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INTRODUCTION 
 

Head and neck cancer rank among the top six various 

cancers globally [1]. 90% of head and neck cancers 

are subdivided into HNSC and approximately 75% of 
these patients are related to alcohol consumption and 

smoking habit [2, 3]. Studies have shown that human 

papillomavirus is a risk indicator for HNSC [4]. More 

than half a million cases of people are diagnosed with 

HNSC annually [5]. Surgical excision, radiotherapy, 

administer medications or combination therapy have 

been widely adopted for HNSC treatment [6–8]. 

About 30% - 40% of HNSC patients diagnosed with 
early-stage could possess a 5-year survival of 70% - 

90% followed by therapy, nevertheless, numerous 

HNSC patients are diagnosed at advanced stages. As a 
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ABSTRACT 
 

Background: To parse the characteristics of aneuploidy related riskscore (ARS) model in head and neck 
squamous cell carcinomas (HNSC) and their predictive ability on patient prognosis. 
Methods: Molecular subtyping of HNSC specimens was clustered by Copy Number Variation (CNV) data from 
The Cancer Genome Atlas (TCGA) dataset applying consistent clustering, followed by immune condition 
evaluation, differentially expressed genes (DEGs) analysis and DEGs function annotation. Weighted gene co-
expression network analysis (WGCNA), protein-protein interaction, Univariate Cox regression analysis, least 
absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analysis were 
implemented to construct an ARS model. A nomogram for clinic practice was designed by rms package. 
Immunotherapy evaluation and drug sensitivity prediction were also carried out. 
Results: We stratified HNSC patients into three different molecular subgroups, with the best prognosis in C1 
cluster among 3 clusters. C1 cluster displayed greatest immune infiltration status. The most DEGs between C1 
and C2 groups, mainly enriched in cell cycle and immune function. We constructed a nine-gene ARS model 
(ICOS, IL21R, CCR7, SELL, CYTIP, ZAP70, CCR4, S1PR4 and CD79A) that effectively differentiates between high- 
and low-risk patients. Patients in low ARS group showed a higher sensitivity to immunotherapy. A nomogram 
built by integrating ARS and clinic-pathological characteristics helped predict clinic survival benefit. Drug 
sensitivity evaluation found that 4/9 inhibitor drugs (MK-8776, AZD5438, PD-0332991, PHA-665752) acted on 
the cell cycle. 
Conclusions: We classified 3 molecular subtypes for HNSC patients and established an ARS prognostic model, 
which offered a prospective direction for prognosis in HNSC. 
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result, even individuals who get good health care have 

a survival rate of 30% - 40% [9]. Therefore, precision 

of early diagnostic detection is important for HNSC 

prognosis. 

 

When chromosomes are not separated correctly during 

meiosis or mitosis, chromosomal aneuploidy will occur, 

in other words, cells carry increased or decreased 

individual chromosomes [10]. Aneuploidy, is also 

defined as somatic cell copy number alteration.  

Despite the harmful influence of aneuploidy in the 

process of life development, aneuploidy is prevalent  

in other fields, particularly cancers. The majority of 

solid tumors are aneuploid; however, cancer cells  

can endure chromosomal imbalance, which contributes 

to tumor evolution [11]. Aneuploidy is often related  

to proliferation genes, somatic mutation, and TP53 

mutation [12]. Yet aneuploidy shows an inverse 

relationship with expression level of immune signaling 

genes [13]. A pan-cancer aneuploidy study revealed  

that squamous cancers possess a specific pattern of 

aneuploidy. Chromosome arm 3p loss and chromosome 

arm 3q gain, which exist in human papillomavirus 

positive or negative HNSC squamous tumors, are 

predominant characteristics of the squamous cancer 

cluster [13]. A recently published paper by William  

et al. further discovered that immune escape in HNSC 

precursor lesions transition is motivated by chromosome 

9p loss [14]. Unfortunately, there is limited research  

on genes related to aneuploid in HNSC. 

