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ABSTRACT

Background: Given the poor prognosis of lung squamous cell carcinoma (LUSC), the aim of this study was to
screen for new prognostic biomarkers.

Methods: The TGCA_LUSC dataset was used as the training set, and GSE73403 was used as the validation set.
The genes involved in necroptosis-related pathways were acquired from the KEGG database, and the
differential genes between the LUSC and normal samples were identified using the GSEA. A necroptosis
signature was constructed by survival analysis, and its correlation with patient prognosis and clinical features
was evaluated. The molecular characteristics and drug response associated with the necroptosis signature were
also identified. The drug candidates were then validated at the cellular level.

Results: The TCGA_LUSC dataset included 51 normal samples and 502 LUSC samples. The GSE73403 dataset
included 69 samples. 159 genes involved in necroptosis pathways were acquired from the KEGG database, of
which most showed significant differences between two groups in terms of genomic, transcriptional and
methylation alterations. In particular, CHMPA4C, IL1B, JAK1, PYGB and TNFRSF10B were significantly associated
with the survival (p < 0.05) and were used to construct the necroptosis signature, which showed significant
correlation with patient prognosis and clinical features in univariate and multivariate analyses (p < 0.05).
Furthermore, CHMPAC, IL1B, JAK1 and PYGB were identified as potential targets of trametinib, selumetinib,
SCH772984, PD 325901 and dasatinib. Finally, knockdown of these genes in LUSC cells increased chemo-
sensitivity to those drugs.

Conclusion: We identified a necroptosis signature in LUSC that can predict prognosis and identify patients who
can benefit from targeted therapies.

INTRODUCTION

The overall incidence of non-small cell lung cancer
(NSCLC) was 40.9 per 100,000 in 2017, and that for age
groups <65 years and >65 years were 13.5/100,00 and
230/100,00 respectively [1]. Squamous cell carcinoma
of the lung (LUSC), a type of NSCLC, is currently the

second most commonly diagnosed cancer worldwide
with an incidence rate of about 30% [1]. Although recent
advances in immunotherapy have prolonged the survival
of LUSC patients [2], studies show that patients in
the advanced stage do not benefit from PD-1 or PD-
L1 checkpoint blockers [3]. Therefore, it is essential to
identify novel therapeutic targets for LUSC.
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Table 1. Datasets.

Dataset ID GPL Control Tumor Note
TCGA-LUSC / 51 502 Training set
GSE73403 GPL6480 / 69 Validation set

Necroptosis is a form of programmed inflammatory
cell death that involves death domain receptors [4],
and is frequently dysregulated in many inflammatory
diseases [5]. Recent studies have shown that necroptosis
plays a key role in tumorigenesis and metastasis, and
can be targeted as a novel anti-tumor strategy [6, 7].
Although the molecular mechanisms of necroptosis
have been largely elucidated, relatively little is known
regarding its regulation and function in tumor cells
[8, 9]. In addition, the exact role of necrosis in tumor
development remains controversial [10]. Nevertheless,
necroptosis has gained attention as a potential therapeutic
target in NSCLC and small cell lung cancer (SCLC)
[11, 12]. For instance, RIPK1, RIPK3 and MLKL,
the key regulators of necroptosis, are downregulated
in NSCLC and correlated to prognosis [13]. In addition,
7 necroptosis-related long non-coding RNAs (IncRNAs),
including AC026355.2, AC099850.3, AF131215.5,
UST-AS2, ARHGAP26-AS1, FAMBS83A-AS1 and
AC010999.2, can predict the prognosis for lung
adenocarcinoma (LUAD) patients [14]. A recent study
showed that necroptosis-related genes (NRGs) are
strongly associated with tumor mutational burden
(TMB), tumor immune microenvironment and prognosis
[15]. Furthermore, low expression levels of the necrop-
tosis markers RIPK3 and PELI1 are associated with
increased mortality in the squamous cell carcinoma
subtype of NSCLC [16].

The aim of this study was to evaluate the relationship
between a necroptosis-related signature and clinical
outcomes in LUSC patients, and explore the potential
molecular mechanisms and drug responses associated
with necroptosis.

