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INTRODUCTION 
 

The overall incidence of non-small cell lung cancer 
(NSCLC) was 40.9 per 100,000 in 2017, and that for age 

groups <65 years and ≥65 years were 13.5/100,00 and 

230/100,00 respectively [1]. Squamous cell carcinoma  

of the lung (LUSC), a type of NSCLC, is currently the 

second most commonly diagnosed cancer worldwide 

with an incidence rate of about 30% [1]. Although recent 

advances in immunotherapy have prolonged the survival 

of LUSC patients [2], studies show that patients in  

the advanced stage do not benefit from PD-1 or PD- 

L1 checkpoint blockers [3]. Therefore, it is essential to 

identify novel therapeutic targets for LUSC. 
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ABSTRACT 
 

Background: Given the poor prognosis of lung squamous cell carcinoma (LUSC), the aim of this study was to 
screen for new prognostic biomarkers. 
Methods: The TGCA_LUSC dataset was used as the training set, and GSE73403 was used as the validation set. 
The genes involved in necroptosis-related pathways were acquired from the KEGG database, and the 
differential genes between the LUSC and normal samples were identified using the GSEA. A necroptosis 
signature was constructed by survival analysis, and its correlation with patient prognosis and clinical features 
was evaluated. The molecular characteristics and drug response associated with the necroptosis signature were 
also identified. The drug candidates were then validated at the cellular level. 
Results: The TCGA_LUSC dataset included 51 normal samples and 502 LUSC samples. The GSE73403 dataset 
included 69 samples. 159 genes involved in necroptosis pathways were acquired from the KEGG database, of 
which most showed significant differences between two groups in terms of genomic, transcriptional and 
methylation alterations. In particular, CHMP4C, IL1B, JAK1, PYGB and TNFRSF10B were significantly associated 
with the survival (p < 0.05) and were used to construct the necroptosis signature, which showed significant 
correlation with patient prognosis and clinical features in univariate and multivariate analyses (p < 0.05). 
Furthermore, CHMP4C, IL1B, JAK1 and PYGB were identified as potential targets of trametinib, selumetinib, 
SCH772984, PD 325901 and dasatinib. Finally, knockdown of these genes in LUSC cells increased chemo-
sensitivity to those drugs. 
Conclusion: We identified a necroptosis signature in LUSC that can predict prognosis and identify patients who 
can benefit from targeted therapies. 
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Table 1. Datasets. 

Dataset ID GPL Control Tumor Note 

TCGA-LUSC / 51 502 Training set 

GSE73403 GPL6480 / 69 Validation set 

 
Necroptosis is a form of programmed inflammatory  

cell death that involves death domain receptors [4],  

and is frequently dysregulated in many inflammatory 

diseases [5]. Recent studies have shown that necroptosis 

plays a key role in tumorigenesis and metastasis, and 

can be targeted as a novel anti-tumor strategy [6, 7]. 

Although the molecular mechanisms of necroptosis 

have been largely elucidated, relatively little is known 

regarding its regulation and function in tumor cells  

[8, 9]. In addition, the exact role of necrosis in tumor 

development remains controversial [10]. Nevertheless, 

necroptosis has gained attention as a potential therapeutic 

target in NSCLC and small cell lung cancer (SCLC) 

[11, 12]. For instance, RIPK1, RIPK3 and MLKL,  

the key regulators of necroptosis, are downregulated  

in NSCLC and correlated to prognosis [13]. In addition, 

7 necroptosis-related long non-coding RNAs (lncRNAs), 

including AC026355.2, AC099850.3, AF131215.5, 

UST-AS2, ARHGAP26-AS1, FAM83A-AS1 and 

AC010999.2, can predict the prognosis for lung 

adenocarcinoma (LUAD) patients [14]. A recent study 

showed that necroptosis-related genes (NRGs) are 

strongly associated with tumor mutational burden 

(TMB), tumor immune microenvironment and prognosis 

[15]. Furthermore, low expression levels of the necrop-

tosis markers RIPK3 and PELI1 are associated with 

increased mortality in the squamous cell carcinoma 

subtype of NSCLC [16]. 

