hepatitis to 

liver fibrosis, TGF-β1 is the most effective cytokine to 

promote liver fibrosis, can inhibit the proliferation of 

hepatocytes, stimulate the activation of hepatic stellate 

cells (HSCs), promote the production of ECM, and 

regulate apoptosis of hepatocytes [180]. In a mouse 

study of paracetamol-induced acute liver injury, rutine 

upregulated NRF2 expression levels, thereby hepatic 

inflammatory response, and improved mitochondrial 

disorders in mouse hepatocytes [181]. 

 

Evodia rutaecarpa (Juss.) Benth and its compounds 

delay cellular senescence by inhibiting the 

inflammatory response 

 

In a colitis-based study in mice, evodiamine inhibited 

the inflammatory response by inhibiting NF-κB and 

NLRP3 inflammasomes, as well as enhancing 

autophagy and altering intestinal flora structure [176, 

182]. In Al(OH)3 mixture-induced asthmatic mice and 

lipopolysaccharide-induced HUVEC injury, evodiamine 

can delay the inflammatory response by inhibiting the 

NF-κB/TLR-4 signaling pathway [183, 184]. In studies 

based on the stimulation of macrophage lipids  

and mouse mammary epithelial cells, respectively, 
evodiamine and rutine can inhibit the occurrence of 

inflammatory responses by inhibiting the p38/JNK-

MAPK signaling pathway [185, 186].  
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In lipopolysaccharide-induced injury in rat kidney cells 

and mouse microglia, evodiamine can inhibit the 

inflammatory response by inhibiting NF-κB and 

increasing NRF2 expression levels [187, 188]. In 

addition, also in lipopolysaccharide-induced human NPC 

injury, evodiamine can also inhibit the inflammatory 

response by upregulating SIRT1 expression levels [189]. 

 

Apelin (APJendogenousligand) is an endogenous ligand 

of angiotensin domain type 1 receptor-associated 

protein angiotensin receptor-like 1. In a mouse study 

based on lipopolysaccharide-induced lung inflammation 

and fibrosis, evodiamine was found to reduce 

inflammatory response and fibrosis by activating the 

apelin pathway [190].  

 

In studies of rat pancreatic exocrine tumor cells treated 

with azurin and LPS-induced acute pancreatitis in mice, 

rutine inhibits inflammatory response via the NF-

κB/MAPK signaling pathway [191]. In the study of 

acetaminophen-induced hepatotoxicity in mice, rutine 

inhibited the occurrence of inflammatory response by 

increasing NRF2 expression levels [181]. 

 

Evodia rutaecarpa (Juss.) Benth and its compounds 

delay cellular aging by regulating metabolism 

 

mTOR plays an important role not only in autophagy, 

but also in lipid metabolism [192]. In a high-fat diet-

induced obesity/diabetes mouse model, evodiamine can 

mediate metabolism via the AMPK/mTOR signaling 

pathway [193]. In a study of T2DM rats treated with a 

high-fat diet combined with streptozotocin (STZ), 

evodiamine was found to reduce blood glucose in 

T2DM rats and improve hyperglycemia and hyper-

lipidemia in T2DM rats [194]. 

 

In studies based on streptozotocin-induced hyper-

lipidemia/hyperglycemia rats and mouse models of 

T2DM, rutine was found to improve the model's 

glycolipid metabolism by regulating the PI3K/Akt 

signaling pathway in the liver and activating the AMPK 

signaling pathway [195]. In studies based on high-fat 

diet-induced hyperlipidemia/obesity mice and rats with 

myocardial infarction, evodiamine was found to 

significantly improve metabolic lipid profiles by 

promoting the PPARγ signaling pathway, and rutine by 

reducing PPARα expression levels, which in turn 

reduced liver lipid accumulation [196, 197]. 

 

Evodia rutaecarpa (Juss.) Benth and its compounds 

delay cellular senescence by improving intestinal 

dysbacteriosis 

 

In studies based on carbon tetrachloride-induced liver 

fibrosis mice and pyrimidinmethane-induced colitis mice, 

evodiamine (EVO) was found to promote bacterial 

enrichment that can produce SCFAs, reduce the level of 

pro-inflammatory bacteria, and thus inhibit the 

occurrence of inflammatory response [182, 198, 199]. 

 

Chinese ginseng (Panax ginseng C. A. Meyer) 
 

Chinese ginseng is the dried root of Panax ginseng C. 

