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INTRODUCTION 
 

Renal cell carcinoma (RCC) is the largest pathological 
subtype of adult kidney cancer and is among the  

top ten most common cancer types worldwide [1, 2]. 

Because it is insensitive to traditional radiotherapy and 

chemotherapy, surgical treatment still is the first-line 

option for localized renal cancer therapy [3]. Because 

of the asymptomatic nature of RCC and the lack  
of effective early diagnostic markers, approximately 

30% of patients develop distant metastases [3–5]. 

Metastatic RCC is mainly treated with targeted drugs, 
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ABSTRACT 
 

Background: Renal cancer, the most common type of kidney cancer, develops in the renal tubular epithelium. 
Atherosclerosis of the aorta is the primary cause of atherosclerosis. However, the underlying mechanisms 
remain unclear. 
Methods: The renal clear cell carcinoma RNA sequence profile was obtained from The Cancer Genome Atlas 
(TCGA) database, and the atherosclerosis datasets GSE28829 and GSE43292 based on GPL570 and GPL6244 
was obtained from the Gene Expression Omnibus (GEO) database. The difference and hub genes  
were identified by the Limma protein-protein interaction (PPI) network in R software. Functional 
enrichment, survival, and immunoinfiltration analyses were performed. The role of SEL1L3 in the 
ErbB/PI3K/mTOR signaling pathway, apoptosis, invasion, cell cycle, and inflammation was analyzed using 
western blotting. 
Results: 764 DEGs were identified from TCGA Kidney Renal Clear Cell Carcinoma (KIRC) dataset. A total of 
344 and 117 DEGs were screened from the GSE14762 and GSE53757 datasets, respectively. Functional 
enrichment analysis results primarily indicated enrichment in the transporter complex, DNA-binding 
transcription activator activity, morphogenesis of the embryonic epithelium, stem cell proliferation, adrenal 
overactivity and so on. Fifteen common DEGs overlapped among the three datasets. The PPI network 
revealed that SEL1L3 was the core gene. Survival analysis showed that lower SEL1L3 expression levels led to 
a worse prognosis. Immune cell infiltration analysis showed that SEL1L3 expression was significantly 
correlated with antibody-drug conjugates (aDC), B cells, eosinophils, interstitial dendritic cells (iDC), 
macrophages, and more. 
Conclusions: SEL1L3 plays an important role in renal clear cell carcinoma and atherosclerosis and may be a 
potential link between them. 
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such as sorafenib and sunitinib. The high cost of  

these drugs and the problems created by prolonged 

use of these drugs, such as drug resistance, toxicity 

and side effects, restrict their use in clinical practice 

[3–5]. Therefore, gaining insight into the mechanisms 

underlying RCC progression and identifying novel bio-

markers and molecular targets for RCC are urgently 

required. 
 

Atherosclerosis is a persistent inflammatory condition 

that affects the arteries and is characterized by the 

accumulation of lipids within the walls of blood 

vessels, leading to the development of atherosclerotic 

plaques [6, 7]. It is widely believed to be the principal 

etiological factor that contributes to cerebrovascular 

disorders. Advanced carotid atheroma has the potential 

to give rise to unstable plaques with a propensity for 

rupture, thereby constituting the primary origin of 

local thrombosis or emboli [8, 9]. It is more important 

to prevent the formation of unstable plaques than  

to intervene in existing unstable plaques. Therefore,  

it is essential to understand the inherent molecular 

mechanisms and mine new therapeutic targets. 
 

Progress in high-throughput sequencing technology has 

led to the development of sophisticated data-mining 

techniques for the analysis of high-throughput DNA 

sequencing data [10, 11]. Bioinformatics technology 

is an interdisciplinary field [12]. Bioinformatics  

plays a pivotal role in tumor treatment through  

the elucidation of the biological significance of vast 

datasets, thereby bridging the gap between data and 

clinical applications. Specifically, the analysis and 

reporting of gene detection data exemplify the essential 

contributions of bioinformatics in this context [13]. 

