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INTRODUCTION 
 

Female breast cancer has surpassed lung cancer  

as the most prevalent cancer, with an estimated 2.3 

million new cases (11.7%), and triple-negative breast 

cancer (TNBC) accounts for 11%-20% of all breast 

cancers [1]. It is characterized by the lack of estrogen 

receptor, progesterone receptor and human epidermal 

growth factor receptor 2 expression, as assessed by 

immunohistochemistry [2]. Its biological aggressive-

ness and propensity to metastasize are higher than  

those of any other pathological type of breast cancer [3]. 

Patients with TNBC have a poor prognosis as well [4]. 

Therapeutic approaches to TNBC are limited by the 

lack of therapeutic targets. Conventional chemotherapy, 

consisting mainly of anthracyclines and paclitaxel,  

has been the mainstay of treatment [5]. However,  

the heterogeneity of TNBC contributes to reducing  

the effectiveness of chemotherapy [6]. Although the 

majority of TNBC patients receive conventional chemo-

therapy, some patients will still experience recurrent 
metastases. This suggests that eliminating most cancer 

cells in tumor tissue does not inhibit progression [7]. A 

study showed that multiclonal seeding from individual 
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ABSTRACT 
 

Background: The treatment of triple-negative breast cancer (TNBC) is one of the main focuses and key 
difficulties because of its heterogeneity, and the source of this heterogeneity is unclear.  
Methods: Single-cell RNA (scRNA) and transcriptomics data of TNBC and normal breast samples were retrieved 
from Gene Expression Omnibus (GEO) database and TCGA-BRCA database. These cells were clustered using the 
t-SNE and UMAP method, and the marker genes for each cluster were found. We annotated the clusters using 
the published literature, CellMarker database and “SingleR” R package.  
Results: A total of 1535 cells and 21785 genes from 6 TNBC patients and 2068 cells and 15868 genes from 3 
normal breast tissues were used for downstream analyses. The scRNA data were divided into 14 clusters 
labeled into 8 cell types, including epithelial cells, immunocytes, CAFs/fibroblasts and etc. In the TNBC samples, 
CAFs were divided into three clusters and labelled as prCAFs, myCAFs and emCAFs, and the marker genes were 
DCN, FAP and RGS5, respectively. The prCAF subgroup is functionally characterized by promoting proliferation 
and multi drug resistance; myCAF subgroup is involved in constituting the extracellular matrix and collagen 
production, matrix composition and collagen production, and the emCAF functionally characterized by energy 
metabolism.  
Conclusions: TNBC has inter- and intra-tumor heterogeneity, and CAF is one of the sources of this 
heterogeneity. CD74, SASH3, CD2, TAGAP and CCR7 served as significant marker genes with prognostic and 
therapeutic value. 
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clones in TNBC tissue leads to multisite metastasis [8]. 

Oncogene mutations, amplifications, loss-of-function 

mutations in tumor suppressors, and large-scale chromo-

somal alterations are all recognized mechanisms that 

have previously been shown to drive cancer evolution 

and generate subpopulations of cancer cells for 

metastatic spread and growth [9, 10]. However, recent 

advances suggest that epigenetics and transcriptional 

reprogramming are now considered key factors driving 

tumor heterogeneity and evolution [11]. Single-cell 

RNA sequencing (scRNA-seq) uses optimized next-

generation sequencing technology to define the global 

gene expression profile of individual cells, which  

helps isolate heterogeneity previously hidden in cell 

populations [12]. In a patient-derived breast cancer 

xenograft model, single-cell RNA sequencing revealed 

that both primary tumors and micro-metastases show 

transcriptional heterogeneity that is highly predictive  

of poor patient survival [13]. These results may be 

evidence of tumor progression guided by tumor hetero-

geneity. Therefore, identifying the diversity of TNBC 

cells and subsets of associated cells at the single- 

cell level will contribute to the precise treatment of 

TNBC. 

 

The tumor microenvironment, which includes the 

surrounding cells and molecules that interact with 

cancer cells, plays a critical role in the development  

of tumors, including the occurrence, progression, and 

immune suppression of the tumors [14, 15], cancer-

associated fibroblasts are an important part of that. 

CAFs as the prominent stromal cell type in solid  

tumors, can enhance tumor phenotypes, especially 

cancer cell proliferation and invasion, neoangiogenesis, 

inflammation and extracellular matrix (ECM) re-

modeling [16, 17]. Abundant stromal myofibroblasts are 

associated with aggressive adenocarcinoma in human 

breast tumors and predict disease recurrence in humans 

[18]. In addition, the infiltration of CAFs contributes  

to angiogenesis, drug resistance and reduces anti- 

tumor immunity [3, 19, 20]. Most studies have focused 

on the relationship between CAFs and the tumor 

microenvironment and the immune cells within it, while 

its heterogeneity in human cancers is far from complete. 

In human TNBC samples with single-cell sequencing, 

CAFs clustered into two states: the first with features  

of myofibroblasts, and the second with high expression 

of growth factors and immunomodulatory molecules 

[21]. A study classified CAFs in human breast cancer 

into four subpopulations with different properties and 

activation levels. Two subpopulations of myofibroblasts 

with immunosuppressive effects (CAF-S1 and CAF-S4) 

accumulate differentially in TNBC [22]. Three CAF 
subpopulations were identified in 4T1 tumors trans-

planted from BALB/c mice, including myofibroblastic 

CAFs, enriched in α smooth muscle actin and several 

other contractile proteins; inflammatory CAFs with 

elevated expression of inflammatory cytokines; and 

CAF subpopulations expressing major histocompatibility 

complex class II proteins [23]. It has been previously 

shown that CAFs express high levels of alpha-smooth 

muscle actin (α-SMA/Acta2), fibroblast activation 

protein (Fap), fibroblast-specific protein 1 (S100a4), 

CD74, etc. [24, 25]. However, these markers are  

not exhaustive or can characterize certain subgroups. 

Therefore, the use of single-cell analysis is necessary  

to identify intra- and inter-tumor heterogeneity in 

TNBC tumors. Based on the above, we proposed the 

hypothesis that CAFs in TNBC are heterogeneous and 

that this heterogeneity may contribute to differences in 

patient prognosis. 

 

In the present study, to explore the heterogeneity of 

CAFs in TNBC and the prognostic value of CAFs,  

we identified the biomarkers and functions of three 

subpopulations of CAFs and molecular fractionation  

of TNBC through scRNA-seq and bulk RNA-seq, 

described the tumor heterogeneity in TNBC and 

developed a prognostic model based on CAF-related 

genes.  

 

MATERIALS AND METHODS 
 

Data extraction 

 

scRNA-seq was retrieved from GSE75688, GSE118389 

and GSE226391 in the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). A 

total of 21785 genes and 1534 cells were obtained in 6 

TNBC patients and 21921 genes and 4840 cells in 3 

normal breast tissues. Transcriptomics data from 

GSE19615 and GSE21653 in the GEO database and 

107 TNBC patients were screened by clinical 

information. Transcriptomics data of 142 TNBC 

patients were screened by corresponding clinical 

information from TCGA-BRCA in the TCGA database 

(https://portal.gdc.cancer.gov/). RNA-seq data were 

normalized, and batch effects were removed by the R 

packages “limma” and “sva”. 

 

scRNA-seq quality control and analyses 

 

The extracted data need to be quality controlled.  

Data quality control and analysis were applied using 

the “seurat” R package. First, the percentage of 

mitochondrial genes was tested, and a percentage  

less than 5% was considered satisfactory for cell 

quality control [26]. Second, the sequencing depth and 

counts of each cell were detected, and low-quality 

single-cell data were removed. Third, the first 1500 

highly variable genes were extracted for subsequent 

analysis. After that, PCA was performed for linear 
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dimensionality reduction. These cells were clustered 

using the louvain clustering method, and the marker 

genes for each cluster were found. In the analysis for 

the TNBC samples, the PC value is defined as 14 

according to the ElbowPlot function, as shown in 

Supplementary Figure 1. The resolution is defined as 

0.5 according to the “clustree” package, as shown in 

Supplementary Figure 2. In the analysis for the normal 

tissue, the PC value is defined as 9, the resolution is 

defined as 0.5, as shown in Supplementary Figures 3, 

4. K-nearest neighbor value defaults to 20 according  

to the number of cells. We annotated the clusters  

using the published literature, the CellMarker  

database (http://xteam.xbio.top/CellMarker/index.jsp) 

and referring to the annotation results of the “SingleR” 

R package. The marker genes for each cluster were 

considered to be the most significantly different genes 

in PCs. Tumor cells and normal cells were identified 

by the R package “copykat”. The distribution of cell 

types for each sample was counted and visualized. 

Finally, cell trajectory analysis was performed using 

the “monocle” R package to derive the trajectory for 

each type of cell in terms of state, clustering and 

pseudotime distribution to find the differential genes 

on each branch. The results of each of the above steps 

were visualized. 