A. Meyer. In traditional Chinese medical theory, it is a 

great tonic for vital energy, restores the pulse and fixes 

the detachment, tonifies the spleen and benefits the 

lung, generates fluid and calms the mind [6]. Modern 

studies have found that ginseng has pharmacological 

effects such as stimulating nerve centers, anti-tumor, 

protecting cardiovascular and cerebrovascular diseases, 

improving immunity, delaying aging, lowering blood 

lipids and anti-fatigue [200]. Ginsenoside Rg1 and 

ginseng polysaccharide are the primary active 

constituents of Panax ginseng C. A. Meyer. 
 

Ginsenoside Rg1 is a natural product with a tetracyclic 

structure and multiple sugar groups in its chemical 

composition. The functional groups in the chemical 

structure of Ginsenoside Rg1, such as the tetracyclic 

structure and sugar groups, have the ability to react with 

oxidizing substances like free radicals. This allows them 

to scavenge free radicals and reduce the damage caused 

by oxidative stress [201]. 

 

Panax ginseng C.A. Meyer and its compounds delay 

cellular senescence by regulating telomerase activity 

 

p16INK4a-Rb and pl9Arf-p53-p21Cipl are telomere-

independent and telomere-dependent signaling pathways, 

respectively. The two key molecular signaling pathways 

of HSC aging, either signaling pathway activation can 

induce HSC aging, when the key regulatory factors 

involved in these pathways are altered, cells will undergo 

aging or bypass the aging process to continue to 

proliferate, but there is extensive multi-level com-

munication between the two pathways, often involved in 

the occurrence of cellular senescence [202]. 

 

Hematopoietic stem cell/hematopoietic progenitor cell 

(HSC/HPC) aging is closely related to aging and a 

variety of senile diseases, ginsenoside Rg1 can inhibit 

telomere shortening, enhance telomerase activity, 

regulate the expression of aging-related genes and cell 

cycle-related proteins and treat Tert-butyl Hydro-

peroxide (TBHP)-induced HSC/HPC aging, and its 

mechanism of action is related to the regulation of 

SIRT6 and NF-κB (SIRT6 Enhanced expression of 

mRNA and protein [203]. 
 

In studies based on TBHP and psoralen, ultraviolet rays 

induced senescence in human diploid cells and human 



www.aging-us.com 14485 AGING 

fibroblasts, respectively, ginsenoside Rg1 can delay 

cellular senescence by reducing p21 expression levels 

and enhancing telomerase activity [204, 205]. 

 

Panax ginseng C. A. Meyer and its compounds delay 

cellular senescence by inhibiting oxidative stress 

 

Ginseng and its compounds play an important role in 

the nervous system. In Alzheimer's disease-based 

studies on tree shrews, ginsenoside Rg1 may reduce 

oxidative stress response and improve cognitive 

impairment in tree shrews [185]. 

 

In studies based on cerebral infarction mice and D-

Gal-induced neural stem cell aging, ginsenoside Rg1 

can inhibit oxidative stress response through the 

Akt/mTOR signaling pathway, thereby delaying aging 

[206, 207]. In the study of mouse myocardial cells 

based on mesenchymal stem cells and hydrogen 

peroxide-stimulated rat bone marrow stem cells, 

HG/palmitate-stimulated rat cardiomyocytes, ginseno-

side Rg1 can inhibit oxidative stress response by 

regulating the PI3K/AKT signaling pathway and 

enhancing NRF2 expression levels [208–210]. miR-

144 directly regulates NRF2 production in neuro-

degenerative diseases [211]. In ischemia/ 

reperfusion (I/R)-induced neuronal injury, ginsenoside 

Rg1 can inhibit oxidative stress by reducing miR-144 

and enhancing NRF2 expression levels [212].  

 

In addition, in studies of oxidative stress injury in 

cardiomyocytes based on liver injury mice and 

hypoxia/reoxygenation (H/R), ginsenoside Rg1 

inhibited oxidative stress levels by enhancing NRF2 

expression levels [213–215]. 

 

Panax ginseng C. A. Meyer and its compounds delay 

cellular aging by improving autophagy 

 

Ginseng can affect autophagy in the liver, lungs and 

heart, but there is no direct evidence that ginseng can 

delay cell aging by regulating autophagy. In carbon 

tetrachloride-induced mice with acute liver injury and 

paraquat-stimulated lung epithelial cells, ginsenoside 

Rg1 reduced the expression of inflammatory factors 

such as NF-κB and NLRP3 and enhanced autophagy 

[216, 217]. In starvation-induced cardiomyocyte stress, 

ginsenoside Rg1 increases autophagosome levels and 

enhances autophagy. 