 
The aim of this study was to evaluate the relationship 

between a necroptosis-related signature and clinical 

outcomes in LUSC patients, and explore the potential 

molecular mechanisms and drug responses associated 

with necroptosis. 

 
MATERIALS AND METHODS 
 
Data download and preprocessing 

 
The expression profile, clinical information and survival 

data of LUSC patients were downloaded from the UCSC 

Xena database (https://xenabrowser.net/datapages/), and 

this TCGA_LUSC dataset was used as the training  

set. The gene expression data were downloaded in  

the log2(norm_count+1) format, converted into TPM 

value and log2 transformed for subsequent analysis.  
The GSE73403 [17] dataset was downloaded from  

the Gene Expression Omnibus (GEO) database as  

the validation set (Table 1). The genes related to 

necroptosis pathways were downloaded from the  

KEGG database (https://www.genome.jp/kegg/) using 

“map04217” as the search item. 

 
Definition of necroptosis signature 

 
The GSEA function of the “clusterProfiler” package 

was used to analyze the differences in necroptosis 

pathways between LUSC and control groups, and 

between the different LUSC subgroups based on age 

(≥60 and <60) and tumor stage (stage I + II vs. stage III 

+ IV). Based on the transcriptomic data of the training 

set and KEGG necroptosis pathways, the ssGESA 

algorithm in the “GSVA” package was used to calculate 

the sample enrichment score (parameters were kcdf = 

“Gaussian”, abs.ranking = F). 

 
Screening of altered necroptosis genes 

 
The mutation and copy number variation (CNV) data of 

LUSC were downloaded from the TCGA database.  

The “matfoos” package was used to display the overall 

mutation and CNV status of necroptosis genes, and the 

“Rcircos” package was used to draw their chromosomal 

distribution map. Based on TCGA RNA-seq data,  

the differentially expressed necroptosis genes between 

LUSC and normal lung samples were screened using 

the “limma” package, and the differences in the expres-

sion levels of the necroptosis genes between different 

clinical subgroups (immunotype, stage, smoking history, 

ALK-eml4 rearrangement, age, gender, etc.) were 

analyzed by Wilcox test. The patients in TCGA_LUSC 

cohort were divided into the respective low- and high-

expression groups based on the median expression level 

of each necroptosis gene, and the differences in overall 

survival (OS) were analyzed by the Kaplan-Meier 

method using the “survival” package. The methylation 

data of LUSC were downloaded from the TCGA 

database, and the differential methylation levels of 

necroptosis genes between LUSC and normal lung 

samples were calculated using the “ChAMP” package. 

 
Correlation of necroptosis signature with prognosis 

and clinical characteristics 

 
The patients in the training set were divided into the 
high- and low-risk groups using the surv_cutpoint 

function to find the optimal grouping threshold, and  

the OS of the groups was compared. The prognostic 

https://xenabrowser.net/datapages/
https://www.genome.jp/kegg/
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Table 2. Sequences of siRNAs. 

siRNA Forward (F): Sequence Reverse (R): Sequence Target gene 

siIL-1β#1 5′-GGUGAUGUCUGGUCCAUAUTT-3′  5′-AUAUGGACCAGACAUCACCTT-3′ Human IL1β 

siIL-1β#2 5′-GCGUGUUGAAAGAUGAUAATT-3′ 5′-UUAUCAUCUUUCAACAUGCTT-3′ Human IL1β 

siCHMP4C#1 5′-CACUCAGAUUGAUGGCACA-3′  Human CHMP4C 

siCHMP4C#2 5′-CCUGCGUCUCUACAACUA U-3′  Human CHMP4C 

siJAK1 5′-GCCUGAGAGUGGAGGUAAC-3′ 5′-GUUACCUCCACUCUCAGGC-3′ Human JAK1 

siPYGB#1 5′-GGUCCUGUAUCCAAAUGAU-3′  Human PYGB 

siPYGB#2 5′-CCCUGUACAAUCGAAUCAA-3′  Human PYGB 

siNC 5′-CCUCUGGCAUUAGAAUUAUTT-3′  Negative control 

 

 

Table 3. Primer sequences for target genes. 