 
Biological functional and signaling pathway analyses 

 
To identify the function of each CAF subgroup, Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) analyses were performed using the 

genes and expressions of each subgroup. GO and 

KEGG enrichment analyses using cluster marker genes 

were performed with R with the aid of the packages 

clusterProfiler, enrichplot, and ggplot2. Terms with 

FDR values of < 0.05 were considered significantly 

enriched. GO analyses included GO biological process, 

GO molecular function and GO cellular component. 

The top 10 terms of all of the above analyses were 

visualized by barplot. 

 
Identification of molecular subtypes 

 
We intended to cluster the sample with the inner feature 

in tumor samples and extracted biological correlation 

coefficients, and the R package “ConsensusClusterPlus” 

was used to take the above action. We selected an 

optimum k value of 2 to 9 in consideration of stability 

and clustering performance. A suitable k value was 

chosen based on consensus CDF and delta area. 

Kaplan‒Meier analysis was conducted between clusters 
via the “survival” R package. We also examined the 

differences in clinical characteristics in clusters and 

visualized them. 

Definition and comparison of the tumor immune 

infiltration microenvironment (TIME) 

 
We used ESTIMATE to assess the tumor micro-

environment by the R package “estimate” and obtained 

ESTIMATE scores, immune scores, stromal scores a 

nd tumor purity. By using the CIBERSORT algorithm, 

we calculated the absolute abundance of 22 types of 

immune cells. By contrasting the scores between 

clusters, it was possible to identify the infiltrating cells. 

The “ggpubr” package was used to visualize the results 

above. Differences in common immune checkpoints 

between clusters were analyzed by the R package 

“limma”. Kaplan‒Meier analysis was conducted between 

clusters via the “survival” R package. 

 
Construction and validation of CAF-related gene 

prognostic features 

 
CAF signature genes were found in the pseudotime 

analysis, which were used to build prognostic prediction 

model. To screen out CAF-related genes that may be 

related to prognosis, we performed Cox regression with 

the R packages “survival” and “survminer” to obtain 

candidate genes. The Lasso algorithm was executed to 

construct a prognostic model by the “glmnet” R 

package. We determined the risk score using the 

formula: 

 

1

( )
=

= 
n

i

Risk score coefi Expi  

 
The mathematical meaning of the representation of  

this formula is to calculate the expression of each 

candidate gene multiplied by the regression coefficient 

of the multivariate Cox and then to sum all the values. 

We divided all cases into a high-risk group and a low-

risk group based on the median risk score. The training 

set was composed of GEO data, and the testing set  

was composed of TCGA data. Receiver operating 

characteristic (ROC) curve analysis was used to confirm 

that the prognostic model was stable. To establish the 

risk score as a significant prognostic factor, univariate 

and multivariate Cox regression was conducted. 

 
Establishment and verification of the nomogram 

 
The R program “rms” was used to finish the 

establishment, and “regplot” was used to complete the 

visualization. The model was built taking into account 

nomogram risk scores and clinical features. We offer a 
measurable tool to forecast overall survival at 1, 3, and 

5 years. Calibration curves were created to evaluate the 

effectiveness of the nomogram. 

http://xteam.xbio.top/CellMarker/index.jsp
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Extraction of hub genes 

 

Hub genes, which are high-degree genes, have  

high connectivity in the protein-protein interaction 

network. The PPI network was constructed by the 

STRING database (https://cn.string-db.org/) based on 

CAF-related genes, followed by reconstruction with 

Cytoscape version 3.6.1. Nodes with confidence of 

interactive relationship larger than 0.95 were used for 

building the network. The number of adjacent nodes of 

each gene was counted by R. 
 

Statistical analysis 

 

All the data were processed and analyzed by using  

R software (version: 4.1.2). In comparisons of two 

classes of data, we used the Mann‒Whitney U test  

(for nonnormally distributed data) or Student’s t test 

(for normally distributed data). Spearman’s correlation 

test (for nonnormally distributed data) or Pearson’s 

correlation test (for normally distributed data) was 

applied to evaluate the correlation between two groups 

of data. We used Fisher’s exact or chi-square tests  

to assess the association between two categorical 

variables. We utilized the FDR, evaluated by the 

Benjamini‒Hochberg method, to adjust for multiple 

tests. 

 

Availability of data and materials 

 

All data generated or analysed during this study are 

included in this published article. 

 

RESULTS 
 

Normalization and dimensionality reduction of 

scRNA-seq data 

 

The flow of analyses in the presented study is shown  

in Figure 1. In the GSE226391, three samples, 

GSM7074398, GSM7074399 and GSM7074340, were 

of too low quality and were therefore excluded. 

Ultimately, a total of 1535 cells and 21785 genes from 

6 TNBC patients and 2068 cells and 15868 genes from 

3 normal breast tissues were used for downstream 

analyses. Visualization of sequencing depth, gene 

quantity, and mitochondrial gene content showed  

that scRNA data were available, as shown in Figure 

2A, 2B. The percent of mitochondrial genes was 

independent of the counts of genes, and the sequencing 

depth was positively correlated with the counts of 

genes with a coefficient of 0.63 and 0.93 in TNBC  

and normal breast individually (Figure 2C, 2D). The 

relationship between normalized variance and average 

expression of all genes for each cell was visualized  

as shown in Figure 2E, 2F, and the 1500 genes with 

the largest normalized variables were selected for 

subsequent analysis. 

 

Identification of clusters and cell types  

 

To better specify the types of these cells, we used the t-

SNE and UMAP method to classify them into 14 

clusters in TNBC, as shown in Figure 3A. The 14 

clusters were labeled into eight cell types based on 

known marker expression, including epithelial cells, T 

cells, tumor-associated fibroblasts, macrophages, tumor 

stem cells, smooth muscle cells, tissue stem cells,  

and endothelial cells. The gene markers for each cell 

cluster are shown in the scatter plot in Figure 3B. There 

was heterogeneity in the distribution of cell types per 

tumor sample, as shown in Figure 3C. Whereas in 

normal breast, these cells were clustered by 9 clusters in 

t-SNE and UMAP, as shown in Figure 4. The 9 clusters 

were labeled into 6 types, including endothelial cells, 

epithelial cells, fibroblasts, keratinocytes, monocytes 

and tissue stem cells. Interestingly, we found that  

the cells labeled CAFs were divided into three sub-

populations, whereas in normal breast tissue there was 

only one cluster of fibroblasts. We suggested that this 

may be due to heterogeneity within CAFs as well. 

 

Heterogeneity of CAFs and functional analyses 

 

In TNBC, clusters 7, 11 and 13 were labeled CAFs, and 

the marker genes for these clusters were DCN, FAP and 

RGS5, respectively, which are widely reported markers of 

CAFs. We performed a separate t-SNE analysis of CAFs 

and found that they were clearly divided into three 

subgroups, as shown in Figure 5A. The marker genes for 

each subgroup can be seen in the heatmap in Figure 5B.  

 

To identify the function of each subgroup, we 

performed GO and KEGG analyses to identify their 

functional differences, as shown in Figure 5D–5I. The 

cluster 0 subgroup is functionally characterized by 

promoting proliferation and multi drug resistance, 

activating PI3K signalling and ABC transporters,  

the cluster 1 subgroup is functionally characterized by 

constituting the extracellular matrix and collagen 

production, and the cluster 2 subgroup is functionally 

characterized by energy metabolism, in which Notch 

signaling pathway and Apelin pathway are activated. In 

the present research, we labeled cluster 0 as prCAFs, 

cluster 1 as myCAFs, and cluster 2 as emCAFs, as 

shown in Figure 5C. 

 
Molecular subgroup of TNBC based on CAF 

characteristic genes  

 

The distribution of clusters in the trajectory diagram  

is shown in Figure 6A. The differentiation trajectory 

https://cn.string-db.org/
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diagram showed that there are five main states of these 

cells (Figure 6B), and it can be seen that epithelial cells 

are distributed in all five states, and CAFs are mainly 

distributed in the first state, with the largest number of 

cell types in this state, as shown in Figure 6C.  

The pseudotime analysis diagram showed that CAFs  

are mainly distributed at the starting point from the 

pseudotime line, as shown in Figure 6D. 

 

 

 

Figure 1. Graphical abstract of the analysis process. 
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There were 450 characteristic genes in the first  

state, and these genes were further analyzed. The 107 

patients from GSM19615 and GSM21653 were divided 

into 3 clusters based on the expression of these genes. 

The clinical characteristics of patients were shown  

as Table 1. The Kaplan‒Meier analysis (Figure 7A) 

showed that the survival probability of patients in 

cluster C3 was the longest and that of patients in cluster 

C1 was the shortest (P=0.019). Age, grade, lymph node 

metastasis (N) and distant metastasis (M) did not differ 

among the three clusters (P>0.05), while the size of the 

tumor (T) differed from each cluster (P=0.029), as 

shown in Figure 7B–7F. 