 

Here, we integrated aneuploidy-related genes in The 

Cancer Genome Atlas (TCGA)-HNSC cohort. A series 

of bioinformatics analysis were applied to construct a 

robust aneuploidy related riskscore (ARS) model to help 

predict HNSC clinical prognosis. To make full use of the 

complementary diagnostic value of clinicopathological 

characteristics, the ARS model was coupled with inde-

pendent clinicopathological characteristics to establish 

a nomogram, facilitating ameliorative assessment of 

HNSC prognosis. We aimed to offer a prospective 

direction for prognosis in HNSC. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing for HNSC 

 

First, gene expression profiles and clinical information 

on HNSC were obtained from the TCGA data- 

base (https://portal.gdc.cancer.gov/), which includes 

samples from 500 HNSC patients. Subsequently,  

we obtained genomic aneuploidy scores about the 

samples in TCGA-HNSC based on previous studies 

[13]. The “GDCquery” function of the R package 

“TCGAbiolinks” was used to download copy number 

variation (CNV) data for TCGA-HNSC, including  

data on important regions of gene amplification and 

deletion. For validation, GSE41613 [15] was obtained 

from Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm. nih.gov/geo/). An ARS model 

on the predictive ability of immunotherapy was 

calculated using IMvigor210 from website (http:// 

research-pub.gene.com/IMvigor210CoreBiologies/), 

GSE135222 [16] and GSE91061 [17], which are 

immune-treated datasets. Finally, the data preprocessing 

for TCGA-HNSC and GSE41613 cohorts contained: 

excluding samples without survival time and status, 

clinical follow-up information; ensembls and probes 

were uniformly converted into Gene symbol. The 

probe was removed if one probe matched with 

multiple genes.  

 
Consistency clustering and differentially expressed 

genes analysis based on CNV data 

 

Package “ConsensusClusterPlus” [18] was used to 

perform cluster analysis applying CNV data as  

input. The main parameter settings were displayed 

below: maxK=10, reps=500 pItem=0.8, pFeature=0.8, 

clusterAlg=‘pam’ and distance=‘pearson’. The optimum 

cluster number was chosen by the cumulative 

distribution function (CDF). Kaplan-Meier analysis 

was executed to compare the overall survival (OS) 

between clusters. Thereafter, “limma” package [19] 

was employed to analysis DEGs between molecular 

clusters. DEGs were filtered with threshold |log2FC| > 

log2 (1.2) and false discovery rate (FDR) < 0.05.  

 
Immune condition evaluation 

 

The proportions of 64 immune and stroma cell 

categories in each specimen were inferred applying  

the xCell package [20]. The xCell algorithm was used 

to transform gene expression levels into enrichment 

scores. For a supplement, the CIBERSORT algorithm 

[21] referring to LM22 dataset [22], was specially  

used to calculate the ratios of 22 immune cells. Lastly, 

general stroma level (StromalScore), immunocyte 

infiltration (ImmuneScore), as well as combination 

(ESTIMATEScore) of samples were calculated by 

Estimation of Stromal and Immune cells in Malignant 

Tumors using Expression data (ESTIMATE) [23].  

 
Weighted gene co-expression network analysis 

(WGCNA) 

 

With the above analysis result, we used WGCNA to 

identify core modules related to aneuploidy and 

immunity applying DEGs. Firstly, we extracted the 

expression profiles of DEGs from TCGA-HNSC 

containing 500 specimens. We then calculated the 

distance between each gene using Pearson method, and 
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established a weighted co-expression network using  

R package WGCNA [24]. The general module 

construction process was as follows. (1) The 

“pickSoftThreshold” function was adopted to screen 

soft thresholding. When the scaleless topological 

fitting index reached 0.9, the appropriate soft 

thresholding was determined; (2) the expression matrix 

is converted into an adjacency matrix, which was  

then transformed into a topological matrix. Then, 

hierarchical clustering method was employed for gene 

clustering, with the minimum number of genes in each 

gene network module of 30; (3) the eigengenes of each 

module were calculated, and then cluster analysis was 

performed to merge close modules into a new module.  

 

Functional enrichment analysis and protein-protein 

interaction (PPI) 

 

The function of DEGs among molecular clusters  

was analyzed via Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analysis 

via WebGestaltR (V0.4.4) R package [25]. The  

ggplot2 R package [26] was performed to draw a  

bubble diagram. The Search Tool for the Retrieval of 

Interacting Genes database [27] was executed to build a 

PPI network, which was visualized by Cytoscape3.10.1. 