MATERIALS AND METHODS
Data download and preprocessing

The expression profile, clinical information and survival
data of LUSC patients were downloaded from the UCSC
Xena database (https://xenabrowser.net/datapages/), and
this TCGA_LUSC dataset was used as the training
set. The gene expression data were downloaded in
the log2(norm_count+1) format, converted into TPM
value and log2 transformed for subsequent analysis.
The GSE73403 [17] dataset was downloaded from
the Gene Expression Omnibus (GEO) database as
the validation set (Table 1). The genes related to

necroptosis pathways were downloaded from the
KEGG database (https://www.genome.jp/kega/) using
“map04217” as the search item.

Definition of necroptosis signature

The GSEA function of the “clusterProfiler” package
was used to analyze the differences in necroptosis
pathways between LUSC and control groups, and
between the different LUSC subgroups based on age
(>60 and <60) and tumor stage (stage | + 1l vs. stage Il
+ 1V). Based on the transcriptomic data of the training
set and KEGG necroptosis pathways, the ssGESA
algorithm in the “GSVA” package was used to calculate
the sample enrichment score (parameters were kcdf =
“Gaussian”, abs.ranking = F).

Screening of altered necroptosis genes

The mutation and copy number variation (CNV) data of
LUSC were downloaded from the TCGA database.
The “matfoos” package was used to display the overall
mutation and CNV status of necroptosis genes, and the
“Rcircos” package was used to draw their chromosomal
distribution map. Based on TCGA RNA-seq data,
the differentially expressed necroptosis genes between
LUSC and normal lung samples were screened using
the “limma” package, and the differences in the expres-
sion levels of the necroptosis genes between different
clinical subgroups (immunotype, stage, smoking history,
ALK-eml4 rearrangement, age, gender, etc.) were
analyzed by Wilcox test. The patients in TCGA_LUSC
cohort were divided into the respective low- and high-
expression groups based on the median expression level
of each necroptosis gene, and the differences in overall
survival (OS) were analyzed by the Kaplan-Meier
method using the “survival” package. The methylation
data of LUSC were downloaded from the TCGA
database, and the differential methylation levels of
necroptosis genes between LUSC and normal lung
samples were calculated using the “ChAMP” package.

Correlation of necroptosis signature with prognosis
and clinical characteristics

The patients in the training set were divided into the
high- and low-risk groups using the surv_cutpoint
function to find the optimal grouping threshold, and
the OS of the groups was compared. The prognostic
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Table 2. Sequences of siRNAs.

SiRNA Forward (F): Sequence Reverse (R): Sequence Target gene
silL-1p#1 5'-GGUGAUGUCUGGUCCAUAUTT-3'  5-AUAUGGACCAGACAUCACCTT-3’  Human IL1B
silL-1p#2 5'-GCGUGUUGAAAGAUGAUAATT-3' 5-UUAUCAUCUUUCAACAUGCTT-3' Human IL1B

SICHMP4C#1  5'-CACUCAGAUUGAUGGCACA-3’
SiCHMP4C#2  5-CCUGCGUCUCUACAACUA U-3’
siJAK1 5'-GCCUGAGAGUGGAGGUAAC-3'

siPYGB#1 5'-GGUCCUGUAUCCAAAUGAU-3’
SiPYGB#2 5'-CCCUGUACAAUCGAAUCAA-3’
SiNC 5'-CCUCUGGCAUUAGAAUUAUTT-3’

5'-GUUACCUCCACUCUCAGGC-3’

Human CHMP4C
Human CHMP4C
Human JAK1
Human PYGB
Human PYGB
Negative control

Table 3. Primer sequences for target genes.

Gene Forward (F): Reverse (R): Target gene
hiL-1p 5-TGATGGCTTATTACAGTGGCA-3' 5-GGTCGGAGATTCGTAGCTGG-3’ Human IL-1B
hCHMP4C 5-AGACTGAGGAGATGCTGGGCAA-3'  5-TAGTGCCTGTAATGCAGCTCGC-3’ Human CHMP4C
hJAK1 5-GTCCCTGAAGCCTGAGAGTG-3’ 5-CTTGATACCATTGCCTCCGT-3’ Human JAK1
hPYGB 5-ACGCAGCAGCACTACTAC-3’ 5-TCGCAGGCATTCTGAAGG-3’ Human PYGB
hGAPDH 5-TGTGTCCGTCGTGGATCTGA-3’ 5-CCTGCTTCACCACCTTCTTGA-3’ Negative control

significance of the necroptosis signature was verified
in the GSE73403 dataset. Univariate and multivariate
Cox regression analyses were performed to evaluate
the correlation between the necroptosis signature and
clinical characteristics in the training and validation
sets. The impact of the signature on the outcomes
of immunotherapy was evaluated on the basis of
immunotherapy data from bladder cancer (IMvigor210)
[18], melanoma GSE91061 [19] and renal clear cell
carcinoma (PMID: 32472114) datasets [20].