Gene Forward (F):  Reverse (R): Target gene 

hIL-1β  5′-TGATGGCTTATTACAGTGGCA-3′ 5′-GGTCGGAGATTCGTAGCTGG-3′ Human IL-1β 

hCHMP4C 5′-AGACTGAGGAGATGCTGGGCAA-3′ 5′-TAGTGCCTGTAATGCAGCTCGC-3′ Human CHMP4C 

hJAK1 5′-GTCCCTGAAGCCTGAGAGTG-3′ 5′-CTTGATACCATTGCCTCCGT-3′ Human JAK1 

hPYGB 5′-ACGCAGCAGCACTACTAC-3′ 5′-TCGCAGGCATTCTGAAGG-3′ Human PYGB 

hGAPDH 5′-TGTGTCCGTCGTGGATCTGA-3′ 5′-CCTGCTTCACCACCTTCTTGA-3′ Negative control 

 
significance of the necroptosis signature was verified  

in the GSE73403 dataset. Univariate and multivariate 

Cox regression analyses were performed to evaluate  

the correlation between the necroptosis signature and 

clinical characteristics in the training and validation 

sets. The impact of the signature on the outcomes  

of immunotherapy was evaluated on the basis of 

immunotherapy data from bladder cancer (IMvigor210) 

[18], melanoma GSE91061 [19] and renal clear cell 

carcinoma (PMID: 32472114) datasets [20]. 

 
Correlation of the necroptosis signature with molecular 

features, immune infiltration, and drug response 

 
Based on the CNV data from TCGA, the “matfoos” 

package was used to display the waterfall plot of the 

mutation rate of necroptosis genes. Fisher’s exact test 

was used to identify the differences in the CNVs 

between the two risk groups. The KEGG pathway gene 

collection “c2.cp.kegg.v7.4.symbols.gmt” was down-

loaded from the MsigDB database (http://www.gsea-

msigdb.org/), and the pathway enrichment scores were 

calculated based on ssGSEA. Differential pathways 

between the two groups were screened using the “limma” 

package. The TIMER database (https://cistrome. 

shinyapps.io/timer/), and the CIBERSORT, XCELL 

and TIMER algorithms were used to calculate the 

immune cell infiltration in LUSC samples. In addition, 

the necroptosis signature was also calculated based  

on the GDSC (https://www.cancerrxgene.org/) and 

CCLE (https://sites.broadinstitute.org/ccle/) databases. 

The correlation between the signature and drug 

sensitivity (IC50) was calculated by Spearman method, 

and the differences between the risk groups were 

compared. 

 
Validation of drug sensitivity at the cellular level 

 
The A549 cells (ATCC, USA) were transfected with 

siRNAs targeting specific genes and the scrambled 

controls (Sigma-Aldrich, USA) using Lipofectamine 

2000 (Invitrogen, USA) according to the manufacturer’s 

instructions (Table 2). IL-1β siRNA was designed  

by GenePharma (China) and transfected using 

Lipofectamine™ 2000 (11668030, Thermo Fisher, USA). 

Briefly, the cells were incubated with 10 μl siRNA  

and 5 μl Lipofectamine 2000 in DMEM (total volume 

500 μl/well) for 24 hours. The medium was discarded 

and fresh DMEM supplemented with 10% FBS was 

added (1 ml/well), followed by incubation for additional 

48 hours. Total RNA was extracted from the transfected 

cells using Trizol Reagent (Invitrogen, USA), and 

reverse transcribed using RT reagent Kit gDNA Eraser 

(TaKaRa, Japan). QRT-PCR was performed using 

SYBR-Green Master Mix (TaKaRa) with GAPDH as 

the internal reference (Table 3). Each sample was 

analyzed in triplicates. The relative expression levels  

of the genes were calculated using the 2−ΔΔCt method. 

The experiment was repeated thrice. 