 

Construction and estimation of a prognostic model 

and validation 

 

The hub genes unrelated to HNSC prognosis were 

preliminarily excluded by performing Univariate Cox 

regression analysis. Then prognostic genes for HNSC 

were carried out for LASSO and stepwise multivariate 

Cox regression analysis. The final screened genes were 

used to build the model via Equation (1).  

 

Exp= ARS Coefficient i i  

 

The i here represents the selected gene. Exp i represents 

the expression level of prognostic related gene. 

 
Given the “surv_cutpoint” function in survminer 

package [28], the best cutpoint was discovered and the 

HNSC patients were assigned into ARS high and low 

groups. Kaplan-Meier curves accompanied with Log-

rank algorithm were performed for analysis of 

prognostic differences. 

 
Establishment and assessment of a nomogram 

 

Originally, we structured a decision tree based on the 

Grade, T Stage, Age, Gender, N Stage, Clinic stage,  

and ARS of patients in the TCGA-HNSC cohort. 

Independent prognostic factors were screened by 

Univariate and Multivariate Cox regression analysis. 

Then, we utilized these independent prognostic factors 

to establish a nomogram via “rms” package [29]. 

Furthermore, we use the calibration curve to evaluate 

the predictive accuracy of the nomogram. Additionally, 

we also evaluated the reliability of the nomogram 

applying decision curve. 

 

HNSC cell line and drug sensitivity analyses 

 

Drug sensitivity data of about 1000 cancer cell lines 

were downloaded from Genomics of Drug Sensitivity  

in Cancer (GDSC) (http://www.cancerrxgene.org). 

Taking the antitumor drug area under concentration-

time curve (AUC) in the HNSC cell line as the drug 

response index, the correlation between AUC and ARS 

was calculated by Spearman correlation analysis. |Rs| > 

0.3 and FDR < 0.05 were considered significantly 

correlated. Simultaneously, drug sensitivity differences 

between risk groups were compared. In addition, we 

also acquired the AUC values of 1037 cell lines from 

The Cancer Cell Line Encyclopedia (CCLE) website 

(https://portals.broadinstitute.org/ccle/) [30], screened 

the cell lines of HNSC, including 504 cell lines treated 

with 24 drugs, and performed correlation and difference 

analysis. 

 

Statistical analysis 

 

Statistical analyses were performed using R software 

accompanied with Sangerbox website (http://sangerbox. 

com/) [31]. P < 0.05 was regarded as statistically 

significant. Kaplan–Meier survival curves for survival 

analysis were plotted applying log-rank algorithm. The 

correlation among genes, infiltrating immune cell and 

aneuploidy score was determined using Spearman 

method. 

 

RESULTS 
 

Molecular subgroup correlation analysis based on 

CNV data 
 

According to CDF Delta area curve, a relative stable 

clustering result was obtained when k=3 (Figures 1A, 

1B). Therefore, the LUAD-HNSC cohort was assigned 

into three clear molecular subtypes, which we defined 

as C1, C2 and C3 (Figure 1C). Survival analysis 

revealed that C1 subgroup had the longest OS time, 

while C3 and C2 subgroups had relative shorter OS 

time (Figure 1D). In addition, to the differences 

between the three clusters in terms of clinically relevant 

characteristics, we found that in comparison with C1, 

both C2 and C3 showed advanced clinical stages and 

tumor grades, while not showing significant gender 

differences (Figure 1E). 

http://www.cancerrxgene.org/
https://portals.broadinstitute.org/ccle/
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Characterization of the immune cell infiltrations in 

three subgroups 

 

The XCELL analysis results discovered that B cells, aDC, 

cDC, iDC, CD8+Tem, CD8+ T-cells, sebocyte, Th1 cells, 

Tregs, CD8+ Tcm, StromalScore, MicroenvironmenScore 

had the highest score in C1 cluster than other two clusters 

(Figure 2A). Consistently, among 22 immunocytes, T 

cells CD8, Mast cells resting, tregs, T cells CD4 memory 

activated, and Macrophages M1 had the highest ratios  

in C1 cluster (Figure 2B). Through ESTIMATE analysis, 

a relatively higher StromalScore, ImmuneScore and 

ESTIMATEScore in C1 cluster also demonstrated  

higher inflammatory infiltration status and lower tumor 

abundance (Figure 2C). 