 

Tumor immune microenvironment (TIME) differs 

between clusters 

 

To investigate the correlation between cluster and 

TIME, ESTIMATE and CIBERSORT analyses were 

performed. The results showed that there were 

differences in the ESTIMATE score, immune score, 

stromal score and tumor purity between C1 and C2 

and between C2 and C3 (P<0.001), as shown in Figure 

8A–8D. This suggested that there are differences in the 

TIME and stromal microenvironment among clusters. 

Among the three clusters, C2 had the least tumor cell 

infiltration and the most immune cells and stromal 

components. There were differences between clusters in 

multiple immune cells, including T cells, as shown in 

Figure 8E. Calculation of CAF scores in the tumor 

microenvironment using the Xcell, MCPcounter and 

EPIC algorithms is shown in Figure 7F. Kaplan‒Meier 

analysis showed that CD4 memory activated T cells, 

CD4 memory resting T cells and gamma delta T cells 

were positively related to overall survival, while 

regulatory T cells and M0 macrophages were negatively 

related to overall survival (Figure 8G–8K). 

 

A checkpoint distribution among the three clusters 

was performed to predict the response to immuno-

therapy. There were differences among clusters in  

the distribution of genes encoding the immune 

checkpoints WEE1, SHH, PVRIG, PRMT5, PIK3CA, 

PDCD1, EGFR, DLL4, DDR2, CTLA4, CD274 and 

BRCA (Figure 9A). In Kaplan‒Meier analyses, high 

expression of CTLA4 and PVRIG and low expression 

of PRMT5 were related to longer overall survival 

(Figure 9B–9D). 

 

 
 

Figure 2. Normalization and quality control of scRNA-seq. (A) Single-cell sequencing depth, counts and fraction of reads mapped to 
mitochondrial genes in TNBC samples. (B) Single-cell sequencing depth, counts and fraction of reads mapped to mitochondrial genes in 
breast tissues. (C) Correlation of gene count and percent of mitochondrial genes and features in TNBC. (D) Correlation of gene count and 
percent of mitochondrial genes and features in breast tissue. (E) The first 1500 genes were screened as variant genes in TNBC samples. (F) 
The first 1500 genes were screened as variant genes in normal breast. 
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Development of a prognostic predictive model and a 

nomogram 

 

The 33 genes associated with prognosis were  

screened using univariate regression analysis and then 

compressed to 16 genes using LASSO regression, 

shown as Table 2. The AUC values of the ROC curves 

in the training and test sets validate that the model  

is stable. The 1-year AUC of the training set was 

0.976, the 3-year AUC was 0.972, and the 5-year AUC 

was 0.927 (Figure 9E). The 1-year AUC of the testing 

set was 0.514, the 2-year AUC was 0.548, and the  

3-year AUC was 0.540 (Figure 9F). Univariate and 

multivariate Cox regressions were implemented for 

clinical characteristics and risk scores, respectively, 

and the results showed that the risk score was related 

to overall survival (univariate: HR= 1.007, 95% CI 

(1.004−1.009), P<0.001; multivariate: HR= 1.005, 

 

 

 
 

Figure 3. t-SNE and UMAP clustering of TNBC samples. (A–C) Clusters, cell type annotations and aneuploid cells at the single-

cell level in TNBC samples by t-SNE method. (D, E) Clusters and cell type annotations at the single-cell level in TNBC samples by UMAP 
method. (F) Scatter plot of marker gene expression in each cluster. (G) Inter-tumor heterogeneity of triple-negative breast cancer at 
the single-cell level. 
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Figure 4. t-SNE and UMAP clustering of normal breast samples. (A) Inter-tumor heterogeneity of triple-negative breast cancer by t-
SNE method. (B, C) Clusters and cell type annotations at the single-cell level in TNBC samples by t-SNE method. (D) Inter-tumor heterogeneity 
of triple-negative breast cancer by UMAP method. (E, F) Clusters and cell type annotations at the single-cell level in TNBC samples by UMAP 
method. 

 

 
 

Figure 5. CAF subgroup analysis. (A) Scatter plot of the distribution of clusters in CAFs. (B) Heatmap of the distribution of gene markers in 

clusters. (C) Type annotation of CAF subgroups. (D) Results of GO analyses of prCAF subgroups. (E) Results of GO analyses of myCAF 
subgroups. (F) Results of GO analyses of emCAFs. (G) Results of KEGG pathway analyses of prCAF subgroups. (H) Results of KEGG pathway 
analyses of myCAF subgroups. (I) Results of KEGG pathway analyses of prCAF subgroups. 



www.aging-us.com 12682 AGING 

Table 1. TNBC patient information (bulk RNA-seq). 

Characteristics TCGA cohort N = 143 GEO cohort N = 107 

Age   

<=53 63(44.06%) 54(50.47%) 

>53 80(55.94%) 53(49.53%) 

Gender   

Female 143(100.00%) 107(100%) 

Grade   

G1 0 5(4.67%) 

G2 0 14(13.08) 

G3 0 88(82.24%) 

Unknown 143(100%) 0 

Stage   

I 23(16.08%) 0 

II 96(67.13%) 0 

III 23(16.08%) 0 

IV 1(0.01%) 0 

Unknown 0 107(100%) 

Survival status   

Alive 124(86.71%) 80(14.62%) 

Dead 19(13.29%) 27(85.38%) 

The median follow-up time (year) 2.12 4.02 

 

 
 

Figure 6. Trajectory analyses of a single cell. (A) Trajectory diagram of cell clusters. (B) Trajectory diagram of cell status. (C) Trajectory 

diagram of cell types. (D) Trajectory diagram of cell differentiation time. 
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95% CI (1.002−1.007), P<0.001). To visualize  

the model, a nomogram was applied (Figure 9G). 

Calibration curves showed that the nomogram predicted 

1-year survival more accurately and may underestimate 

3- and 5-year survival (Figure 9H). The hub genes were 

CD74, SASH3, CD2, TAGAP and CCR7 by degree of 

nodes (Figure 10). 
 

DISCUSSION 
 

Breast cancer is a highly heterogeneous disease and 

this heterogeneity leads to the development of drug 

resistance and progression [17], in order to reveal the 

source of this heterogeneity as well as to explore 

therapeutic targets, our study was implemented. In  

the presented research, the intra- and inter-tumor 

heterogeneity was identified, and three subpopulations 

of CAFs and five branches in the differentiation 

trajectory were recognized by the scRNA-seq data. 

The three subgroups are prCAFs, which promote 

proliferation and multi drug resistance; myCAFs, 

which are involved in constituting the extracellular 

matrix and collagen production; and emCAFs, which 

are functionally characterized by energy metabolism. 

The naming of these subpopulations was proposed 

only for the present study, and we looked for 

established subpopulation names that matched the 

results of the present study as closely as possible, and 

for the other subpopulations, naming them according 

to their functions. The differentiation trajectory 

showed five statuses of cells. We found that CAFs 

were enriched in branch 1 and appeared in the early 

stages of differentiation. We divided the patients into 

three clusters based on the differentially expressed 

 

 
 

Figure 7. Molecular clusters of TNBC. (A) Kaplan‒Meier analysis among molecular clusters. (B–F) Distribution of clinical characteristics in 
clusters. 
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genes in the branch containing CAFs. In Kaplan‒

Meier analysis, C3 patients had a higher survival 

probability, C2 had the second highest survival 

probability and C1 had the lowest survival probability. 

The clinical features and TIME were characterized by 

clusters. Tumor size and tumor microenvironment 

varied among clusters. There were differences in T 

cells and M0 macrophages among clusters. High 

infiltration of CD4+ memory activated T cells, CD4+ 

memory resting T cells and gamma delta T cells  

was related to higher survival probability, while low 

infiltration of M0 macrophages and regulatory T cells 

was related to higher survival probability. Immune 

check-point-related genes varied among clusters. In 

addition, a prognostic model and nomogram were 

developed and verified. 

In the scRNA-seq data, we found that the sample 

consisted mainly of epithelial cells, and cancer cells 

were almost concentrated in the epithelial cells. This 

result is consistent with the fact that breast cancer 

originates from the epithelial cells of the breast. Other 

cells within the sample were cancer-associated 

fibroblasts, tissue stem cells, smooth muscle cells, 

embryonic stem cell-like cells, endothelial cells, 

macrophages and T cells. Cancer-associated fibro-

blasts were clearly divided into three clusters, and 

their marker genes were DCN, FAP and RGS5. DCN 

is considered a marker for one of these subgroups in 

CAFs of colorectal cancer and high-grade serous 

ovarian cancer samples [27, 28]. FAP is thought to be 

a CAF-specific expression protein [29]. RGS5 serves 

as the gene marker of myCAFs [30, 31]. Single-cell 

 

 
 

Figure 8. Analysis of the tumor microenvironment among molecular subtypes. (A–D) ESTIMATE score, immune score, stromal 
score and tumor purity among clusters. (E) Comparison of infiltration of 22 immune cells among clusters. (F–J) Immune cells associated with 
survival in triple-negative breast cancer patients. 
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Table 2. CAF-related genes to construct a prognostic model. 

