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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC)  

is one of the most aggressive malignant cancers with 

a high risk of metastasis and mortality [1]. It is 

estimated that there were approximately 878,348  

new cases and 444,347 deaths globally in 2020 [2]. 

Over the past few decades, the introduction of immune 
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ABSTRACT 
 

Background: The malignant characteristics of cancer depend not only on intrinsic properties of cancer cells but 
also on the functions of infiltrating immune cells. In this study, we aimed to investigate the functional 
landscape of immune cells in head and neck squamous cell carcinoma (HNSCC).  
Methods: We employed single-sample gene set enrichment analysis to examine the immunophenotypes of 
HNSCC based on 29 immune cell functions (ICFs) in TCGA and GSE65858 datasets. We analyzed the clinical 
features, immune microenvironment, molecular profiles, and biological processes. Additionally, we developed 
and validated an ICF-based risk score for personalized prognosis prediction. We confirmed the value of the ICF 
score in our cohort using qRT-PCR and immunohistochemistry. Molecular docking was used to predict potential 
compounds for immunotherapy. 
Results: Three immunophenotypes (Immune-L, Immune-M, and Immune-H) were identified in 769 HNSCC 
samples. The characteristics of Immune-H were consistent with a “Hot” tumor, Immune-L was similar to a 
“Cold” tumor, and Immune-M exhibited intermediate features. The ICF risk score was associated with immune 
checkpoints, infiltrating immune cells, tumor mutation burden, and sensitivities to targeted/chemotherapeutic 
agents. Gene set variation analysis implicated the involvement of metabolic reprogramming pathways in the 
high-risk group. The combination of “Tumor Immune Dysfunction and Exclusion” and “Immunophenoscore” 
algorithms indicated that the low-risk group had a higher likelihood of benefiting from immunotherapy. 
Finally, we identified Eltrombopag and other compounds that may be beneficial for HNSCC immunotherapy. 
Conclusion: Our study provides a novel perspective on the tumor microenvironment of HNSCC, aiding in the 
understanding of HNSCC heterogeneity and the development of personalized/precision medicine. 
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checkpoint inhibitors (ICIs) has revolutionized the 

treatment approach and prognosis for advanced 

HNSCC patients [3]. However, the objective response 

rate to ICIs in recurrent or metastatic HNSCC remains 

relatively low, ranging from 13% to 18% [4, 5]. 

 
Although programmed death ligand-1(PD-L1) has 

been established as a biomarker for immune check-

point inhibitors (ICIs) in HNSCC, its limitations have 

been recognized, as some PD-L1-negative patients still 

derive benefit from ICIs [6]. Recent studies have 

proposed that the tumor microenvironment (TME) holds 

promise as a source of biomarkers for immunotherapy 

[7, 8]. The malignant phenotype of tumors was 

influenced not only by inherent characteristics of 

cancer cells but also by components of the TME [9, 

10]. For instance, CD8+ T cells could be present  

in both “inflamed” and “immune-excluded” tumors 

[11]. However, in “immune-excluded” tumors, CD8+ 

T cells were unable to mount an effective immune 

response against the tumor, potentially due to  

matrix barriers, T cell exhaustion, and deficiencies in 

immune factors. Despite HNSCC exhibiting a higher 

infiltration of immune cells compared to other tumor 

types, its prognosis remains poor [12]. Hence, further 

investigations are necessary to unravel the functional 

status of immune cells in the TME of HNSCC. 

 
Consequently, the objective of this study was to 

investigate the TME in HNSCC based on the immune 

cell function, elucidate potential molecular mechanisms, 

and predict prognosis as well as the responsiveness to 

immunotherapy in HNSCC. 

 
MATERIALS AND METHODS 

 
Data collection 

 
We downloaded transcriptome data (FPKM) and 

clinical information of 499 HNSCC patients from  

The Cancer Genome Atlas (TCGA) database. The 

sequencing platform was Illumina HiSeq. GRCh38 was 

used for gene annotation. 

 
Transcriptome and clinical data of 270 HNSCC patients 

were collected from the GEO database (GSE65858). 

Raw data was extracted using Illumina GenomeStudio, 

and then log2-transformed and normalized using the 

Robust Spline Normalization (RSN) method. The 

annotation platform was GPL10558. 

 
The study was conducted in accordance with the 

principles outlined in the Declaration of Helsinki and 

was approved by the Ethics Committee of Qilu Hospital 

of Shandong University (KYLL-2020(KS)-320). All 

patients enrolled from our institution provided written 

informed consent. 