 

SEL1L family member 3 (SEL1L3) is involved in  

the pathogenesis of various human malignancies  

[14–17]. However, the relationship between RCC  

and atherosclerosis remains unclear. To elucidate the 

connection between RCC and atherosclerosis, this 

study aimed to identify SEL1L3 as a pivotal gene 

influencing both conditions and subsequently validate 

these findings through an experimental approach. 

 

RESULTS 
 

Differential gene expression analysis 
 

In total, 344 and 117 DEGs were found in GSE14762 

and GSE53757, respectively, according to the pre-set 

cutoff values (Figure 1A, 1B). A total of 764 DEGs 

were screened from TCGA Kidney Renal Clear Cell 
Carcinoma (KIRC) dataset (Figure 1C). By overlapping 

the DEGs from the three datasets, 15 DEGs were 

identified (Figure 1D). 

Functional enrichment analysis 

 
GSEA  

GSEA was used to conduct a comprehensive genome-

wide enrichment analysis (GWEA). The prominent 

enriched pathways included DNA-binding transcription 

activator activity, transporter complex, morphogenesis 

of embryonic epithelium, stem cell proliferation, 

adrenal overactivity, DNA-binding transcription factor 

activity, abnormalities in adrenal physiology, and 

hypokalemia (Figure 2).  

 
Metascape enrichment analysis 

Metascape analysis revealed strong enrichment  

in the regulation of cell activation, inflammatory 

response, and positive regulation of immune response, 

immune effector processes, and tube morphogenesis 

(Figure 3).  

 
PPI network 

 
Cytoscape software was used to visualize the PPI 

network. The total numbers of DEGs in the three 

datasets (Figure 4A). The connections among the  

15 common DEGs (Figure 4B). Among the DEGs, 

SEL1L3 was identified as the core gene (Figure 4B). 

 
Survival analysis 

 
SEL1L3 expression was significantly higher in RCC 

samples than in normal samples (Figure 5A). Patients 

with lower SEL1L3 expression had poorer overall 

survival (log-rank p =0.028, Figure 5B). 

 
Gene expression heatmap 

 
A gene expression heatmap was used to visualize 

(Figure 5C). It was observed that the SEL1L3 gene 

exhibited high expression levels in RCC samples, 

whereas it demonstrated low expression levels in 

normal tissue samples. This observation suggests a 

potential regulatory involvement of SEL1L3 in these 

cancer types. 

 
Immune infiltration analysis 

 
Figure 6A illustrates the presence of immune cells in 

patients with Esca, categorized based on low and high 

expression levels of SEL1L3. The correlation between 

the immune cells was calculated simultaneously (Figure 

6B). Differential immune cell infiltration analysis 

revealed that high SEL1L3 expression was significantly 
positively correlated with the infiltration of antibody-

drug conjugates (aDC), B cells, eosinophils, interstitial 

dendritic cells (iDC), macrophages, neutrophils, T cells, 
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Figure 1. Identification of DEGs. (A) Volcano plot of GSE14762. (B) Volcano plot of GSE53757. (C) Volcano plot of TCGA KIRC dataset. (D) 

Venn plot of three datasets. 

 

 
 

Figure 2. Functional enrichment analysis results from GSEA. (A, B) BP, (C) CC, (D, E) MF, (F–H) HP analysis by GSEA. 
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Figure 3. Metascape enrichment analysis. (A) Heatmap of enriched terms across input differently expressed gene lists, colored by p-

values. (B) Network of enriched terms colored by cluster identity. (C) Network of enriched terms colored by p-value. 
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Figure 4. PPI network of DEGs and hub genes. (A) Total DEGs. (B) Protein interaction relationship by Cytoscape. (C) Protein interaction 
network colored by combine score. 
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Figure 5. (A) Expression box plot of SEL1L3 in TCGA KIRC dataset. (B) Survival curve of SEL1L3 in KIRC dataset. (C) Heatmap of DEGs. 
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T helper (Th) cells, central memory CD8 T cells 

(Tcm), T follicular helper (TFH), Th1 cells, Th17 

cells, and regulatory T cells (Tregs), and negatively 

correlated with CD8 T cells, natural killer (NK) cells, 

plasmacytoid dendritic cells (pDC), and M0 macro-

phages (Figure 6C). A heatmap of the infiltration of 

immune cells in the low- and high-SEL1L3 expression 

groups (Figure 6D). The correlation between the 

expression of SEL1L3 and each individual immune 

cell type was calculated (Figure 7). 