 

Panax ginseng C. A. Meyer and its compounds delay 

cellular aging by improving mitochondrial disorders 

and DNA damage 

 

Ginsenoside Rg1 can delay the aging of D-Gal-induced 

hematopoietic stem cell/progenitor cell mice via the 

p16Ink4ap53-p21 pathway. Ginseng and its compounds 

improve mitochondrial disorders and DNA damage in 

the heart, kidneys, and nervous system. 

 

In lipopolysaccharide and glucose-stimulated cardio-

myocyte stress response, ginsenoside Rg1 can improve 

mitochondrial disorders by increasing MMP, PINK1, 

AMPK levels [218, 219]. Siderozosis is a novel form of 

programmed cell death with iron-dependence, caused 

by lipid peroxidation and characterized by decreased 

GSH and glutathione peroxidase 4 (GPX4). In carbon 

tetrachloride-induced hepatic injury mice and 

lipopolysaccharide-induced human tubular epithelial 

cell siderozosis, ginsenoside Rg1 improves mito-

chondrial disorders by NRF2 and inhibition of the 

ferrotic pathway [220, 221]. 

 

In the nervous system, ginseno polysaccharides can 

regulate mitophagy by influencing the PINK1/Parkin 

pathway, maintain mitochondrial homeostasis, improve 

D-gal-induced nerve cell aging, and improve symptoms 

in Parkinson’s mice by improving mitochondrial 

disorders and DNA damage [61, 222]. 

 

Growth Arrest Specific 5 (GAS5), one of the long non-

coding RNAs (lncRNAs), has been demonstrated to be 

involved in a number of physiological and pathological 

processes. GAS5 can lessen depressive-like behavior by 

preventing hippocampal neuronal damage [222].  

 

Panax ginseng C. A. Meyer and its compounds delay 

cellular aging by inhibiting the inflammatory 

response 

 

Ginsenoside Rb1 can delay replicating endothelial  

cells by inhibiting NF-κB-p65-mediated inflammatory 

responses. Aging, reducing inflammatory factor IL-6, 

TNF-α levels, and NF-κB-p65 activity [223]. It can also 

play the role of anti-radiation injury-induced HSC/HPC 

aging by regulating the SIRT6/NF-κB signaling 

pathway [224].  

 

In addition, ginsenoside Rb1 improves inflammation in 

the heart, kidneys, and nervous system.  

 

In the nervous system, ginsenoside Rg1 can improve 

murine microglia and brain type I astrocytes damage 

through the NF-κB/TLR4 inflammatory signaling 

pathway and the p38/JNK-MAPK signaling pathway 

[225, 226]. In a spinal cord injury and cognitive 

impairment-based study in rats, ginsenoside Rb1 

improves injury and cognitive impairment via NRF2 

and PI3K/AKT inflammatory signaling pathways [227, 
228]. Furthermore, in LPS-induced studies of mice 

with cardiomyocyte injury and chronic kidney injury, 

ginsenoside Rg1 reduced NLRP3 inflammatory factors 
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and regulated NF-κB/TLR4 signaling pathway, 

thereby inhibiting inflammatory response [229]. In 

studies in aging mice, ginsenoside Rg1 reduced 

NOX4, NF-κB, NLRP3 inflammatory expression 

levels, thereby improving aging-induced liver fibrosis 

[230]. 

 

Panax ginseng C. A. Meyer and its compounds delay 

cellular aging by regulating metabolism 

 

Ginsenoside Rg1 plays an important role in the 

treatment of metabolic disorders and is associated with 

the regulation of AMPK (Li et al., 2018). Glucagon is 

involved in hepatic gluconeogenesis and plays an 

important role in maintaining the balance of glucose 

metabolism [231]. In studies of high-fat diet -fed 

mice/glucagon-challenged mice, ginsenoside Rg1 may 

block the glycolipid metabolism of dry mountain mice, 

by blocking the hepatic glucagon response [201]. 

In studies based on a high-fat diet and strepto-

zotocin-induced T2DM rats, as well as methionine and 

choline deficiency -induced NASH mice, ginsenoside 

Rg1 reduced TC and TG levels in the above models 

[232–234]. 