 

Differentially expressed genes and function analysis 

in three groups 

 

We compared the DEGs between three subtypes in 

pairs. As shown in Figure 3A–3C. 2321 DEGs were 

identified in C1 and C3 subgroups. 5969 DEGs were 

identified in the C1 and C2 subgroups. 3126 DEGs 

were identified in the C2 and C3 subgroups. By 

merging three sets of DEGs, a total of 356 shared 

DEGs were obtained (Figure 3D). Among 3 

subgroups, the C1 and C2 subpopulations screened the 

most DEGs. We therefore conducted GO functional 

enrichment analysis and KEGG pathway analysis on 

these DEGs. GO enrichment analysis uncovered that 

DEGs were mainly enriched in Biological Process, 

containing DNA replication, immune response and 

cell cycle (Figure 4A); in the field of Cellular 

Component, DEGs were predominately centralized to 

the chromosome resign, spindle and microtubule 

organizing center (Figure 4B); with regard to 

Molecular Functions, DEGs were largely involved in 

DNA related activities, microtubule binding and 

chromatin binding (Figure 4C). KEGG pathway 

analysis displayed that DEGs also highly enriched in 

cell cycle and immune relevant signaling pathway or 

diseases (Figure 4D). 

 

 
 

Figure 1. Identification of molecular subpopulations based on CNV data. (A) CDF curve of samples at different k values in the TCGA 

cohort. (B) CDF Delta area curves. (C) Heatmap of clustering result when k=3. (D) Kaplan-Meier analysis. (E) The distribution of clinical 
features in 3 clusters. 
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WGCNA analysis based on DEGs 

 

By calculation, when a soft threshold was chosen  

as 12, the degree of independence can reach 0.9,  

which showed good network connectivity (Figure 4A, 

4B). After using the dynamic clipping method to 

determine the gene modules, we sequentially calculated 

the eigengenes of each module (Figure 5A, 5B).  

By setting deepSplit=2, mergeCutHeight=0.25, and 

minModuleSize=30, we obtained a total of 9 new 

modules (Figure 5C). It should be pointed out that the 

grey module is a gene set that cannot be aggregated to 

other modules. The correlation between each module 

and T cell infiltration and aneuploidy score was 

exhibited in Figure 5D. The black model displayed  

a positive correlation with immune infiltrating cells 

such as T cells CD8 and T cells memory activated, 

while showed an inverse correlation with aneuploidy 

score. Totally 515 genes were included in black models. 

 

Constructing a PPI interaction network for key 

module genes 

 

515 genes from the black module were used to 

construct a PPI interaction network. Based on 

MCODE algorithm, four tightly connected protein 

groups containing 195 genes were selected as the 

network hub genes (Figure 6A). At the same time, we 

used the black module, which were significantly 

correlated with both T cell infiltration and aneuploidy 

score, to select genes. In accordance with the 

screening requirements (Module Membership > 0.5 

and Gene Signature > 0.2), a total of 374 significant 

genes were screened (Figure 6B). Taken together, a 

total of 163 identical hub genes were obtained by 

intersecting the significant genes with the hub genes 

from the PPI network (Figure 6C). 

 

Establishment and assessment of a prognostic 

signature  

 

On the foundation of above 163 identical hub genes in 

the black module, we implemented Univariate Cox 

regression analysis and found 47 genes correlated with 

HNSC prognosis (p < 0.01, Supplementary Figure 1A), 

all of which were protective factors (Hazard Ratio < 1). 

13 of the 47 genes were reserved by performing 

LASSO-Cox regression model with appropriate lambda 

(lambda = 0.0135) (Supplementary Figure 1B, 1C). 

Finally, 9 genes were determined to construct the model 

via stepwise multivariate regression analysis (Figure 

7A). The expression differences of these 9 genes in 

various clinical features were described Figure 7B.  

Each patient’s ARS was calculated by Equation (2). 