Role of SEL1L3 on ErbB/PI3K/mTOR signaling 

pathway 

 

Western blotting revealed that SEL1L3 expression  

was upregulated in the RC group. The core proteins 

(including ErbB, PI3K, PIP3, AKT, and mTOR) 

involved in ErbB signaling were also upregulated  

in the RC group. By knocking down SEL1L3, core 

proteins of the ErbB/PI3K/mTOR signaling pathway 

were upregulated in RCC cells (Figure 8).  

 

 
 

Figure 6. Immune infiltration analysis. (A) Fractions of immune cells in whole KIRC sample. (B) The correlational heatmap of 20 
difference immune cells. (C) Violin plots of the distribution of difference immune cells. (D) Calorigram reflecting the distribution of the 
immune activity in esophageal cancer. 
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Role of SEL1L3 on apoptosis, invasion, cell cycle, 

and inflammation 

 

Downregulation of Caspase-1, Caspase-9, and FAS 

expression in the RC group suggested that apoptosis was 

inhibited (Figure 9). Knockdown of SEL1L3 also resulted 

in the downregulation of apoptosis-related genes, whereas 

overexpression of SEL1L3 led to their upregulation. 

Biomarkers of invasion (MMP3 and MMP9), cell cycle 

(c-Myc and CyclinD1) and inflammation (IL-6 and IL-8) 

were significantly upregulated in the RC group (Figure 

10). SEL1L3 knockdown enhanced this effect. 

 

 
 

Figure 7. The relationship between the infiltration of immune cells and SEL1L3 was examined through the utilization  
of scatter plots. (A) aDC cells, (B) neutrophils cells, (C) eosinophils cells, (D) macrophages cells, (E) T helper cells, (F) Tcm cells, (G) T cells, (H) 
Th1 cells. 

 

 
 

Figure 8. Experimental investigation into the impact of SEL1L3 on the ErbB/PI3K/mTOR signaling pathway. 
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DISCUSSION 
 

Among the characteristics of kidney cancer  

with no clinical signs, kidney cancer in patients  

may be overlooked [18, 19]. The highly vascularized 

architecture of RCC is believed to promote hemato-

genous dissemination and the formation of distant 

metastases [20, 21]. In cases of early stage RCC, 

partial nephrectomy is typically employed as the 

conventional method for the excision of localized  

RCC with a favorable prognosis [22]. However, it  

is estimated that approximately 25–30% of patients 

diagnosed with kidney cancer exhibit metastases 

because most cases of kidney cancer manifest initially 

with a clinically silent course [23]. Angiogenesis of 

atherosclerotic plaques is intricately linked to the 

advancement and vulnerability of plaques [24, 25]. 

Consequently, pro-atherogenic alterations may precede 

and predispose patients to the onset of atherosclerosis. 

This study found that SEL1L3 is highly expressed in 

 

 
 

Figure 9. Experimental investigation into the impact of SEL1L3 on cell apoptosis function. 

 

 
 

Figure 10. Experimental investigation into the impact of SEL1L3 on invasion, cell cycle and inflammation function. 
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atherosclerotic plaques and kidney cancer, which may 

play a role in linking these two diseases. 

 

SEL1L3, a member of the SEL1L (Sel-1 Suppressor of 

Lin-12-Like) family, is situated within the endoplasmic 

reticulum (ER) and plays a pivotal role in enabling 

ER-associated degradation. This degradation process is 

triggered by ER stress, which promotes the breakdown 

of misfolded proteins [26].  