 
Trametinib (S2673), dasatinib (S1021), PD0325901 and 

selumetinib (AZD6244) were purchased from Selleck 

http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
https://www.cancerrxgene.org/
https://sites.broadinstitute.org/ccle/
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Chemicals (USA). SCH772984 was purchased from 

Ablome (USA). The drugs were dissolved in dimethyl 

sulfoxide (DMSO) to yield 5 or 10 mM stock solutions 

and stored at −80°C. The transfected cells were harvested 

during logarithmic growth phase and seeded in 96-well 

plates at the density of 200 cells/well in a final volume 

of 190 μL/well. After 24 hours, 10 μL of the respective 

drugs (25 nM trametinib, 1 nM dasatinib, 0–1 mM 

PD0325901, 2 μM SCH772984 group, and 10 nM 

selumetinib) was added, and the cells were cultured  

for 144 hours. 

 
Statistical analysis 

 

All statistical analyses were performed using R 4.1.1 

(http://www.Rproject.org), GraphPad Prism 7 software, 

and ImageJ software. A statistically significant threshold 

was considered when p < 0.05. The t-test was employed 

to evaluate normally distributed data, while the Mann-

Whitney U test was utilized for assessing non-normally 

distributed data. The overall survival was analyzed  

by the Kaplan-Meier method in different groups, and 

univariate and multivariate Cox regression analyses  

were performed to evaluate the correlation between the 

necroptosis signature and clinical characteristics in the 

training and validation sets. 

 
The correlation between the signature and drug 

sensitivity (IC50) was calculated by Spearman method. 

RESULTS 
 

Data download and preprocessing 

 

The TCGA_LUSC training set included 51 control 

samples and 502 tumor samples. GSE73403 included  

69 tumor samples as a validation set. In addition, 159 

genes involved in necroptosis pathways (map04217) 

were obtained from the KEGG database. 

 

Definition of necroptosis signature 

 

The necroptosis pathways showed significant 

differences in enrichment between the different age 

groups of LUSC patients (p = 0.0117, Figure 1A), but 

not between the different stages (Figure 1B). The 

enrichment score file for each sample in TCGA-LUSC 

can be found in: (Supplementary Table 1). 

 

The necroptosis-related genes were significantly 

altered in the tumors 

 

We analyzed the mutation data of 124 necroptosis 

genes, and the waterfall plot of the top 20 necroptosis 

genes with the highest mutation rates is shown in Figure 

1C. The CNV data was available for 24 genes, and  

as shown in Figure 1D, most genes showed loss of 

function. The chromosomal distribution of these 24 

necroptosis genes is shown in Figure 1E, and the genes 

 

 
 

Figure 1. Differences in GSEA enrichment scores of necroptosis pathway between in LUSC subgroups based on (A) age and (B) tumor 

stage. (C) Waterfall plot of the top 20 necroptosis genes with the highest mutation rates. (D) CNV distribution of 24 necroptosis genes, 
GAIN - amplification and LOSS - deletion. (E) Chromosomal distribution of 24 necroptosis genes. 

http://www.rproject.org/
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mapped to chromosomes 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 

17, 19, 22, X and Y. 

 

As shown in the heat map in Figure 2, most of  

130 necroptosis genes were differentially expressed 

between the LUSC and normal lung samples of TCGA-

LUAD cohort, and the differences were statistically 

significant (p < 0.05). We analyzed the expression 

profiles of 3 random necroptosis genes in the different 

clinical subgroups. As shown in Figure 3, VPS4B and 

VPS4A showed differential expression in the patients 

with smoking history, VDAC3 was only differentially 

expressed in the TCGA. Subtype Expression (p < 0.05, 

Figure 3). 

 

Among the differentially expressed necroptosis genes in 

the TCGA-LUSC dataset, only CHMP4C, IL1B, JAK1, 

PYGB and TNFRSF10B were significantly associated 

with the OS (Figure 4). The patients were divided into 

the respective high- and low-expression groups based 

on the median expression of each gene. 

 

The methylation data of 104 necroptosis genes were 

also analyzed, we revealed significant differences in the

 

 
 

Figure 2. Heat map showing expression of necroptosis genes in normal group and lung squamous cell carcinoma group. 
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). 
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Figure 3. Differences in the expression of necroptosis genes among the clinical subgroups. (*p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001; ns p > 0.05). 