 

 
 

Figure 2. Characterization of the immune infiltration in three clusters. (A) XCELL analysis. (B) CIBERSORT analysis. (C) ESTIMATE 

analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: no significance. 
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ARS 0.307 Exp ICOS

0.45 Exp IL21R

0.25 Exp CCR7

0.351 Exp SELL

0.303 Exp CYTIP

0.225 Exp ZAP70

0.376 Exp CCR4

0.181 Exp S1PR4

0.144 Exp CD79A

= − 

+ 

− 

+ 

+ 

− 

− 

− 

− 

 

Given median ARS value, the patients were stratified 

into ARS high and low groups. Patients with high 

ARS displayed worse survival status (dead) and 

shorter OS time (Figures 7C, 7D), indicating that 

samples with high ARS have poorer prognosis. Time-

dependent receiver operating characteristic analysis 

(ROC) analysis confirmed the predictive ability of the 

ARS model in HNSC disease, because all values of 

area under the curve were bigger than 0.6 (Figure  

7E). The model got validated in GSE41613 dataset  

(Figure 7F–7H).  

 

 
 

Figure 3. Differentially expressed genes (DEGs) among 3 clusters. (A) Volcano plot depicting DEGs between C1 and C3 groups (920 

up-regulated and 1401 down-regulated). (B) Volcano plot depicting DEGs between C1 and C2 groups (1075 up-regulated and 4894 down-
regulated). (C) Volcano plot depicting DEGs between C2 and C3 groups (2699 up-regulated and 427 down-regulated). (D) Venn diagram 
describing the intersection of DEGs among 3 clusters.  
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ARS integrated with clinic indicators helped 

augment the survival evaluation of HNSC patients 

 

The structure of decision tree was described in Figure 8A. 

5 risk groups were determined. There were remarkable 

disparities in OS time and OS status among the five risk 

subgroups (Figure 8B, 8C). Among them, patients in 

groups C1, C2, and C3 all had low ARS, risk groups C4 

and C5 only contained high ARS patients, yet (Figure 

8D). Furthermore, ARS and Clinic stage were confirmed 

by Univariate and Multivariate Cox regression analysis as 

the independent prognostic indicators (Figure 8E–8F). 

Hence, a nomogram was formed with ARS and Clinic 

stage (Figure 8G). As displayed in Figure 8H, it can be 

observed that the predicted calibration curves for 1, 3, and 

5 years were close to the standard ones, suggesting that 

the column chart had a strong predictive performance.  

In Figure 8I, the benefits of nomogram and ARS are 

significantly higher than the extreme curve, implying that 

nomogram and ARS both exhibited the strong survival 

prediction ability for clinical practice. 

Immunotherapy evaluation and drug sensitivity 

prediction 

 

Tumor immunotherapy is considered an effective 

treatment for cancer [32]. In this study, the datasets 

IMvigor210, GSE135222, and GSE91061 were all 

immunotherapy treated data. Applying these data, we 

used our method to calculate ARS scores and predicted 

survival curves by plotting Kaplan-Meier curves with 

median cutoff. The newly defined low ARS group 

exhibited prolonged OS time, and the progressive 

disease (PD)/ stable disease (SD) was higher in the high 

ARS group (Figure 9A–9C). 

 

Through the GDSC database, we screened that the drug 

AUC values of ICL-SIRT078, GSK2830371, VE821, 

MK-8776, Vorinostat, AZD5438 and VSP34_8731were 

correlated with ARS (Figure 9D). Chemotherapy has an 

important role in controlling tumor progression [33]. By 

comparing the drug sensitivity differences between risk 

groups, we found significant differences among the 5 

 

 
 

Figure 4. Pathway enrichment analysis of DEGs. Bubble diagram showing the top 10 enriched (A) Biological Processes, (B) Cellular 

Components, (C) Molecular Functions in GO annotation, and (D) KEGG pathways enriched by DEGs.  
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Figure 5. Identification of key modules related to immune infiltration and aneuploidy by WGCNA. (A, B) Analysis of network 
topology for various soft-thresholding powers. (C) The dendritic map of dynamic module and merged module. (D) Correlation analysis among 
merged module, immune infiltrating cells and aneuploidy score. 
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drugs, among which high ARS patients are more 

sensitive to AZD5438 and VSP34_ 8731, and low ARS 

patients showed notable response to GSK2830371,  

ICL-SIRT078, and MK-8776 (Figure 9E). By means of 

the CCLE database, we observed that PHA-665752, 

TAE684, PD-0332991, L-685458, Paclitaxel, Topotecan, 

and Irinotecan, was significantly correlated with ARS 

(Figure 9F). In particularly, high ARS patients were 

more sensitive to L-685458, PD-0332991, PHA-

665752, and TAE6844 (Figure 9G). 
 