Gene name Coefficient HR HR.95 L HR.95H pvalue 

SRGN 1.55 4.72 1.47 15.12 0.01 

ITM2A 1.17 3.21 1.02 10.09 0.05 

CD74 -0.59 0.55 0.27 1.15 0.11 

SAMSN1 -2.58 0.08 0.01 0.52 0.01 

CD2 0.91 2.49 0.69 8.91 0.16 

IL7R 0.63 1.89 0.86 4.18 0.12 

SASH3 1.75 5.76 1.31 25.44 0.02 

TAGAP 1.94 6.96 1.42 34.10 0.02 

CCR7 -2.22 0.11 0.02 0.53 0.01 

ICOS -3.42 0.03 0.01 0.18 <0.001 

ALDOA 2.14 8.49 2.82 25.56 <0.001 

MRFAP1 2.33 10.23 2.74 38.15 <0.001 

LCLAT1 2.19 8.96 2.19 36.73 <0.001 

PCNA 1.41 4.11 1.52 11.10 0.01 

MAN2B1 -0.94 0.39 0.14 1.10 0.08 

ZNF445 1.83 6.23 1.67 23.29 0.01 

 

RNA sequencing in patients with intrahepatic 

cholangiocarcinoma divides CAFs into inflammatory 

and growth factor-rich and myCAF subpopulations, 

showing distinct ligand‒receptor interactions. myCAFs 

express hyaluronate synthase 2, whereas type I collagen 

is not expressed and promotes intrahepatic cholangio-

carcinoma [32]. The results were consistent with the 

results of our study. Six CAF subpopulations have been 

identified in 4T1 tumors, including 1) myofibroblast 

CAFs, enriched in α-SMA54re and several other 

contractile proteins; 2) CAFs with elevated expression 

of “inflammatory” inflammatory cytokines; and 3) CAF 

subpopulations expressing major histocompatibility 

complex class II proteins, which are typically expressed 

in antigen-presenting cells [23]. The expression of 

activated CAF-specific genes significantly correlated 

with patient survival [33]. Four major subgroups of 

fibroblasts were identified in gastric cancer samples: 

myofibroblasts, pericytes, extracellular matrix CAFs 

and immunomodulatory CAFs [34]. The function of 

each subgroup is different. High iCAF levels may 

indicate a high degree of malignancy, while high 

myCAF levels may indicate a poor response to treat-

ment [30]. ICAFs appear to promote tumors better 

than myCAFs by producing chemokines and cytokines 

[35]. myCAFs may deposit large amounts of ECM to 

impede drug delivery [36]. In breast cancer, scRNA-

seq in mouse models detected four distinct CAF 

phenotypes [37], termed vascular CAFs, matrix CAFs, 

cycling CAFs and developmental CAFs [37]. A 

scRNA-seq study using a triple-negative breast cancer 

mouse model further identified 2 CAF phenotypes, 

pCAF and sCAF, showed that CAFs functions change 

with tumor progression [38]. Our results for CAFs sub-

groups differ from the previous studies in perspective 

of concern, which focused more on the relationship 

between CAFs and immune cells, whereas the present 

study identified the pathways and mechanisms by 

which CAFs acts. Lena Cords also provided 8 CAF 

classification: vascular CAFs, matrix CAFs, immune 

CAFs, tumor-like CAFs, interferon-response CAFs, 

antigen-presenting CAFs, dividing CAFs, and reticular-

like CAFs [39]. For triple-negative breast cancer,  

52% of patients have low peripheral lymphocyte 

infiltration and poor PD-1/PD-L1 treatment [40], 

which is supported by the single-cell clustering  

results of the presented research, so targeting the 

relevant pathways and mechanisms may create a 

breakthrough. 

 

The CAFs marker FAP mentioned in the presented 

study has been the subject of several preclinical 

studies and is considered a promising target. 

Treatment of xenograft models of lung, pancreatic and 

head and neck cancers with a novel antibody-

metanicinol conjugate, FAP5-DM1, resulted in long-

term inhibition of tumor growth and complete 

regression with no signs of intolerance [41]. Depletion 

of FAP-positive stromal cells with the FAP-targeted 

immunotoxin αFAP-PE38 reduced the recruitment  

of tumor-infiltrating immune cells in the tumor 

microenvironment and inhibited tumor growth [42]. 

There are also novel FAP-targeted immunotherapies, 

such as DNA vaccination [43], chimeric antigen 

receptor T cells [44, 45] or lysing adenovirus  

[46, 47]. The FAP-specific antibody sibrotuzumab was 
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Figure 9. Analysis of CAF-related genes between molecular subtypes. (A) The expression of immune checkpoint-related genes 

among clusters. (B–D) The expression of checkpoint-related genes associated with survival in triple-negative breast cancer patients. (E, F) 
ROC curves for the training and testing sets. (G) Nomogram predicting patient survival prognosis. (H) Calibration curve of the nomogram. 
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considered clinically safe and effective in phase I 

trials in advanced cancer [48, 49]. However, no 

beneficial effects were shown in phase II trials in 

metastatic colorectal cancer [50]. 

 

Interestingly, we found a cluster of embryonic  

stem cell-like cells in these triple-negative breast 

cancer samples. Poorly differentiated basal-like  

breast cancer with similarities in gene expression  

to embryonic and induced pluripotent stem cells  

[51]. The extensive proliferation, migration and 

invasion required for mammogenesis do not occur in 

the resting adult breast, but they do resemble the 

processes that mediate breast cancer progression. 

Forced coexpression of luminal keratins 8 and 18  

with vimentin in human breast cancer cells in vitro 

increases motility, invasiveness, and proliferation 

[52]. Similarly, basal-like breast cancers frequently 

exhibit an undifferentiated phenotype and coexpress 

keratin and wave proteins of the myoepithelium  

and tubular epithelium [53]. The epithelial-to-

mesenchymal transition commonly observed during 

invasive tumorigenesis may represent a return to an 

embryonic-like state and may also promote a stem 

cell-like state in breast cells [54, 55]. Based on  

the above studies, we speculated that this fraction  

of cells may be embryonic stem cell-like mammary 

epithelial cells generated by the EMT process due to 

tumor tissue generation. 

 

We identified 5 hub genes, including CD74, SASH3, 

CD2, TAGAP and CCR7. CD74 is a type II 

transmembrane protein that is primarily expressed on  

 

 
 

Figure 10. Hub genes obtained from the prognostic 
predictive model. Note: The dots represent proteins, the lines 

represent the interaction between proteins, and the color of the 
dots represents the degree (red: high; yellow: low). 

antigen-presenting cells and functions intra- 

cellularly as a major histocompatibility complex  

class II chaperone [56, 57]. Its expression is highly 

correlated with tumor progression, especially in 

chronic lymphocytic leukemia [58]. SASH3 has also 

been reported by other bioinformatic analyses as a 

tumor microenvironment-related gene with prognostic 

value for breast cancer [59]. SASH3 is important  

for T-cell proliferation, activation and cell survival, 

and deficiency or mutation of SASH3 may lead to a 

decrease in CD4 T-cell lymphocytes, a decrease in T-

cell proliferation, a decrease in cell cycle progression 

and an increase in T-cell apoptosis [60]. Our findings 

suggested that T-cell infiltration differed among 

clusters. CD2 promotes adhesion and signaling and 

counteracts human T-cell depletion. Low CD2 

expression is shown in patients with endometrial or 

ovarian cancer. CD2 downregulation may attenuate 

antitumor T-cell responses and have implications for 

checkpoint immunotherapy [61]. In weighted gene co-

expression network analysis, TAGAP was considered 

a key marker associated with prognosis in bladder 

cancer [62], endometrial cancer [63], and prostate 

cancer [64]. In tumors, CCL chemokine expression is 

present in cancer-associated fibroblasts [65]. The CCR7 

chemokine axis plays an important role in controlling 

the migration of tumor cells to the lymphatic system 

and metastasis and therefore contributes to cancer 

expansion [66]. In esophageal squamous carcinoma, 

activation of CCR7 increases VEGF-A expression  

in cancer cells by increasing angiogenesis through 

activation of NF-κB [67]. It also causes EMT and 

migration of cancer cells [68, 69]. 

 
In this study, three CAF subgroups and marker  

genes were identified, their functions were annotated, 

and a prognostic model based on CAF-related genes 

was constructed. However, some limitations in our 

study should be acknowledged. Clinical information 

corresponding to single-cell data was not available  

for this study, resulting in failure to analyze the 

relationship between CAF percentage and survival  

in individual samples. The functions of the CAF 

subgroup proposed in this study need to be verified by 

biological tests. In the future, we will perform flow 

cytometry to classify CAFs and investigate their 

effects on the proliferation, migration and apoptosis of 

TNBC cells. 