 

 
 

Figure 4. Survival curves of LUSC patients demarcated on the basis of the median expression of necroptosis genes. 
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methylation status of a few genes among the male  

and female patients in TCGA-LUSC cohort (p < 0.05, 

Figure 5). 

 

The necroptosis signature is associated with the 

prognosis and clinical characteristics of LUSC 

 

Based on the OS data of TCGA_LUSC, the patients 

were divided into the high- and low-risk groups using 

the optimal grouping threshold of 2.005388 as calculated 

by surv_cutpoint function. As shown in Figure 6A, the 

high-risk patients had worse survival compared to the 

patients in the low-risk group (p = 0.0084), indicating 

that the necroptosis signature has prognostic significance. 

Furthermore, the necroptosis signature was identified as 

an independent prognostic factor for LUSC according to 

the univariate (p = 0.009) and multivariate (p = 0.016) 

Cox analyses (Figure 6B, 6C). 

 

We also verified the signature in the external dataset 

GSE73403 using the optimal grouping threshold of 

1.213578. As shown in Figure 6D, the high-risk group 

had worse survival compared to the low-risk group  

(p = 0.021). In addition, the necroptosis signature was 

validated as an independent prognostic factor by 

univariate (p = 0.028) and multivariate (p = 0.032) Cox 

analyses (Figure 6E, 6F) as in the training set. As shown 

in Figure 7A, 7B, the distribution of tumor stages and 

gender were significantly different between the two risk 

groups in the TCGA_LUSC dataset (p < 0.05), whereas 

age was correlated with the risk score in the GSE73403 

dataset (p = 0.0163). 

 

To further explore the correlation between the 

necroptosis signature and the response to immuno-

therapy, we evaluated the prognosis of patients in 

independent cancer cohorts including immunotherapy 

data. As shown in Figure 7C–7E), the necroptosis 

signature was not significantly correlated with the 

survival of bladder cancer patients in the IMvigor210 

dataset (Figure 7C), but there was a significant 

difference in the response of the high-risk and low-risk 

patients after immunotherapy (p < 0.0001, Figure 7D). 

The prediction rate for patient response was 58.6% 

(Figure 7E). In the GSE91061 dataset of melanoma 

patients, the necroptosis signature was associated with 

the response to immunotherapy (p < 0.0001, Figure 

7F), and the prediction rate was 60.8% (Figure 7G). 

Unfortunately, the survival data was not available for 

these patients. Furthermore, there was no difference  

in the survival prognosis of the low-risk and high- 

risk clear cell renal cell carcinoma patients (Figure 

7H), while the response to immunotherapy showed 

significant differences (p < 0.0001, Figure 7I). The 

prediction rate of patient response was 56.1% (Figure 

7J). 

 

 
 

Figure 5. Heat map showing methylation changes in necroptosis genes in male and female patients. (*p < 0.05; **p < 0.01; 
***p < 0.001). 
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Figure 6. (A) Survival curves of high-risk and low-risk groups based on the necroptosis signature. (B) Univariate and (C) multivariate 

analyses of the necroptosis signature. (D) Survival curve of high-risk and low-risk groups in the GSE73403 dataset. (E) Univariate and (F) 
multivariate Cox analyses of the necroptosis signature in the GSE73403 dataset. 

 

 
 

Figure 7. Heatmaps showing of the distribution of clinical features between the two risk groups in (A) TCGA_LUSC and (B) GSE73403 
datasets. (C) Survival of bladder cancer patients grouped on the basis of necroptosis signature (IMvigor210). (D) Treatment response of the 
high-risk and low-risk groups (***p < 0.0001). (E) ROC curve showing predictive capacity of the necroptosis signature for treatment 
response; (F) Difference analysis of treatment response of the high-risk and low-risk groups in GSE91061 (****p < 0.0001). (G) ROC curve 
showing predictive capacity of the necroptosis signature for treatment response. (H) Survival of renal clear cell carcinoma patients grouped 
on the basis of necroptosis signature. (I) Treatment response of the high-risk and low-risk groups (**p < 0.01). (J) ROC curve showing 
predictive capacity of the necroptosis signature for treatment response. 
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Analysis of necroptosis signature-related molecular 

features and drug response 

 

We analyzed the genomic alterations between the risk 

groups. The top 20 genes with the highest mutation 

rates in the two groups are shown in Figure 8A–8C). 