 
SEL1L3 was aberrantly expressed in human brain 

microvascular endothelial cells after exposure to HIV-

1 CRF02_AG, suggesting its potential involvement  

of SEL1L3 in the pathophysiological mechanisms of 

microvessel function. SEL1L3 has been implicated in 

the development of several types of cancer. Previous 

studies have documented SEL1L3 is a promising 

prognostic indicator in colorectal cancer, melanoma, 

and lung adenocarcinoma [26–28]. In this study, 

SEL1L3 was found to be overexpressed in renal cancer 

cells and atherosclerotic plaque tissue, and may be 

involved in the progression of RCC. 

 
In the current study, SEL1L3 overexpression was 

linked to aggressive behavior but led to better survival 

in patients with RCC. However, this seems to be 

contradictory. Cao et al. [29] observed similar results; 

they found that CXCL11 was highly differentially 

expressed in colon adenocarcinoma (COAD), but 

played a significant defensive role in the development 

of COAD and contributed to a more favorable prog-

nosis for patients diagnosed with COAD. Cao et al. 

proposed that this result may be because CXCL11  

can cause the recruitment of DC, NK cells, and  

T cells, which play important roles in inhibiting  

tumor growth and improving prognosis. In this study, 

SEL1L3 knockdown in renal RCC cells activated  

the ErbB/PI3K/mTOR signaling pathway, inhibited 

apoptosis, and promoted inflammation. This may 

result in better survival of patients with low SEL1L3 

expression. 

 
Moreover, experimental evidence has revealed that 

the inhibition of SEL1L3 expression leads to a 

reduction in the proliferation of renal cancer cells and 

triggers apoptosis, suggesting that SEL1L3 could 

potentially serve as a viable therapeutic target for 

renal cancer. SEL1L3 expression can effectively 

predict RC prognosis The development of drugs 

targeting SEL1L3 may benefit patients with RC and 

atherosclerosis.  

 
This study has some limitations. These clinical  
results are insufficient to support our research  

results. However, the underlying mechanism of 

SEL1L3 action has not yet been explored. Further 

research should investigate the mechanism of action of 

SEL1L3 in RC and atherosclerosis. 

 

In summary, the association between SEL1L3 and 

renal cancer highlights the potential significance of 

SEL1L3 in the pathogenesis of this disease and 

suggests that targeting SEL1L3 may be a promising 

approach for the treatment of renal cancer. 

 

CONCLUSIONS 
 

SEL1L3 is overexpressed in RCC and atherosclerotic 

plaques, and is correlated with several biological 

processes in RCC. The utilization of SEL1L3 as  

a molecular target holds potential for the timely 

detection and accurate therapeutic intervention of 

RCC, while also offering valuable insights into  

the underlying association between cancer and 

atherosclerosis. 

 

MATERIALS AND METHODS 
 

Data retrieval 

 

We searched for an atherosclerotic plaque  

expression matrix in the Gene Expression Omnibus 

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). 

The atherosclerosis dataset GSE28829 based on  

the GPL570 platform contained 13 normal tissues  

and 16 atherosclerotic plaque tissues, and GSE43292 

stockpiled on the GPL6244 platform consisted of 32 

normal tissues and 32 atherosclerotic plaque tissues. 

The RNA sequencing data of RCC patients were 

downloaded from The Cancer Genome Atlas (TCGA) 

data portal (https://tcga-data.nci.nih.gov/tcga/), and 

included 72 normal and 535 tumorous tissues. 

 

Differential expression analysis 

 

Gene differential analysis was conducted in the three 

datasets using the “Limma” package in R 3.6.1 

software. Statistical significance was set at P < 0.05 

and absolute log fold change (FC) > 1. Venn plots 

were constructed to overlap common differential 

expressed genes in the three datasets. 

 

Volcano plot of gene expression 

 

Volcano plots were constructed using the “ggplot2” 

package in R software to visualize gene expression  

in the three datasets. 

 

Protein-protein interaction (PPI) network 

 

The Search Tool for the Retrieval of Interacting  

Genes (STRING) database (https://www.string-db.org) 

http://www.ncbi.nlm.nih.gov/geo/
https://tcga-data.nci.nih.gov/tcga/
https://www.string-db.org/
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was used to construct a PPI network of the differen-

tially expressed genes (DEGs). Visualization of this 

network was performed using Cytoscape software 

(https://cytoscape.org/). 