Correlation of the necroptosis signature with molecular
features, immune infiltration, and drug response

Based on the CNV data from TCGA, the “matfoos”
package was used to display the waterfall plot of the
mutation rate of necroptosis genes. Fisher’s exact test
was used to identify the differences in the CNVs
between the two risk groups. The KEGG pathway gene
collection “c2.cp.kegg.v7.4.symbols.gmt” was down-
loaded from the MsigDB database (http://www.gsea-
msigdb.org/), and the pathway enrichment scores were
calculated based on ssGSEA. Differential pathways
between the two groups were screened using the “limma”
package. The TIMER database (https://cistrome.
shinyapps.io/timer/), and the CIBERSORT, XCELL
and TIMER algorithms were used to calculate the
immune cell infiltration in LUSC samples. In addition,
the necroptosis signature was also calculated based
on the GDSC (https://www.cancerrxgene.org/) and
CCLE (https://sites.broadinstitute.org/ccle/) databases.

The correlation between the signature and drug
sensitivity (IC50) was calculated by Spearman method,
and the differences between the risk groups were
compared.

Validation of drug sensitivity at the cellular level

The A549 cells (ATCC, USA) were transfected with
siRNAs targeting specific genes and the scrambled
controls (Sigma-Aldrich, USA) using Lipofectamine
2000 (Invitrogen, USA) according to the manufacturer’s
instructions (Table 2). IL-1p siRNA was designed
by GenePharma (China) and transfected using
Lipofectamine™ 2000 (11668030, Thermo Fisher, USA).
Briefly, the cells were incubated with 10 ul siRNA
and 5 pl Lipofectamine 2000 in DMEM (total volume
500 pl/well) for 24 hours. The medium was discarded
and fresh DMEM supplemented with 10% FBS was
added (1 ml/well), followed by incubation for additional
48 hours. Total RNA was extracted from the transfected
cells using Trizol Reagent (Invitrogen, USA), and
reverse transcribed using RT reagent Kit gDNA Eraser
(TaKaRa, Japan). QRT-PCR was performed using
SYBR-Green Master Mix (TaKaRa) with GAPDH as
the internal reference (Table 3). Each sample was
analyzed in triplicates. The relative expression levels
of the genes were calculated using the 224¢t method.
The experiment was repeated thrice.

Trametinib (S2673), dasatinib (51021), PD0325901 and
selumetinib (AZD6244) were purchased from Selleck
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Chemicals (USA). SCH772984 was purchased from
Ablome (USA). The drugs were dissolved in dimethyl
sulfoxide (DMSO) to yield 5 or 10 mM stock solutions
and stored at —80°C. The transfected cells were harvested
during logarithmic growth phase and seeded in 96-well
plates at the density of 200 cells/well in a final volume
of 190 pL/well. After 24 hours, 10 uL of the respective
drugs (25 nM trametinib, 1 nM dasatinib, 0-1 mM
PD0325901, 2 uM SCH772984 group, and 10 nM
selumetinib) was added, and the cells were cultured
for 144 hours.

Statistical analysis

All statistical analyses were performed using R 4.1.1
(http://www.Rproject.org), GraphPad Prism 7 software,
and ImageJ software. A statistically significant threshold
was considered when p < 0.05. The t-test was employed
to evaluate normally distributed data, while the Mann-
Whitney U test was utilized for assessing non-normally
distributed data. The overall survival was analyzed
by the Kaplan-Meier method in different groups, and
univariate and multivariate Cox regression analyses
were performed to evaluate the correlation between the
necroptosis signature and clinical characteristics in the
training and validation sets.

The correlation between the signature and drug
sensitivity (IC50) was calculated by Spearman method.
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RESULTS
Data download and preprocessing

The TCGA _LUSC training set included 51 control
samples and 502 tumor samples. GSE73403 included
69 tumor samples as a validation set. In addition, 159
genes involved in necroptosis pathways (map04217)
were obtained from the KEGG database.