Furthermore, the CNVs of the necroptosis genes were 

significantly higher in the high-risk group compared  

to that in the low-risk group (p = 5e-04, Figure 8D, 

8E). A total of 186 KEGG pathways were downloaded 

from the MsigDB database, and their enrichment 

scores in the risk groups were evaluated by the ssGSEA 

algorithm (Supplementary Table 2). As shown in Figure 

9, there were 125 significantly different pathways (adj 

P value < 0.01) between the two groups. 

 

We next evaluated the differences in the immune 

landscape of the risk groups in TCGA_LUSC using 

the TIMER, CIBERSORT, XCELL, and three more 

algorithms in the TIMER2.0 database. The XCELL 

algorithm revealed significant differences in the in-

filtration of B cells, monocytes and neutrophils between 

the two groups (p < 0.05, Figure 10). In addition, the 

TIMER algorithm showed that the infiltration of B 

cells, neutrophils, myeloid cells and dendritic cells were 

significantly different between the high-risk and low-

risk groups. According to the CIBERSORT algorithm, 

memory B cells, M1 macrophages and neutrophils 

showed significant differences in the infiltration rates 

across the groups (p < 0.05, Supplementary Figure 1). 

 

To explore the differences in chemotherapeutic drug 

resistance between the two risk groups, we down-

loaded drug sensitivity data (IC50) and gene expression 

data from the GDSC database, and used the ssGESA 

algorithm of the GSVA package to calculate the KEGG 

pathway enrichment score for each sample. The top 5 

drugs with the highest correlation to the necroptosis 

signature are shown in Figure 11A. The IC50 values of 

these 5 drugs were significantly different between the 

high- and low-risk groups (Figure 11B). 

 

Secondly, the drug sensitivity data (IC50) and gene 

expression data were downloaded from the CCLE 

 

 

 

Figure 8. Waterfall plot of the top 20 genes with the highest mutation rates in the (A) high-risk and (B) low-risk groups. (C) CNVs of the 

necroptosis gene in the risk groups. Distribution of CNVs in the (D) high-risk and (E) low-risk groups. 
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database for analysis, and the KEGG necroptosis path-

way enrichment score of each sample was calculated 

using the ssGESA algorithm of the GSVA function  

in the GSVA package. The high/low groups were 

distinguished. Here, the top 5 drugs with the smallest 

spearman correlation p value are selected for display 

(Figure 11C), and the sensitivity data (IC50) of these 5 

drugs are not statistically significant between the high 

and low groups (Figure 11D). 

 

Validation of the drug sensitivity results in vitro 

 

To validate the candidate drugs identified in the 

previous section, we knocked down the different 

necroptosis genes in the A549 cells, and evaluated  

the viability of respective cell lines in response to  

the different drugs. As shown in Figure 12, cells with 

PYGB knockdown showed increased sensitivity to  

all five drugs compared to the DMSO-treated control 

cells. Similar results were observed after silencing 

CHMP4C, JAK1 and IL-1β (Supplementary Figures 

2–4). In contrast, cells with TNFRSF10B knockdown 

were non-viable. 
 

DISCUSSION 
 

Necroptosis is characterized by loss of cell membrane 

integrity and passive expulsion of cellular contents 

[21, 22]. It is regulated by RIPK3, RIPK3 and MLKI 

[23] and their expression in NSCLC is closely related 

to prognosis. 

 

A previous study showed that necroptosis led  

to macrophage-driven adaptive immune suppression  

in pancreatic ductal adenocarcinoma tumors [7].  

In addition, necroptosis plays a crucial role in the 

 

 
 

Figure 9. Heatmap showing differential KEGG pathways between the risk groups according to ssGSEA. 
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Figure 10. Differences in immune cell infiltration between high-risk and low-risk groups according to the XCELL algorithm. 