Panax ginseng C. A. Meyer and its compounds delay 

cellular aging by improving intestinal flora 

dysregulation 

 

In studies on dextran sodium sulfate-induced colitis 

mice, ginsenoside Rg1 was observed to reduce the 

expression of Bacteroide, Ruminococcaceae by re-

ducing M1/M2 values [235]. In a mouse study  

of dextran sodium sulfate-induced colitis, ginsenoside 

Rg1 increased MMP levels and reduced oxidative  

stress levels, and it was observed by bioprofiling  

that ginsenoside Rg1 modulates intestinal microbiota 

disorders in colitis mice [236]. Ginsenoside Rg1 can 

also regulate intestinal flora balance, boost the amount 

of good bacteria, and alleviate Alzheimer’s disease, 

according to studies in Alzheimer’s disease tree shrews. 

Symptoms of a tree shrew [237]. 

 

SUMMARY 
 

In recent years, research on herbs and their natural 

active ingredients for anti-aging has made significant 

progress. Various herbs impact multiple pathways 

involved in cellular senescence (Figure 2). The above 

 

 
 

Figure 2. Relevant mechanisms affecting cellular senescence. 
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content introduces important factors that affect cellular 

senescence, including mitochondrial dysfunction, DNA 

damage, telomere length shortening, imbalance of 

autophagy regulation, oxidative stress, and inflam-

matory response. This indicates that the specific 

mechanisms by which herbs regulate cellular 

senescence are closely associated with these factors 

(Figures 3–6). 

 

 
 

Figure 3. Mechanisms affecting telomerase activity. By Figdraw (http://www.figdraw.com). 

 

 
 

Figure 4. Mechanisms affecting the oxidative stress response. By Figdraw (http://www.figdraw.com). 

http://www.figdraw.com/
http://www.figdraw.com/
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Figure 5. Mechanisms affecting mitochondrial disorders and DNA damage. By Figdraw (http://www.figdraw.com). 

 

 
 

Figure 6. Mechanisms affecting the inflammatory response. By Figdraw (http://www.figdraw.com). 

http://www.figdraw.com/
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However, in the current study, there are more reports 

on the direct impact of herbs on cellular senescence, 

while few reports focus on the specific mechanism by 

which herbs affect cellular senescence. However, 

there is still insufficient evidence from clinical trials 

and in vivo tests on the drugs and their active 

ingredients mentioned above. Therefore, additional 

in vivo trials and clinical evaluations of these active 

ingredients are required. Moreover, due to the limited 

number of studies investigating the treatment of 

various tissue and organ pathologies through 

metabolic regulation and improvement of intestinal 

dysbiosis, it is crucial to explore the association 

between herbal medicines and metabolism, intestinal 

dysbiosis, and other diseases. 

 

Building upon the aforementioned, we propose that 

future investigations, both ours and those conducted 

by other researchers, should concentrate on the 

subsequent aspects: First, considering the impact of 

the aforementioned drugs on various cellular 

processes such as mitochondrial dysfunction, DNA 

damage, telomere length shortening, autophagy 

regulation imbalance, oxidative stress, and inflam-

matory response, our research aims to investigate the 

pathway from herbs/herbal extracts to cellular 

senescence mechanisms. This will help us understand 

the specific mechanism by which herbs prevent and 

treat cellular senescence, leading to the development 

of more effective anti-aging drugs and therapeutic 

interventions. Second, to study the active components 

in herbal extracts and discover and extract more 

extract components for more new research pathways. 

Third, it is important to shift the focus towards the 

chemical groups present in the active ingredients. By 

leveraging the shared characteristics of these 

chemical groups, we can develop superior and more 

effective compounds that can effectively delay 

cellular aging. Fourth, we will employ modern 

technologies, such as gene editing and genomics 

research, to investigate the regulatory effects of herbs 

on genes associated with cellular aging. This will 

enable us to uncover the molecular mechanisms by 

which herbs delay cellular aging and offer novel 

insights and methodologies for studying this process. 

Fifth, we will investigate the precise pathway 

involving herbs, gut flora, and aging, aiming to 

elucidate the specific mechanism by which herbs 

regulate cellular senescence through the gut flora. 

This research will contribute to the development of 

more potent drugs. 

 

Availability of data and materials 

 

The data used and analyzed in this study are included 

within the article. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Herb-derived products with anti-aging effects on cells. 

 