Definition of necroptosis signature

The necroptosis  pathways showed  significant
differences in enrichment between the different age
groups of LUSC patients (p = 0.0117, Figure 1A), but
not between the different stages (Figure 1B). The
enrichment score file for each sample in TCGA-LUSC
can be found in: (Supplementary Table 1).

The necroptosis-related genes were significantly
altered in the tumors

We analyzed the mutation data of 124 necroptosis
genes, and the waterfall plot of the top 20 necroptosis
genes with the highest mutation rates is shown in Figure
1C. The CNV data was available for 24 genes, and
as shown in Figure 1D, most genes showed loss of
function. The chromosomal distribution of these 24
necroptosis genes is shown in Figure 1E, and the genes
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Figure 1. Differences in GSEA enrichment scores of necroptosis pathway between in LUSC subgroups based on (A) age and (B) tumor
stage. (C) Waterfall plot of the top 20 necroptosis genes with the highest mutation rates. (D) CNV distribution of 24 necroptosis genes,
GAIN - amplification and LOSS - deletion. (E) Chromosomal distribution of 24 necroptosis genes.

www.aging-us.com

12910

AGING


http://www.rproject.org/

mapped to chromosomes 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,
17,19,22, Xand Y.

As shown in the heat map in Figure 2, most of
130 necroptosis genes were differentially expressed
between the LUSC and normal lung samples of TCGA-
LUAD cohort, and the differences were statistically
significant (p < 0.05). We analyzed the expression
profiles of 3 random necroptosis genes in the different
clinical subgroups. As shown in Figure 3, VPS4B and
VPS4A showed differential expression in the patients
with smoking history, VDAC3 was only differentially

expressed in the TCGA. Subtype Expression (p < 0.05,
Figure 3).

Among the differentially expressed necroptosis genes in
the TCGA-LUSC dataset, only CHMPA4C, IL1B, JAK1,
PYGB and TNFRSF10B were significantly associated
with the OS (Figure 4). The patients were divided into
the respective high- and low-expression groups based
on the median expression of each gene.

The methylation data of 104 necroptosis genes were
also analyzed, we revealed significant differences in the
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Figure 2. Heat map showing expression of necroptosis genes in normal group and lung squamous cell carcinoma group.

("p <0.05; *"p < 0.01; *p < 0.001; **p < 0.0001).
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methylation status of a few genes among the male
and female patients in TCGA-LUSC cohort (p < 0.05,
Figure 5).

The necroptosis signature is associated with the
prognosis and clinical characteristics of LUSC

Based on the OS data of TCGA_LUSC, the patients
were divided into the high- and low-risk groups using
the optimal grouping threshold of 2.005388 as calculated
by surv_cutpoint function. As shown in Figure 6A, the
high-risk patients had worse survival compared to the
patients in the low-risk group (p = 0.0084), indicating
that the necroptosis signature has prognostic significance.
Furthermore, the necroptosis signature was identified as
an independent prognostic factor for LUSC according to
the univariate (p = 0.009) and multivariate (p = 0.016)
Cox analyses (Figure 6B, 6C).

We also verified the signature in the external dataset
GSE73403 using the optimal grouping threshold of
1.213578. As shown in Figure 6D, the high-risk group
had worse survival compared to the low-risk group
(p = 0.021). In addition, the necroptosis signature was
validated as an independent prognostic factor by
univariate (p = 0.028) and multivariate (p = 0.032) Cox
analyses (Figure 6E, 6F) as in the training set. As shown
in Figure 7A, 7B, the distribution of tumor stages and

e " 1 [

gender were significantly different between the two risk
groups in the TCGA_LUSC dataset (p < 0.05), whereas
age was correlated with the risk score in the GSE73403
dataset (p = 0.0163).

To further explore the correlation between the
necroptosis signature and the response to immuno-
therapy, we evaluated the prognosis of patients in
independent cancer cohorts including immunotherapy
data. As shown in Figure 7C-7E), the necroptosis
signature was not significantly correlated with the
survival of bladder cancer patients in the IMvigor210
dataset (Figure 7C), but there was a significant
difference in the response of the high-risk and low-risk
patients after immunotherapy (p < 0.0001, Figure 7D).
The prediction rate for patient response was 58.6%
(Figure 7E). In the GSE91061 dataset of melanoma
patients, the necroptosis signature was associated with
the response to immunotherapy (p < 0.0001, Figure
7F), and the prediction rate was 60.8% (Figure 7G).
Unfortunately, the survival data was not available for
these patients. Furthermore, there was no difference
in the survival prognosis of the low-risk and high-
risk clear cell renal cell carcinoma patients (Figure
7H), while the response to immunotherapy showed
significant differences (p < 0.0001, Figure 71). The
prediction rate of patient response was 56.1% (Figure
7J).
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Figure 5. Heat map showing methylation changes in necroptosis genes in male and female patients. ("p < 0.05; *p < 0.01;