(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns p > 0.05). 

 

 
 

Figure 11. (A) Correlation of the necroptosis signature with the sensitivity (IC50) to five drugs. (B) Differences in IC50 of 5 drugs between 

the high-risk and low-risk groups (****p < 0.0001).  Correlation analysis of signature and 5 drug sensitivity data (IC50) (C). The difference 
analysis of the sensitivity data (IC50) of the five drugs in the high and low groups (D) (ns p > 0.05). 
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malignant transformation of liver cells [24], and 

mediates the progression of cirrhosis to hepatocellular 

carcinoma (HCC) [25]. Wu et al. found that necroptosis-

related genes including MET, AM25C, MROH9, 

MYEOV, FAM111B, Y6D, and PPP2R3A are related 

to the progression of pancreatic adenocarcinoma (PAAD) 

[6]. Furthermore, tanshinol A (TSA) inhibits the growth 

of lung cancer cells by triggering necroptosis via MLKL 

[26]. Therefore, it is crucial to understand the precise 

molecular mechanisms and signaling events underlying 

the pro- or anti-tumorigenic role of necroptosis in order 

to better develop new therapeutic approaches [27]. 

 

In our study, we found that the necroptosis pathways 

were significantly different between the younger  

(≤60 years) or older (>60 years) subgroups of LUSC, 

whereas the tumor stage did not show any significant 

correlation. A previous study reported that old age 

portended worse prognosis in NSCLC patients [28]. 

Consistent with our findings, another bioinformatics 

study on LUSC also did not observe any difference in 

necroptosis-related pathways between different tumor 

stages [15, 29]. We analyzed the CNV data of 24 

necroptosis genes, of which most showed loss of 

function. In addition, most necroptosis genes were 

differentially expressed between the normal lung 

samples and LUSC samples. 

 

Five necroptosis genes, including CHMP4C, IL1B, 

JAK1, PYGB and TNFRSF10B, were significantly 

correlated to the survival. Liu et al. showed that 

CHMP4C is overexpressed in LUSC patients and 

portends poor prognosis, and its knockdown  

induced S-phase arrest in LUSC cells in vitro [30]. 

Furthermore, polymorphisms in the IL1B promoter 

have been linked to the risk of lung cancer development 

[31]. Low expression of JAK1 is closely associated  

with immune infiltration and poor prognosis in lung 

adenocarcinoma [32]. Likewise, low-level amplification 

of PYGB epigenetically regulate smoking-induced lung 

carcinogenesis [33]. High levels of TNFRSF10B mRNA 

and its encoded protein TRAIL-2 in EGFR wild-type 

NSCLC are predictive of unfavorable prognosis [34]. 

Furthermore, the YIPF2-TNFRSF10B axis is closely 

linked to the malignant progression of NSCLC [35]. 

 

The 5-gene necroptosis signature was identified as  

an independent prognostic biomarker, and was validated 

in an external dataset. Gao et al. had previously 

established a prognostic risk score model consisting  

of 5 genes (MYEOV, LCE3E, PTGIS, OR2W3 and 

RALGAPA2) for LUSC [29]. In addition, Dai et al. 

developed a prognostic model for LUSC with six 

necroptosis-related genes (NRGs), including RIPK3, 

MLKL TLR2, TLR4, TNFRSF1A and NDRG2. The 

NRG scores were strongly associated with prognosis, 

tumor immune microenvironment and tumor mutation 

burden [15]. We also evaluated the predictive effect of 

the necroptosis signature on immunotherapy response in 

other cancer cohorts. While there was no correlation 

between the signature and survival prognosis in the 

bladder cancer and renal clear cell carcinoma cohorts, 

there were significant differences in the response of the 

high-risk and low-risk bladder cancer, melanoma and 

 

 

 
Figure 12. Effect of the candidate drugs on PYGB-knockdown cells. (A) PYGB expression in the control and siPYGB groups. (B–F) 

Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901. 
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renal clear cell carcinoma patients to immunotherapy. 