 

CONCLUSIONS 

 
In summary, we identified three subgroups: prCAFs 

(marked by DCN), myCAFs (marked by FAP) and 

emCAFs (marked by RGS5). Their functions are 

promoting angiogenesis, constructing matrix compo-

sition and collagen production, having myofibroblast 
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characteristics and inducing endocrine resistance. CAFs 

are a source of inter- and intra-tumor heterogeneity  

in TNBC tumors. A prognostic model based on CAF-

related genes was constructed and verified by a testing 

set. Five hub genes, CD74, SASH3, CD2, TAGAP  

and CCR7, served as significant marker genes with 

prognostic value. 

 

AUTHOR CONTRIBUTIONS 
 

Study conception and design: Wenping Lu, Xiaoqing 

Wu; data collection: Dongni Zhang, Yongjia Cui, Zhili 

Zhuo; analysis and interpretation of results: Xiaoqing 

Wu, Cuihong Jiang; draft manuscript preparation: 

Xiaoqing Wu and Cuihong Jiang. All authors reviewed 

the results and approved the final version of the 

manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest to report regarding the present study. 

 

FUNDING 
 

The authors received no specific funding for this study. 

 

REFERENCES 
 
1. Sung H, Ferlay J, Siegel RL, Laversanne M, 

Soerjomataram I, Jemal A, Bray F. Global Cancer 
Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. 
CA Cancer J Clin. 2021; 71:209–49. 

 https://doi.org/10.3322/caac.21660 PMID:33538338 

2. So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast 
cancer (TNBC): Non-genetic tumor heterogeneity and 
immune microenvironment: Emerging treatment 
options. Pharmacol Ther. 2022; 237:108253. 

 https://doi.org/10.1016/j.pharmthera.2022.108253 
PMID:35872332 

3. Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, 
Osati P, Akbari Oryani M, Shakeri F, Nasirzadeh F, 
Khalesi B, Nabi-Afjadi M, Zalpoor H, Mard-Soltani M, 
Payandeh Z. The role of epigenetic modifications in 
drug resistance and treatment of breast cancer. Cell 
Mol Biol Lett. 2022; 27:52. 

 https://doi.org/10.1186/s11658-022-00344-6 
PMID:35764927 

4. de Jong VMT, Wang Y, Ter Hoeve ND, Opdam M, 
Stathonikos N, Jóźwiak K, Hauptmann M, Cornelissen S, 
Vreuls W, Rosenberg EH, Koop EA, Varga Z, van 
Deurzen CH, et al. Prognostic Value of Stromal Tumor-
Infiltrating Lymphocytes in Young, Node-Negative, 

Triple-Negative Breast Cancer Patients Who Did Not 
Receive (neo)Adjuvant Systemic Therapy. J Clin Oncol. 
2022; 40:2361–74. 

 https://doi.org/10.1200/JCO.21.01536  
PMID:35353548 

5. Chen K, Lu P, Beeraka NM, Sukocheva OA, 
Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko 
VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, 
Zhang J, et al. Mitochondrial mutations and 
mitoepigenetics: Focus on regulation of oxidative 
stress-induced responses in breast cancers. Semin 
Cancer Biol. 2022; 83:556–69. 

 https://doi.org/10.1016/j.semcancer.2020.09.012 
PMID:33035656 

6. McAndrews KM, Chen Y, Darpolor JK, Zheng X, Yang S, 
Carstens JL, Li B, Wang H, Miyake T, Correa de Sampaio 
P, Kirtley ML, Natale M, Wu CC, et al. Identification of 
Functional Heterogeneity of Carcinoma-Associated 
Fibroblasts with Distinct IL6-Mediated Therapy 
Resistance in Pancreatic Cancer. Cancer Discov. 2022; 
12:1580–97. 

 https://doi.org/10.1158/2159-8290.CD-20-1484 
PMID:35348629 

7. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia 
JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, 
Green M, Cristofanilli M, Hortobagyi GN, Pusztai L. 
Response to neoadjuvant therapy and long-term 
survival in patients with triple-negative breast cancer. J 
Clin Oncol. 2008; 26:1275–81. 

 https://doi.org/10.1200/JCO.2007.14.4147 
PMID:18250347 

8. Hoadley KA, Siegel MB, Kanchi KL, Miller CA,  
Ding L, Zhao W, He X, Parker JS, Wendl MC,  
Fulton RS, Demeter RT, Wilson RK, Carey LA, et al. 
Tumor Evolution in Two Patients with Basal-like 
Breast Cancer: A Retrospective Genomics Study  
of Multiple Metastases. PLoS Med. 2016; 
13:e1002174. 

 https://doi.org/10.1371/journal.pmed.1002174 
PMID:27923045 

9. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, 
Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, 
Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, et 
al, and Australian Pancreatic Cancer Genome Initiative, 
and ICGC Breast Cancer Consortium, and ICGC MMML-
Seq Consortium, and ICGC PedBrain. Signatures of 
mutational processes in human cancer. Nature. 2013; 
500:415–21. 

 https://doi.org/10.1038/nature12477  
PMID:23945592 

10. Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A, 
Nguyen L, Nik-Zainal S, Steenbruggen TG, Tjan-Heijnen 
VC, Labots M, van Riel JM, Bloemendal HJ, Steeghs N, 

https://doi.org/10.3322/caac.21660
https://pubmed.ncbi.nlm.nih.gov/33538338
https://doi.org/10.1016/j.pharmthera.2022.108253
https://pubmed.ncbi.nlm.nih.gov/35872332
https://doi.org/10.1186/s11658-022-00344-6
https://pubmed.ncbi.nlm.nih.gov/35764927
https://doi.org/10.1200/JCO.21.01536
https://pubmed.ncbi.nlm.nih.gov/35353548
https://doi.org/10.1016/j.semcancer.2020.09.012
https://pubmed.ncbi.nlm.nih.gov/33035656
https://doi.org/10.1158/2159-8290.CD-20-1484
https://pubmed.ncbi.nlm.nih.gov/35348629
https://doi.org/10.1200/JCO.2007.14.4147
https://pubmed.ncbi.nlm.nih.gov/18250347
https://doi.org/10.1371/journal.pmed.1002174
https://pubmed.ncbi.nlm.nih.gov/27923045
https://doi.org/10.1038/nature12477
https://pubmed.ncbi.nlm.nih.gov/23945592


www.aging-us.com 12689 AGING 

et al. The genomic landscape of metastatic breast 
cancer highlights changes in mutation and signature 
frequencies. Nat Genet. 2019; 51:1450–8. 

 https://doi.org/10.1038/s41588-019-0507-7 
PMID:31570896 

11. Tavernari D, Battistello E, Dheilly E, Petruzzella AS, 
Mina M, Sordet-Dessimoz J, Peters S, Krueger T, Gfeller 
D, Riggi N, Oricchio E, Letovanec I, Ciriello G. 
Nongenetic Evolution Drives Lung Adenocarcinoma 
Spatial Heterogeneity and Progression. Cancer Discov. 
2021; 11:1490–507. 

 https://doi.org/10.1158/2159-8290.CD-20-1274 
PMID:33563664 

12. Potter SS. Single-cell RNA sequencing for the study of 
development, physiology and disease. Nat Rev 
Nephrol. 2018; 14:479–92. 

 https://doi.org/10.1038/s41581-018-0021-7 
PMID:29789704 

13. Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, 
Phung AT, Yang Y, Maurer D, Lefebvre AE, Alshetaiwi H, 
Xiao Z, Liu J, Locasale JW, et al. Transcriptional diversity 
and bioenergetic shift in human breast cancer 
metastasis revealed by single-cell RNA sequencing. Nat 
Cell Biol. 2020; 22:310–20. 

 https://doi.org/10.1038/s41556-020-0477-0 
PMID:32144411 

14. Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, 
Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei 
M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, 
Nabi Afjadi M, Payandeh Z. Macrophage’s role in solid 
tumors: two edges of a sword. Cancer Cell Int. 2023; 
23:150. 

 https://doi.org/10.1186/s12935-023-02999-3 
PMID:37525217 

15. Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi 
Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, 
Tarhriz V, Jalili A, Zalpoor H. The role of tumor 
microenvironment on cancer stem cell fate in solid 
tumors. Cell Commun Signal. 2023; 21:143. 

 https://doi.org/10.1186/s12964-023-01129-w 
PMID:37328876 

16. Gentric G, Mieulet V, Mechta-Grigoriou F. 
Heterogeneity in Cancer Metabolism: New Concepts in 
an Old Field. Antioxid Redox Signal. 2017; 26:462–85. 

 https://doi.org/10.1089/ars.2016.6750 
PMID:27228792 

17. Shi W, Chen Z, Liu H, Miao C, Feng R, Wang G, Chen G, 
Chen Z, Fan P, Pang W, Li C. COL11A1 as an novel 
biomarker for breast cancer with machine learning and 
immunohistochemistry validation. Front Immunol. 
2022; 13:937125. 