**p < 0.001).
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Figure 7. Heatmaps showing of the distribution of clinical features between the two risk groups in (A) TCGA_LUSC and (B) GSE73403
datasets. (C) Survival of bladder cancer patients grouped on the basis of necroptosis signature (IMvigor210). (D) Treatment response of the
high-risk and low-risk groups ("“p < 0.0001). (E) ROC curve showing predictive capacity of the necroptosis signature for treatment
response; (F) Difference analysis of treatment response of the high-risk and low-risk groups in GSE91061 (****p < 0.0001). (G) ROC curve
showing predictive capacity of the necroptosis signature for treatment response. (H) Survival of renal clear cell carcinoma patients grouped
on the basis of necroptosis signature. (I) Treatment response of the high-risk and low-risk groups (*p < 0.01). (J) ROC curve showing
predictive capacity of the necroptosis signature for treatment response.
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Analysis of necroptosis signature-related molecular
features and drug response

We analyzed the genomic alterations between the risk
groups. The top 20 genes with the highest mutation
rates in the two groups are shown in Figure 8A-8C).
Furthermore, the CNVs of the necroptosis genes were
significantly higher in the high-risk group compared
to that in the low-risk group (p = 5e-04, Figure 8D,
8E). A total of 186 KEGG pathways were downloaded
from the MsigDB database, and their enrichment
scores in the risk groups were evaluated by the sSGSEA
algorithm (Supplementary Table 2). As shown in Figure
9, there were 125 significantly different pathways (ad]
P value < 0.01) between the two groups.

We next evaluated the differences in the immune
landscape of the risk groups in TCGA_LUSC using
the TIMER, CIBERSORT, XCELL, and three more
algorithms in the TIMER2.0 database. The XCELL
algorithm revealed significant differences in the in-
filtration of B cells, monocytes and neutrophils between

the two groups (p < 0.05, Figure 10). In addition, the
TIMER algorithm showed that the infiltration of B
cells, neutrophils, myeloid cells and dendritic cells were
significantly different between the high-risk and low-
risk groups. According to the CIBERSORT algorithm,
memory B cells, M1 macrophages and neutrophils
showed significant differences in the infiltration rates
across the groups (p < 0.05, Supplementary Figure 1).

To explore the differences in chemotherapeutic drug
resistance between the two risk groups, we down-
loaded drug sensitivity data (IC50) and gene expression
data from the GDSC database, and used the sSGESA
algorithm of the GSVA package to calculate the KEGG
pathway enrichment score for each sample. The top 5
drugs with the highest correlation to the necroptosis
signature are shown in Figure 11A. The IC50 values of
these 5 drugs were significantly different between the
high- and low-risk groups (Figure 11B).

Secondly, the drug sensitivity data (IC50) and gene
expression data were downloaded from the CCLE
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database for analysis, and the KEGG necroptosis path-
way enrichment score of each sample was calculated
using the ssGESA algorithm of the GSVA function
in the GSVA package. The high/low groups were
distinguished. Here, the top 5 drugs with the smallest
spearman correlation p value are selected for display
(Figure 11C), and the sensitivity data (IC50) of these 5
drugs are not statistically significant between the high
and low groups (Figure 11D).

Validation of the drug sensitivity results in vitro

To validate the candidate drugs identified in the
previous section, we knocked down the different
necroptosis genes in the A549 cells, and evaluated
the viability of respective cell lines in response to
the different drugs. As shown in Figure 12, cells with
PYGB knockdown showed increased sensitivity to

i

e o= P e P ey

I

all five drugs compared to the DMSO-treated control
cells. Similar results were observed after silencing
CHMP4C, JAKL and IL-1p (Supplementary Figures
2-4). In contrast, cells with TNFRSF10B knockdown
were non-viable.

DISCUSSION

Necroptosis is characterized by loss of cell membrane
integrity and passive expulsion of cellular contents
[21, 22]. It is regulated by RIPK3, RIPK3 and MLKI
[23] and their expression in NSCLC is closely related
to prognosis.