Furthermore, the predictive rates of the signature for 

patient response were respectively 58.6%, 60.8% and 

56.1%. Along with tumor-infiltrating immune cell sig-

nature, this novel necroptosis signature may help select 

patients who can benefit the most from anti-PD-1/PD-

L1 immunotherapy [36]. 

 

The pharmacological data from the Genomics of  

Drug Sensitivity in Cancer (GDSC) and Cancer Cell 

Line Encyclopedia (CCLE) are routinely used to 

identify potential targets of candidate anti-cancer drugs 

[37], although there are concerns regarding the lack  

of reproducibility in drug sensitivity measurements 

across studies [38]. We identified five candidate drugs, 

including trametinib, selumetinib, SCH772984, PD 

325901 and dasatinib, that likely target the necroptosis 

genes in our model. Furthermore, there were significant 

differences in the sensitivity of the high-risk and low-

risk patients to these drugs, which was also validated 

through in vitro experiments on the A549 cell line. 

 

Trametinib is effective in patients with BRAFV600E-

mutant metastatic NSCLC when given in combination 

with dabrafenib [39, 40]. Furthermore, trametinib  

has been shown to overcome KRAS-G12V-induced 

osimertinib resistance in a leptomeningeal carcinomatosis 

model of EGFR-mutant lung cancer [41]. Selumetinib 

combined with chemotherapy was associated with a 

higher response rate in advanced or metastatic KRAS 

wildtype or unknown non-squamous NSCLC patients 

[42]. Likewise, the combination of selumetinib and 

osimertinib was effective in EGFR-mutated NSCLC 

patients who progressed after EGFR-TKIs [43]. 

SCH772984 inhibited the proliferation of BRAF or 

MEK inhibitor-resistant tumor cells by targeting the 

MAPK signaling pathway [44]. In addition, SCH772984 

plus apatinib has been effective against oral squamous 

cell carcinoma (OSCC) [45], and SCH772984 is  

also an alternative for the treatment of LKB1 and 

LKB1/KRAS-mutated NSCLC [46]. Lifirafenib (BGB-

283) and mirdametinib (PD-0325901) synergistically 

inhibited the proliferation of K-RAS-mutated NSCLC 

cell lines [47]. Dasatinib augmented the effects of anti-

PD-1 antibodies in NSCLC models by inhibiting Treg 

cell transformation and proliferation [48]. Furthermore, 

dasatinib may be effective against cisplatin-resistant 

lung cancer by targeting the tumor cells as well as the 

tumor microenvironment [49]. 

 

CONCLUSION 
 

A necroptosis gene signature was established to predict 

overall survival and immunotherapy response in LUSC 

patients. PYGB, CHMP4C, JAK1 and IL-1β may the 

target genes of trametinib, selumetinib, SCH772984, 

PD 325901 and dasatinib. Taken together, our study 

provides new insights into the mechanisms underlying 

the prognosis of LUSC, which can guide treatment 

decisions and facilitate personalized treatment. Never-

theless, our study has some limitations. First, we only  

to validated our findings in a cellular model. Second, 

we used the A549 cells rather than a squamous lung 

cancer cell line for the in vitro experiments. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The differences in immune cell infiltration between the high-risk and low-risk groups according to the 

CIBERSORT (A) and TIMER algorithms (B). (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns p > 0.05). 
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Supplementary Figure 2. Effect of the candidate drugs on CHMP4C knockdown cells. (A) CHMP4C expression in the control and 

siCHMP4C groups. (B–F) Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901. 

 

 

 
 

Supplementary Figure 3. Effect of the candidate drugs on JAK1 knockdown cells. (A) JAK1 expression in the control and siJAK1 

groups. (B–F) Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901. 
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Supplementary Figure 4. Effect of the candidate drugs on IL-β knockdown cells. (A) IL-β expression in the control and siIL-β 

groups. (B–F) Viability of the cells in response to (B) trametinib, (C) dasatinib, (D) selumetinib, (E) SCH772984 and (F) PD0325901. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. TCGA_LUSC necroptosis score. 

 

Supplementary Table 2. ssGSEA score. 

 