 https://doi.org/10.3389/fimmu.2022.937125 
PMID:36389832 

18. Toullec A, Gerald D, Despouy G, Bourachot B, Cardon 
M, Lefort S, Richardson M, Rigaill G, Parrini MC, 
Lucchesi C, Bellanger D, Stern MH, Dubois T, et al. 
Oxidative stress promotes myofibroblast 
differentiation and tumour spreading. EMBO Mol Med. 
2010; 2:211–30. 

 https://doi.org/10.1002/emmm.201000073 
PMID:20535745 

19. Ruhland MK, Loza AJ, Capietto AH, Luo X, Knolhoff BL, 
Flanagan KC, Belt BA, Alspach E, Leahy K, Luo J, 
Schaffer A, Edwards JR, Longmore G, et al. Stromal 
senescence establishes an immunosuppressive 
microenvironment that drives tumorigenesis. Nat 
Commun. 2016; 7:11762. 

 https://doi.org/10.1038/ncomms11762 
PMID:27272654 

20. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, 
Fan J, He R. FAP Promotes Immunosuppression by 
Cancer-Associated Fibroblasts in the Tumor 
Microenvironment via STAT3-CCL2 Signaling. Cancer 
Res. 2016; 76:4124–35. 

 https://doi.org/10.1158/0008-5472.CAN-15-2973 
PMID:27216177 

21. Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet 
AS, Murphy KJ, Pereira B, Al-Eryani G, Bartonicek N, 
Hou R, Torpy JR, Junankar S, et al. Stromal cell diversity 
associated with immune evasion in human triple-
negative breast cancer. EMBO J. 2020; 39:e104063. 

 https://doi.org/10.15252/embj.2019104063 
PMID:32790115 

22. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, 
Bourachot B, Cardon M, Sirven P, Magagna I, 
Fuhrmann L, Bernard C, Bonneau C, Kondratova M, 
Kuperstein I, et al. Fibroblast Heterogeneity and 
Immunosuppressive Environment in Human Breast 
Cancer. Cancer Cell. 2018; 33:463–79.e10. 

 https://doi.org/10.1016/j.ccell.2018.01.011 
PMID:29455927 

23. Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, 
Byers SW, Wheeler EK, Coleman MA, Loots GG. Single-
Cell Transcriptomic Analysis of Tumor-Derived 
Fibroblasts and Normal Tissue-Resident Fibroblasts 
Reveals Fibroblast Heterogeneity in Breast Cancer. 
Cancers (Basel). 2020; 12:1307. 

 https://doi.org/10.3390/cancers12051307 
PMID:32455670 

24. Musa M. Single-cell analysis on stromal fibroblasts in 
the microenvironment of solid tumours. Adv Med Sci. 
2020; 65:163–9. 

 https://doi.org/10.1016/j.advms.2019.12.001 
PMID:31972467 

25. Gorchs L, Hellevik T, Bruun JA, Camilio KA, Al-Saad S, 
Stuge TB, Martinez-Zubiaurre I. Cancer-associated 

https://doi.org/10.1038/s41588-019-0507-7
https://pubmed.ncbi.nlm.nih.gov/31570896
https://doi.org/10.1158/2159-8290.CD-20-1274
https://pubmed.ncbi.nlm.nih.gov/33563664
https://doi.org/10.1038/s41581-018-0021-7
https://pubmed.ncbi.nlm.nih.gov/29789704
https://doi.org/10.1038/s41556-020-0477-0
https://pubmed.ncbi.nlm.nih.gov/32144411
https://doi.org/10.1186/s12935-023-02999-3
https://pubmed.ncbi.nlm.nih.gov/37525217
https://doi.org/10.1186/s12964-023-01129-w
https://pubmed.ncbi.nlm.nih.gov/37328876
https://doi.org/10.1089/ars.2016.6750
https://pubmed.ncbi.nlm.nih.gov/27228792
https://doi.org/10.3389/fimmu.2022.937125
https://pubmed.ncbi.nlm.nih.gov/36389832
https://doi.org/10.1002/emmm.201000073
https://pubmed.ncbi.nlm.nih.gov/20535745
https://doi.org/10.1038/ncomms11762
https://pubmed.ncbi.nlm.nih.gov/27272654
https://doi.org/10.1158/0008-5472.CAN-15-2973
https://pubmed.ncbi.nlm.nih.gov/27216177
https://doi.org/10.15252/embj.2019104063
https://pubmed.ncbi.nlm.nih.gov/32790115
https://doi.org/10.1016/j.ccell.2018.01.011
https://pubmed.ncbi.nlm.nih.gov/29455927
https://doi.org/10.3390/cancers12051307
https://pubmed.ncbi.nlm.nih.gov/32455670
https://doi.org/10.1016/j.advms.2019.12.001
https://pubmed.ncbi.nlm.nih.gov/31972467


www.aging-us.com 12690 AGING 

fibroblasts from lung tumors maintain their 
immunosuppressive abilities after high-dose 
irradiation. Front Oncol. 2015; 5:87. 

 https://doi.org/10.3389/fonc.2015.00087 
PMID:26029659 

26. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, 
Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, 
Hoffman P, Stoeckius M, Papalexi E, et al. Integrated 
analysis of multimodal single-cell data. Cell. 2021; 
184:3573–87.e29. 

 https://doi.org/10.1016/j.cell.2021.04.048 
PMID:34062119 

27. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, 
Kong SL, Chua C, Hon LK, Tan WS, Wong M, Choi PJ, 
Wee LJ, et al. Reference component analysis of single-
cell transcriptomes elucidates cellular heterogeneity in 
human colorectal tumors. Nat Genet. 2017; 49:708–18. 

 https://doi.org/10.1038/ng.3818 PMID:28319088 

28. Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, 
Rodman C, Leeson R, Su MJ, Shah P, Iwanicki M, 
Walker SR, Kanodia A, et al. A single-cell landscape of 
high-grade serous ovarian cancer. Nat Med. 2020; 
26:1271–9. 

 https://doi.org/10.1038/s41591-020-0926-0 
PMID:32572264 

29. Chen X, Song E. Turning foes to friends: targeting 
cancer-associated fibroblasts. Nat Rev Drug Discov. 
2019; 18:99–115. 

 https://doi.org/10.1038/s41573-018-0004-1 
PMID:30470818 

30. Han C, Liu T, Yin R. Biomarkers for cancer-associated 
fibroblasts. Biomark Res. 2020; 8:64. 

 https://doi.org/10.1186/s40364-020-00245-w 
PMID:33292666 

31. Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J, 
Chen K. Single-cell RNA sequencing highlights the role 
of inflammatory cancer-associated fibroblasts in 
bladder urothelial carcinoma. Nat Commun. 2020; 
11:5077. 

 https://doi.org/10.1038/s41467-020-18916-5 
PMID:33033240 

32. Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee 
S, Matsuda M, Chin L, Filliol A, Wen W, Song X, Decker 
A, Worley J, Caviglia JM, et al. Promotion of 
cholangiocarcinoma growth by diverse cancer-
associated fibroblast subpopulations. Cancer Cell. 
2021; 39:883. 

 https://doi.org/10.1016/j.ccell.2021.05.010 
PMID:34129825 

33. Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, 
Heo JS, Jameson GS, Fraser C, Steinbach M, Woo Y, 
Fong Y, Cridebring D, et al. Single-cell transcriptome 

analysis of tumor and stromal compartments of 
pancreatic ductal adenocarcinoma primary tumors and 
metastatic lesions. Genome Med. 2020; 12:80. 

 https://doi.org/10.1186/s13073-020-00776-9 
PMID:32988401 

34. Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li 
J, Li Z, Bai C, Zhao L, Han Q, et al. Single-cell RNA 
sequencing reveals a pro-invasive cancer-associated 
fibroblast subgroup associated with poor clinical 
outcomes in patients with gastric cancer. Theranostics. 
2022; 12:620–38. 

 https://doi.org/10.7150/thno.60540 PMID:34976204 

35. Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida 
AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, 
Chio II, Hwang CI, Tiriac H, et al. Distinct populations of 
inflammatory fibroblasts and myofibroblasts in 
pancreatic cancer. J Exp Med. 2017; 214:579–96. 

 https://doi.org/10.1084/jem.20162024 
PMID:28232471 

36. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, 
Preall J, Tuveson DA. IL1-Induced JAK/STAT Signaling Is 
Antagonized by TGFβ to Shape CAF Heterogeneity in 
Pancreatic Ductal Adenocarcinoma. Cancer Discov. 
2019; 9:282–301. 

 https://doi.org/10.1158/2159-8290.CD-18-0710 
PMID:30366930 

37. Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson 
C, Sommarin M, Madsen CD, Lindgren D, Pekar G, 
Karlsson G, Ringnér M, Bergh J, Björklund Å, Pietras K. 
Spatially and functionally distinct subclasses of breast 
cancer-associated fibroblasts revealed by single cell 
RNA sequencing. Nat Commun. 2018; 9:5150. 