A previous study showed that necroptosis led
to macrophage-driven adaptive immune suppression
in pancreatic ductal adenocarcinoma tumors [7].
In addition, necroptosis plays a crucial role in the
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malignant transformation of liver cells [24], and
mediates the progression of cirrhosis to hepatocellular
carcinoma (HCC) [25]. Wu et al. found that necroptosis-
related genes including MET, AM25C, MROH9,
MYEOV, FAM111B, Y6D, and PPP2R3A are related
to the progression of pancreatic adenocarcinoma (PAAD)
[6]. Furthermore, tanshinol A (TSA) inhibits the growth
of lung cancer cells by triggering necroptosis via MLKL
[26]. Therefore, it is crucial to understand the precise
molecular mechanisms and signaling events underlying
the pro- or anti-tumorigenic role of necroptosis in order
to better develop new therapeutic approaches [27].

In our study, we found that the necroptosis pathways
were significantly different between the younger
(<60 years) or older (>60 years) subgroups of LUSC,
whereas the tumor stage did not show any significant
correlation. A previous study reported that old age
portended worse prognosis in NSCLC patients [28].
Consistent with our findings, another bioinformatics
study on LUSC also did not observe any difference in
necroptosis-related pathways between different tumor
stages [15, 29]. We analyzed the CNV data of 24
necroptosis genes, of which most showed loss of
function. In addition, most necroptosis genes were
differentially expressed between the normal lung
samples and LUSC samples.

Five necroptosis genes, including CHMP4C, IL1B,
JAK1, PYGB and TNFRSF10B, were significantly
correlated to the survival. Liu et al. showed that
CHMPA4C is overexpressed in LUSC patients and

portends poor prognosis, and its knockdown
induced S-phase arrest in LUSC cells in vitro [30].
Furthermore, polymorphisms in the IL1B promoter
have been linked to the risk of lung cancer development
[31]. Low expression of JAKL1 is closely associated
with immune infiltration and poor prognosis in lung
adenocarcinoma [32]. Likewise, low-level amplification
of PYGB epigenetically regulate smoking-induced lung
carcinogenesis [33]. High levels of TNFRSF10B mRNA
and its encoded protein TRAIL-2 in EGFR wild-type
NSCLC are predictive of unfavorable prognosis [34].
Furthermore, the YIPF2-TNFRSF10B axis is closely
linked to the malignant progression of NSCLC [35].

The 5-gene necroptosis signature was identified as
an independent prognostic biomarker, and was validated
in an external dataset. Gao et al. had previously
established a prognostic risk score model consisting
of 5 genes (MYEOV, LCE3E, PTGIS, OR2W3 and
RALGAPA2) for LUSC [29]. In addition, Dai et al.
developed a prognostic model for LUSC with six
necroptosis-related genes (NRGSs), including RIPK3,
MLKL TLR2, TLR4, TNFRSF1A and NDRG2. The
NRG scores were strongly associated with prognosis,
tumor immune microenvironment and tumor mutation
burden [15]. We also evaluated the predictive effect of
the necroptosis signature on immunotherapy response in
other cancer cohorts. While there was no correlation
between the signature and survival prognosis in the
bladder cancer and renal clear cell carcinoma cohorts,
there were significant differences in the response of the
high-risk and low-risk bladder cancer, melanoma and
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renal clear cell carcinoma patients to immunotherapy.
Furthermore, the predictive rates of the signature for
patient response were respectively 58.6%, 60.8% and
56.1%. Along with tumor-infiltrating immune cell sig-
nature, this novel necroptosis signature may help select
patients who can benefit the most from anti-PD-1/PD-
L1 immunotherapy [36].

The pharmacological data from the Genomics of
Drug Sensitivity in Cancer (GDSC) and Cancer Cell
Line Encyclopedia (CCLE) are routinely used to
identify potential targets of candidate anti-cancer drugs
[37], although there are concerns regarding the lack
of reproducibility in drug sensitivity measurements
across studies [38]. We identified five candidate drugs,
including trametinib, selumetinib, SCH772984, PD
325901 and dasatinib, that likely target the necroptosis
genes in our model. Furthermore, there were significant
differences in the sensitivity of the high-risk and low-
risk patients to these drugs, which was also validated
through in vitro experiments on the A549 cell line.