DISCUSSION 
 

Head and neck cancers constitutes approximately 90% 

of HNSC [2]. HNSC starts from the mucosal epithelium 

of the mouth, pharynx, and throat and has been thought 

 

 
 

Figure 6. Identify key module hub genes based on black module and PPI network. (A) Four key protein groups of PPI interaction 

network constructed by genes in black module. (B) Scatter diagram for module membership vs. gene significance concerning immune 
infiltrating cells and aneuploidy score in the black module. (C) Venn diagram displaying the intersection of hub genes in the black module. 
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as the most prevalent malignancies in the head and neck. 

Considering that the aneuploidy is a sign of tumor [34], 

investigating aneuploidy related biomarkers to evaluate 

the treatment effect of patients with HNSC is crucial.  

In this research, CNV data and mRNA expression data 

from HNSC specimens were derived from the TCGA 

database. Then, we performed consistency clustering 

analysis applying CNV data. For obtained 3 clusters, we 

elucidated the OS, immune inflammatory infiltration, 

function analysis and merged intersecting DEGs in  

3 clusters. Subsequently, we conducted WGCNA, cor-

relation analysis with regard to aneuploid and T cell 

infiltration based on the intersection DEGs to obtain the 

target module. Through further PPI analysis and Lasso 

analysis, we ultimately established an independent  

9-gene ARS model. This signature helps offer a 

prospective direction for prognosis in HNSC. 

 

Here, through a series of differential analysis, we 

established a robust ARS model including nine genes, 

namely ICOS, IL21R, CCR7, SELL, CYTIP, ZAP70, 

CCR4, S1PR4 and CD79A. Several researches have 

uncovered relationships between cancer tumorigenesis 

and pathogenesis and these genes. As a co-stimulatory 

receptor for T-cell enhancement, inducible Co-

Stimulator (ICOS) has been regarded as a beneficial 

biomarker for immuno-oncology [35]. For example, 

Duhen et al. [36] discovered that PD-1 and ICOS 

 

 
 

Figure 7. Establishment and assessment of an ARS signature. (A) Multivariate Cox analysis about 9 selected genes. (B) The expression 

differences of 9 selected genes in samples with different clinical characteristics. (C) The relationship of ARS with survival time and survival 
status in TCGA cohort. (D) Kaplan-Meier survival curve distribution of 9-gene signature in TCGA cohort. (E) Time-ROC analysis of 9-gene 
signature in TCGA cohort. (F) The relationship of ARS with survival time and survival status in GSE41613 queue. (G) Kaplan–Meier survival 
curve distribution of 9-gene signature in GSE41613 queue. (H) Time-ROC analysis of 9-gene signature in GSE41613 queue. *p < 0.05, **p < 
0.01. 
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Figure 8. Construction and validation of a nomogram. (A) Construction of a decision tree. (B) Kaplan-Meier analysis for 5 subgroups. 
(C, D) Comparative analysis of high and low ARS population and survival status among 5 subgroups. (E, F) Univariate and Multivariate Cox 
regression analysis concerning ARS and clinic features. (G) Construction of a nomogram. (H) Calibration curve of the nomogram for 1, 3, and 5 
years. (I) Decision curve of the nomogram. 
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Figure 9. Immunotherapy evaluation and drug sensitivity prediction. (A) ARS survival curve and immunotherapy distribution in 