 https://doi.org/10.1038/s41467-018-07582-3 
PMID:30514914 

38. Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi 
A, Dadiani M, Mayo A, Halperin C, Pevsner-Fischer M, 
Lavon H, Mayer S, Nevo R, Stein Y, et al. Cancer-
associated fibroblast compositions change with breast 
cancer progression linking the ratio of S100A4+ and 
PDPN+ CAFs to clinical outcome. Nat Cancer. 2020; 
1:692–708. 

 https://doi.org/10.1038/s43018-020-0082-y 
PMID:35122040 

39. Cords L, Tietscher S, Anzeneder T, Langwieder C, Rees 
M, de Souza N, Bodenmiller B. Cancer-associated 
fibroblast classification in single-cell and spatial 
proteomics data. Nat Commun. 2023; 14:4294. 

 https://doi.org/10.1038/s41467-023-39762-1 
PMID:37463917 

40. Cortes J, Rugo HS, Cescon DW, Im SA, Yusof MM, 
Gallardo C, Lipatov O, Barrios CH, Perez-Garcia J, Iwata 
H, Masuda N, Torregroza Otero M, Gokmen E, et al, 
and KEYNOTE-355 Investigators. Pembrolizumab plus 

https://doi.org/10.3389/fonc.2015.00087
https://pubmed.ncbi.nlm.nih.gov/26029659
https://doi.org/10.1016/j.cell.2021.04.048
https://pubmed.ncbi.nlm.nih.gov/34062119
https://doi.org/10.1038/ng.3818
https://pubmed.ncbi.nlm.nih.gov/28319088
https://doi.org/10.1038/s41591-020-0926-0
https://pubmed.ncbi.nlm.nih.gov/32572264
https://doi.org/10.1038/s41573-018-0004-1
https://pubmed.ncbi.nlm.nih.gov/30470818
https://doi.org/10.1186/s40364-020-00245-w
https://pubmed.ncbi.nlm.nih.gov/33292666
https://doi.org/10.1038/s41467-020-18916-5
https://pubmed.ncbi.nlm.nih.gov/33033240
https://doi.org/10.1016/j.ccell.2021.05.010
https://pubmed.ncbi.nlm.nih.gov/34129825
https://doi.org/10.1186/s13073-020-00776-9
https://pubmed.ncbi.nlm.nih.gov/32988401
https://doi.org/10.7150/thno.60540
https://pubmed.ncbi.nlm.nih.gov/34976204
https://doi.org/10.1084/jem.20162024
https://pubmed.ncbi.nlm.nih.gov/28232471
https://doi.org/10.1158/2159-8290.CD-18-0710
https://pubmed.ncbi.nlm.nih.gov/30366930
https://doi.org/10.1038/s41467-018-07582-3
https://pubmed.ncbi.nlm.nih.gov/30514914
https://doi.org/10.1038/s43018-020-0082-y
https://pubmed.ncbi.nlm.nih.gov/35122040/
https://doi.org/10.1038/s41467-023-39762-1
https://pubmed.ncbi.nlm.nih.gov/37463917


www.aging-us.com 12691 AGING 

Chemotherapy in Advanced Triple-Negative Breast 
Cancer. N Engl J Med. 2022; 387:217–26. 

 https://doi.org/10.1056/NEJMoa2202809 
PMID:35857659 

41. Ostermann E, Garin-Chesa P, Heider KH, Kalat M, 
Lamche H, Puri C, Kerjaschki D, Rettig WJ, Adolf GR. 
Effective immunoconjugate therapy in cancer models 
targeting a serine protease of tumor fibroblasts. Clin 
Cancer Res. 2008; 14:4584–92. 

 https://doi.org/10.1158/1078-0432.CCR-07-5211 
PMID:18628473 

42. Fang J, Xiao L, Joo KI, Liu Y, Zhang C, Liu S, Conti PS, Li Z, 
Wang P. A potent immunotoxin targeting fibroblast 
activation protein for treatment of breast cancer in 
mice. Int J Cancer. 2016; 138:1013–23. 

 https://doi.org/10.1002/ijc.29831 PMID:26334777 

43. Loeffler M, Krüger JA, Niethammer AG, Reisfeld RA. 
Targeting tumor-associated fibroblasts improves 
cancer chemotherapy by increasing intratumoral drug 
uptake. J Clin Invest. 2006; 116:1955–62. 

 https://doi.org/10.1172/JCI26532 PMID:16794736 

44. Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor 
V, Antzis M, Cotner CE, Johnson LA, Durham AC, 
Solomides CC, June CH, Puré E, Albelda SM. Targeting 
fibroblast activation protein in tumor stroma with 
chimeric antigen receptor T cells can inhibit tumor 
growth and augment host immunity without severe 
toxicity. Cancer Immunol Res. 2014; 2:154–66. 

 https://doi.org/10.1158/2326-6066.CIR-13-0027 
PMID:24778279 

45. Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu 
MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, 
Gottschalk S. Antitumor effects of chimeric receptor 
engineered human T cells directed to tumor stroma. 
Mol Ther. 2013; 21:1611–20. 

 https://doi.org/10.1038/mt.2013.110  
PMID:23732988 

46. Freedman JD, Duffy MR, Lei-Rossmann J, Muntzer A, 
Scott EM, Hagel J, Campo L, Bryant RJ, Verrill C, 
Lambert A, Miller P, Champion BR, Seymour LW, Fisher 
KD. An Oncolytic Virus Expressing a T-cell Engager 
Simultaneously Targets Cancer and 
Immunosuppressive Stromal Cells. Cancer Res. 2018; 
78:6852–65. 

 https://doi.org/10.1158/0008-5472.CAN-18-1750 
PMID:30449733 

47. de Sostoa J, Fajardo CA, Moreno R, Ramos MD, 
Farrera-Sal M, Alemany R. Targeting the tumor stroma 
with an oncolytic adenovirus secreting a fibroblast 
activation protein-targeted bispecific T-cell engager. J 
Immunother Cancer. 2019; 7:19. 

 https://doi.org/10.1186/s40425-019-0505-4 
PMID:30683154 

48. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, 
Graham M, Carswell EA, Cohen A, Larson SM, Old LJ. 
Antibody targeting in metastatic colon cancer: a phase 
I study of monoclonal antibody F19 against a cell-
surface protein of reactive tumor stromal fibroblasts. J 
Clin Oncol. 1994; 12:1193–203. 

 https://doi.org/10.1200/JCO.1994.12.6.1193 
PMID:8201382 

49. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins 
W, Divgi CR, Hanson LH, Mitchell P, Gansen DN, Larson 
SM, Ingle JN, Hoffman EW, et al. A Phase I dose-
escalation study of sibrotuzumab in patients with 
advanced or metastatic fibroblast activation protein-
positive cancer. Clin Cancer Res. 2003; 9:1639–47. 

 PMID:12738716 

50. Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, 
Jäger D, Renner C, Tanswell P, Kunz U, Amelsberg A, 
Kuthan H, Stehle G. Stromal antigen targeting by a 
humanised monoclonal antibody: an early phase II trial 
of sibrotuzumab in patients with metastatic colorectal 
cancer. Onkologie. 2003; 26:44–8. 

 https://doi.org/10.1159/000069863 PMID:12624517 

51. Mizuno H, Spike BT, Wahl GM, Levine AJ. Inactivation 
of p53 in breast cancers correlates with stem cell 
transcriptional signatures. Proc Natl Acad Sci USA. 
2010; 107:22745–50. 

 https://doi.org/10.1073/pnas.1017001108 
PMID:21149740 

52. Hendrix MJ, Seftor EA, Seftor RE, Trevor KT. 
Experimental co-expression of vimentin and keratin 
intermediate filaments in human breast cancer cells 
results in phenotypic interconversion and increased 
invasive behavior. Am J Pathol. 1997; 150:483–95. 