Trametinib is effective in patients with BRAFV600E-
mutant metastatic NSCLC when given in combination
with dabrafenib [39, 40]. Furthermore, trametinib
has been shown to overcome KRAS-G12V-induced
osimertinib resistance in a leptomeningeal carcinomatosis
model of EGFR-mutant lung cancer [41]. Selumetinib
combined with chemotherapy was associated with a
higher response rate in advanced or metastatic KRAS
wildtype or unknown non-squamous NSCLC patients
[42]. Likewise, the combination of selumetinib and
osimertinib was effective in EGFR-mutated NSCLC
patients who progressed after EGFR-TKIs [43].
SCH772984 inhibited the proliferation of BRAF or
MEK inhibitor-resistant tumor cells by targeting the
MAPK signaling pathway [44]. In addition, SCH772984
plus apatinib has been effective against oral squamous
cell carcinoma (OSCC) [45], and SCH772984 is
also an alternative for the treatment of LKB1 and
LKB1/KRAS-mutated NSCLC [46]. Lifirafenib (BGB-
283) and mirdametinib (PD-0325901) synergistically
inhibited the proliferation of K-RAS-mutated NSCLC
cell lines [47]. Dasatinib augmented the effects of anti-
PD-1 antibodies in NSCLC models by inhibiting Treg
cell transformation and proliferation [48]. Furthermore,
dasatinib may be effective against cisplatin-resistant
lung cancer by targeting the tumor cells as well as the
tumor microenvironment [49].

CONCLUSION

A necroptosis gene signature was established to predict
overall survival and immunotherapy response in LUSC
patients. PYGB, CHMPAC, JAK1 and IL-1p may the
target genes of trametinib, selumetinib, SCH772984,

PD 325901 and dasatinib. Taken together, our study
provides new insights into the mechanisms underlying
the prognosis of LUSC, which can guide treatment
decisions and facilitate personalized treatment. Never-
theless, our study has some limitations. First, we only
to validated our findings in a cellular model. Second,
we used the A549 cells rather than a squamous lung
cancer cell line for the in vitro experiments.
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Supplementary Figure 1. The differences in immune cell infiltration between the high-risk and low-risk groups according to the
CIBERSORT (A) and TIMER algorithms (B). ("p < 0.05; **p < 0.01; **p < 0.001; ***p < 0.0001; ns p > 0.05).

12923 AGING

www.aging-us.com



Ag15y == B C
2 | 1 5, Sensitiveto Trametinib 1 5 , Sensitiveto Dasatinip
s o ’
f 1 § . * DMSO 3 +DMSO
o
% § 1.0 * DMSO + SiCHMP4C 2 1.0 + DMSO + siCHMP4C
® 5 - e
30.5 g 05 : | Trametinib 2 05 Dasatinib
% 2 ! + Trametinib + siCHMP4C z | -« «Dasatinib siCHMP4C
> .. 00 0.0
& ‘guo\e,p 0 2 4 6 (days) 0 2 4 6 (days)
D Sensitive to Selumetinib E iti F
s 1.5 1.5, Sensitiveto SCH772984 1.5, Sensitiveto PD0325901
3 + DMSO 3 + DMSO 3 +DMSO
. : ] o
s 1.0 . .| #DMSO + SiCHMP4C §1_0 /" i+ *DMSO + SICHMP4C E 1.0 - . +DMSO + SICHMPAC
: | d Y c 3 J - —
% 0s . Selumetinib 50 : /‘ " scH772984 g | jt—
g "+ Selumetinib+ siCHMP4C 2 0> |_ 44— ‘SCH772984*S§CHMP4C§ o _4'4 " 4 PD0325901 +SiICHMPAC
<
00 — 0.0 I—'—'— 0.0
0 2 4 6 (days) 0 2 4 6 (days) 0 2 4 6 (days)

Supplementary Figure 2. Effect of the candidate drugs on CHMP4C knockdown cells. (A) CHMP4C expression in the control and
siCHMPAC groups. (B—F) Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901.
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Supplementary Figure 3. Effect of the candidate drugs on JAK1 knockdown cells. (A) JAK1 expression in the control and siJAK1
groups. (B—F) Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901.
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Supplementary Figure 4. Effect of the candidate drugs on IL-B knockdown cells. (A) IL-B expression in the control and silL-B
groups. (B—F) Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901.
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Tables 1 and 2.

Supplementary Table 1. TCGA_LUSC necroptosis score.

Supplementary Table 2. ssGSEA score.
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