IMvigor210 dataset. (B) ARS survival curve and immunotherapy distribution in GSE135222 dataset. (C) ARS survival curve and immunotherapy 
distribution in GSE91061 dataset. (D) Correlation between TCGA-HNSC cohort ARS and drug AUC values in GDSC database. (E) The 
distribution of each drug’s AUC based on GDSC database between risk groups. (F) Correlation between TCGA-HNSC cohort ARS and drug AUC 
values in CCLE database. (G) The distribution of each drug’s AUC based on CCLE database between risk groups. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001, ns: no significance. 
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co-expression helped recognize tumor responsive CD4+ 

T cells in HNSC immune infiltrating cells. Interleukin-

21 receptor (IL-21R) was reported to take part in 

JAK/STAT signaling pathway and can activate anti-

tumor immunity, depress inflammation and tumor 

occurrence [37]. An immune-related riskscore model 

constructed by Yao et al. demonstrated that high 

expressed IL21R, a protective indicator, displayed 

prolonged OS time in HNSC patients [38]. Consistently, 

in our research, IL21R was also overexpressed in low 

ARS group patients, who had favorable prognosis. The 

human CC chemokine receptors such as CCR4 and 

CCR7 involve in T cell trafficking [39]. Over expressed 

CCR4 appeared to be treated as a biomarker for 

immune checkpoint inhibitor therapeutic response in 

renal cancer patients [40]. Similar to our findings, a 

high-level of CCR4 was also correlated with good 

prognosis in HNSC suffers through joining in immune 

infiltration [41]. SELL is gene related to T cell stemness 

[42], which has been a research hotspot for enhancing 

cancer immunotherapy [43]. However, SELL was rarely 

mentioned in cancer studies. Cytohesin 1 Interacting 

Protein (CYTIP) was reported to exhibit sensitive 

response to anti-PD-1 therapy [44], implying its 

potentiality as responsive biomarkers for anti-PD-1 

immunotherapy in non-small cell lung cancer. In 

another pan-cancer investigation, CYTIP was identified 

as an immunosenescence gene, that could also be 

regarded as a biomarker for immunotherapy in 

melanoma [45]. In a systematic immune genes analysis 

paper, ZAP70 was recognized as a prognostic immune 

gene, which was related to improved OS in HNSC [46]. 

A newly published study [47] and our findings both 

further augmented the role of ZAP70 in HNSC. In 

present research, low ARS group patients with good 

prognosis displayed highly expressed S1PR4, which 

seemed to be positively correlated with prognosis of 

HNSC. Yet, in other study, S1PR4 inhibition restrained 

tumor development accompanied with ameliorative 

chemotherapy [48]. The phenomenon maybe caused by 

tumor heterogeneity or differences in sample slices. In 

the cervical cancer relevant immune microenvironment 

analysis, both CCR7 and CD79A were selected as 

representative genes concerning survival outcomes [49]. 

Taken together, our results suggest that prognostic 

genes based on aneuploidy characteristics may be critical 

for the immune microenvironment and prognosis of 

HNSC. Abnormal number of chromosomes indicating 

genomic instability refer to aneuploidy, which often 

takes place in cell cycle [50]. In this study, we  

probed aneuploidy related genes in view of CNV  

data in TCGA-HNSC, and discovered an interesting 

phenomenon. The Biological Process in GO and KEGG 
enrichment analysis of DEGs between C1 and C2 

molecular subtypes were mainly enriched in cell cycle 

function. In the same time, drug sensitivity evaluation 

based on ARS model found that 4/9 inhibitor drugs 

(MK-8776 [51], AZD5438 [52], PD-0332991 [53], 

PHA-665752 [54]) also acted on the cell cycle. These 

results supported the reliability of our research process. 

 

Although we integrated ARS and few clinical features 

to construct a nomogram, which displayed satisfying 

predictive performance. The insufficient data in this 

study demand a large amount of clinical data for model 

calibration for future practical utilize. 

 

CONCLUSIONS  
 

Our study established an aneuploidy-related gene 

signature for prognosis in HNSC patients. The ARS 

model displayed a favorable predictive capacity. ARS 

model can also assist patient’s immunotherapy and drug 

treatment, thus contributing to personalized precision 

treatment decisions for HNSC patients. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Establishment of a prognostic signature. (A) Univariate Cox regression analysis of genes correlated with 
HNSC prognosis. (B, C) LASSO analysis for significant genes associated with HNSC prognosis. 