 PMID:9033265 

53. Livasy CA, Reading FC, Moore DT, Boggess JF,  
Lininger RA. EGFR expression and HER2/neu 
overexpression/amplification in endometrial 
carcinosarcoma. Gynecol Oncol. 2006; 100:101–6. 

 https://doi.org/10.1016/j.ygyno.2005.07.124 
PMID:16157366 

54. Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM. 
A mammary stem cell population identified and 
characterized in late embryogenesis reveals 
similarities to human breast cancer. Cell Stem Cell. 
2012; 10:183–97. 

 https://doi.org/10.1016/j.stem.2011.12.018 
PMID:22305568 

55. Qi J, Yan J, Idrees M, Almutairi SM, Rasheed RA, 
Hussein UA, Abdel-Maksoud MA, Wang R, Huang J, 
Huang C, Wang N, Huang D, Hui Y, Li C. Five EMT-
Related Gene Signatures Predict Acute Myeloid 
Leukemia Patient Outcome. Dis Markers. 2022; 
2022:7826393. 

https://doi.org/10.1056/NEJMoa2202809
https://pubmed.ncbi.nlm.nih.gov/35857659
https://doi.org/10.1158/1078-0432.CCR-07-5211
https://pubmed.ncbi.nlm.nih.gov/18628473
https://doi.org/10.1002/ijc.29831
https://pubmed.ncbi.nlm.nih.gov/26334777
https://doi.org/10.1172/JCI26532
https://pubmed.ncbi.nlm.nih.gov/16794736
https://doi.org/10.1158/2326-6066.CIR-13-0027
https://pubmed.ncbi.nlm.nih.gov/24778279
https://doi.org/10.1038/mt.2013.110
https://pubmed.ncbi.nlm.nih.gov/23732988
https://doi.org/10.1158/0008-5472.CAN-18-1750
https://pubmed.ncbi.nlm.nih.gov/30449733
https://doi.org/10.1186/s40425-019-0505-4
https://pubmed.ncbi.nlm.nih.gov/30683154
https://doi.org/10.1200/JCO.1994.12.6.1193
https://pubmed.ncbi.nlm.nih.gov/8201382
https://pubmed.ncbi.nlm.nih.gov/12738716
https://doi.org/10.1159/000069863
https://pubmed.ncbi.nlm.nih.gov/12624517
https://doi.org/10.1073/pnas.1017001108
https://pubmed.ncbi.nlm.nih.gov/21149740
https://pubmed.ncbi.nlm.nih.gov/9033265
https://doi.org/10.1016/j.ygyno.2005.07.124
https://pubmed.ncbi.nlm.nih.gov/16157366
https://doi.org/10.1016/j.stem.2011.12.018
https://pubmed.ncbi.nlm.nih.gov/22305568


www.aging-us.com 12692 AGING 

 https://doi.org/10.1155/2022/7826393 
PMID:36246561 

56. Stumptner-Cuvelette P, Benaroch P. Multiple roles of 
the invariant chain in MHC class II function. Biochim 
Biophys Acta. 2002; 1542:1–13. 

 https://doi.org/10.1016/s0167-4889(01)00166-5 
PMID:11853874 

57. Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the 
challenge: cell-penetrating peptides and membrane 
permeability. Biomaterials and Biosensors. 2023; 2:7. 

 https://doi.org/10.58567/bab02010002 

58. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells 
in umbilical cord and adult peripheral blood express 
the novel phenotype CD20+ CD27+ CD43+ CD70-. J Exp 
Med. 2011; 208:67–80. 

 https://doi.org/10.1084/jem.20101499 
PMID:21220451 

59. Shi Y, Chen S, Xing H, Jiang G, Wu N, Liu Q, Sakamoto 
N, Kuno T, Sugiura R, Xiao Q, Jin F, Fang Y, Yao F. 
Comprehensive Analysis of Prognostic 
Microenvironment-Related Genes in Invasive Breast 
Cancer. Front Oncol. 2022; 11:576911. 

 https://doi.org/10.3389/fonc.2021.576911 
PMID:35047378 

60. Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, 
McDermott DH, Cortese I, Zimmermann MT, Dobbs AK, 
Bosticardo M, Fink D, Majumdar S, Palterer B, Pala F,  
et al. SASH3 variants cause a novel form of X-linked 
combined immunodeficiency with immune 
dysregulation. Blood. 2021; 138:1019–33. 

 https://doi.org/10.1182/blood.2020008629 
PMID:33876203 

61. Demetriou P, Abu-Shah E, Valvo S, McCuaig S, Mayya 
V, Kvalvaag A, Starkey T, Korobchevskaya K, Lee LY, 
Friedrich M, Mann E, Kutuzov MA, Morotti M, et al, 
and Oxford IBD Cohort Investigators. A dynamic CD2-
rich compartment at the outer edge of the 
immunological synapse boosts and integrates signals. 
Nat Immunol. 2020; 21:1232–43. 

 https://doi.org/10.1038/s41590-020-0770-x 
PMID:32929275 

62. Figueroa JD, Han SS, Garcia-Closas M, Baris D, Jacobs 
EJ, Kogevinas M, Schwenn M, Malats N, Johnson A, 
Purdue MP, Caporaso N, Landi MT, Prokunina-Olsson L, 
et al. Genome-wide interaction study of smoking and 
bladder cancer risk. Carcinogenesis. 2014; 35:1737–44. 

 https://doi.org/10.1093/carcin/bgu064 
PMID:24662972 

63. Guo C, Tang Y, Zhang Y, Li G. Mining TCGA Data for Key 
Biomarkers Related to Immune Microenvironment in 
Endometrial cancer by Immune Score and Weighted 
Correlation Network Analysis. Front Mol Biosci. 2021; 
8:645388. 

 https://doi.org/10.3389/fmolb.2021.645388 
PMID:33869285 

64. Zhao X, Lei Y, Li G, Cheng Y, Yang H, Xie L, Long H, Jiang 
R. Integrative analysis of cancer driver genes in 
prostate adenocarcinoma. Mol Med Rep. 2019; 
19:2707–15. 

 https://doi.org/10.3892/mmr.2019.9902 
PMID:30720096 

65. Yang T, Chen M, Yang X, Zhang X, Zhang Z, Sun Y, Xu B, 
Hua J, He Z, Song Z. Down-regulation of KLF5 in cancer-
associated fibroblasts inhibit gastric cancer cells 
progression by CCL5/CCR5 axis. Cancer Biol Ther. 2017; 
18:806–15. 

 https://doi.org/10.1080/15384047.2017.1373219 
PMID:28934010 

66. Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia 
K. CCR7 as a therapeutic target in Cancer. Biochim 
Biophys Acta Rev Cancer. 2021; 1875:188499. 

 https://doi.org/10.1016/j.bbcan.2020.188499 
PMID:33385485 

67. Cai QY, Liang GY, Zheng YF, Tan QY, Wang RW, Li K. 
CCR7 enhances the angiogenic capacity of esophageal 
squamous carcinoma cells in vitro via activation of the 
NF-κB/VEGF signaling pathway. Am J Transl Res. 2017; 
9:3282–92. 

 PMID:28804546 

68. Cheng S, Han L, Guo J, Yang Q, Zhou J, Yang X. The 
essential roles of CCR7 in epithelial-to-mesenchymal 
transition induced by hypoxia in epithelial ovarian 
carcinomas. Tumour Biol. 2014; 35:12293–8. 

 https://doi.org/10.1007/s13277-014-2540-6 
PMID:25168373 

69. Fu D, Hu Z, Xu X, Dai X, Liu Z. Key signal transduction 
pathways and crosstalk in cancer: Biological and 
therapeutic opportunities. Transl Oncol. 2022; 
26:101510. 

 https://doi.org/10.1016/j.tranon.2022.101510 
PMID:36122506 

  

https://doi.org/10.1155/2022/7826393
https://pubmed.ncbi.nlm.nih.gov/36246561
https://doi.org/10.1016/s0167-4889(01)00166-5
https://pubmed.ncbi.nlm.nih.gov/11853874
https://doi.org/10.58567/bab02010002
https://doi.org/10.1084/jem.20101499
https://pubmed.ncbi.nlm.nih.gov/21220451
https://doi.org/10.3389/fonc.2021.576911
https://pubmed.ncbi.nlm.nih.gov/35047378
https://doi.org/10.1182/blood.2020008629
https://pubmed.ncbi.nlm.nih.gov/33876203
https://doi.org/10.1038/s41590-020-0770-x
https://pubmed.ncbi.nlm.nih.gov/32929275
https://doi.org/10.1093/carcin/bgu064
https://pubmed.ncbi.nlm.nih.gov/24662972
https://doi.org/10.3389/fmolb.2021.645388
https://pubmed.ncbi.nlm.nih.gov/33869285
https://doi.org/10.3892/mmr.2019.9902
https://pubmed.ncbi.nlm.nih.gov/30720096
https://doi.org/10.1080/15384047.2017.1373219
https://pubmed.ncbi.nlm.nih.gov/28934010
https://doi.org/10.1016/j.bbcan.2020.188499
https://pubmed.ncbi.nlm.nih.gov/33385485
https://pubmed.ncbi.nlm.nih.gov/28804546
https://doi.org/10.1007/s13277-014-2540-6
https://pubmed.ncbi.nlm.nih.gov/25168373
https://doi.org/10.1016/j.tranon.2022.101510
https://pubmed.ncbi.nlm.nih.gov/36122506


www.aging-us.com 12693 AGING 
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Supplementary Figure 1. Elbow plot of PCA in normal breast tissue data. 
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Supplementary Figure 2. Plot of identification of resolution in normal breast tissue data.  
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Supplementary Figure 3. Heatmap plot of PCA in TNBC data. 
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Supplementary Figure 4. Plot of identification of resolution in TNBC data.  