 

Functional enrichment analysis 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

were performed using the DAVID (https://david. 

ncifcrf.gov/) and Metascape (https://metascape.org) 

platforms. Functional enrichment analysis is a 

computational approach used to determine whether a 

specific collection of genes or proteins is enriched for 

specific biological functions, pathways, or processes. 

This analytical method has been widely employed  

in genomics and proteomics to obtain a deeper under-

standing of the molecular mechanisms underlying 

experimental findings. 

 

Gene set enrichment analysis (GSEA) 

 

GSEA was performed to evaluate enriched KEGG path-

ways using GSEA software (http://www.broadinstitute. 

org/gsea). We normalized the gene expression data  

and then filtered out the low-expressed genes to reduce 

noise. 

 

Survival analysis 

 

Based on the TCGA and Genotype-Tissue Expression 

(GTEx) data, the Gene Expression Profiling Interactive 

Analysis (GEPIA) database (http://gepia.cancer-pku.cn/) 

was used for survival analysis.  

 

Heat map of gene expression 

 

The R package heatmap facilitated the creation of  

a visually informative heatmap effectively depicting 

variations in the expression levels of core genes among 

RCC and normal tissue samples in the GSE14762 and 

GSE53757 datasets. 

 

Immune infiltration analysis 

 

The estimation of immune cell infiltration in RCC was 

conducted using the “CIBERSORT” R package, which 

uses a gene set containing specific markers of immune 

cells to calculate the enrichment score. Samples with a 

significance level of confidence and a cutoff of p < 0.05 

were selected. 

 

Verification of the role of SEL1L3 

 
The HEK-293 and Caki-1 cell lines were obtained 

from the National Biomedical Experimental Cell 

Resource Bank in Beijing, China. Cells were divided 

into four groups: control (normal renal cancer cells), 

RCC (renal cancer cells), RCC/SEL1L3-KD (RCC 

with SEL1L3 knockdown), and RCC/SEL1L3-OV 

(RCC with SEL1L3 overexpression). Sample pre-

paration involves the extraction and purification of  

the protein of interest from a sample, which may 

include processes such as homogenization, cell lysis, 

and chromatography, depending on the nature of the 

sample. For protein separation, the extracted proteins 

were separated based on molecular weight using 

sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE). For protein transfer, following 

separation, the proteins were transferred from the  

gel medium onto polyvinylidene fluoride (PVDF) 

membranes through electroblotting. This step entails 

the immobilization of proteins onto the membrane. To 

prevent non-specific binding of the primary antibody, 

the membrane is subjected to incubation with a 

blocking solution, typically consisting of 5% non-fat 

dry milk or 1% bovine serum albumin (BSA) in Tris-

buffered saline (TBS) with 0.1% Tween-20 (TBST) for 

approximately 1 h at room temperature or overnight  

at 4° C. Subsequently, the membrane is incubated with 

a primary antibody that specifically targets the protein 

of interest, diluted in the aforementioned blocking 

solution, for approximately 1 h at room temperature  

or overnight at 4° C. After washing, the membrane 

was incubated with secondary antibodies, wherein  

an enzyme such as horseradish peroxidase (HRP)  

or alkaline phosphatase (AP) was conjugated to the 

secondary antibody. This conjugated enzyme recognizes 

and binds primary antibodies. Subsequently, the mem-

brane was washed again to eliminate any unbound 

secondary antibody. For signal detection, the membrane 

was exposed to a substrate solution specific to an 

enzyme conjugated to a secondary antibody. This 

process yields a chemiluminescent or chromogenic 

signal that can be detected using an X-ray film  

or specialized imaging system. The signal intensity  

was directly proportional to the quantity of protein in 

the sample. Quantification of the signal intensity can 

be achieved by employing image analysis software, 

which enables the comparison of results across various 

samples or treatments. 
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