 
Identification of the immunophenotype based on 

immune cell function (ICF) 

 
In this study, we employed the immune gene  

set previously reported by He et al. [13]. This gene  

set consists of 29 gene signatures associated with 

immune cell types, functions, and signaling pathways 

(Supplementary Table 1). To estimate the enrichment 

scores of these 29 gene signatures in HNSCC samples, 

we utilized ssGSEA (single sample gene set enrich-

ment analysis). Subsequently, the HNSCC samples 

were clustered into different immunophenotypes  

using the “Rtsne” package based on these 29 gene 

signatures. 

 
The “survival” package was used to conduct Kaplan-

Meier survival analysis and log-rank test according to 

the immunophenotypes. 

 
Analysis of immune microenvironment characteristics 

and functional enrichment 

 
The “ESTIMATE” package was employed to  

evaluate the stromal score, immune score, and tumor 

purity. Furthermore, the infiltration of 22 immune cells 

was determined using the “CIBERSORT” package. To 

compare the expression of immune-related genes among 

different groups, the “limma”, “ggplot2”, and “ggpubr” 

packages were utilized, employing the Wilcoxon test. 

Gene set enrichment analysis (GSEA) was performed 

using the “enrichplot” and “clusterProfiler” packages  

to compare the enrichment of functional pathways 

between different immunophenotypes. 

 
WGCNA (weighted gene co-expression network 

analysis) 

 
The “WGCNA” package was used to develop the gene 

co-expression network. The soft threshold β = 8 was 

determined as the optimal power value. We set the 

minimum number of genes in each module to be greater 

than 60. The gene topology matrix was constructed by 

using the dynamic cut tree algorithm. The final result 

was obtained by merging modules with a similarity ≥ 

0.75. The correlation between gene modules and clinical 

traits was determined by the module significance. Genes 

with weight > 0.3 in the module were screened to 

develop a protein-protein interaction (PPI) network by 
using the STRING platform. The hub genes of the  

PPI network were determined by 12 algorithms from 

cytoHubba plugin of Cytoscape. 
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The “clusterProfiler” package was used to conduct GO 

and KEGG enrichment analysis for module genes, with 

a significance level of P < 0.01. 

 

Construction and validation of the ICF gene signature 

 

We utilized the “limma” package to analyze the 

differentially expressed genes (DEGs), and obtained  

the immune-related gene list from the IMMPORT 

database. The intersection of the two gene lists yielded 

immune-related differentially expressed genes (IRDEGs). 

Next, univariate survival analysis was conducted to 

select prognosis-related immune genes (PIGs) using the 

“survival” package. 

 

The “glmnet” package was employed to conduct lasso 

regression analysis and establish an ICF gene signature. 

For conducting univariate and multivariate survival 

analysis, we employed the “survival” package. 

 

Construction and validation of the ICF score 

nomogram 

 

We utilized the “surviminer” package to construct the 

nomogram, and considered factors with p < 0.05 as 

statistically significant. Additionally, we drew ROC and 

calibration curves to evaluate the performance of the 

model. 

 

Analysis of potential transcription factors (TFs) for 

PIGs 

 

To explore possible TFs for PIGs, we obtained  

tumor-associated TFs from the Cistrome database 

(http://www.cistrome.org/). TFs and PIGs with co-

expression relationships were selected according to 

|pearson correlation coefficient| > 0.4 and FDR < 0.01. 

The correlation of TFs and PIGs was summarized  

into an alluvial diagram using the “ggalluvial” package. 

The STRING platform was used to construct the PPI 

network. 

 

Integrative analysis of gene set variation analysis 

(GSVA), tumor mutation burden (TMB), and cancer 

stem cell index  

 

GSVA is a nonparametric unsupervised clustering 

method that can analyze specific gene sets in a single 

sample, thus enabling “pathway” level difference 

analysis. We utilized the “GSVA” package to evaluate 

the enrichment of 186 KEGG gene sets. Pathways with 

P < 0.05 and logFC > 0.1 were considered significantly 

enriched. 
 

We collected mutation information from the TCGA data 

portal. The “maftool” package was used to investigate 

comprehensive somatic variants. We employed the chi-

square test to compare mutation frequencies across 

different groups. 

 

Tathiane et al. used machine learning algorithms to 

analyze the multi-omics features of embryonic stem 

cells [14]. This method was utilized to calculate the 

stem cell indexes of TCGA HNSCC. The correlation 

between mRNA stemness index (mRNAsi) and ICF risk 

score was evaluated by “limma” package. 

 

Analysis of treatment sensitivities 

 

The “pRRophetic” package was employed to estimate 

the IC50 values of 251 chemotherapeutic/targeted 

agents in HNSCC patients [15]. The Tumor Immune 

Dysfunction and Exclusion (TIDE) platform was used 

to calculate T-cell dysfunction and exclusion scores 

[16]. A higher TIDE score indicated a greater potential 

for tumor immune escape and might result in poorer 

immunotherapy efficacy. Pornpimol et al. developed the 

immunophenoscore (IPS) based on factors influencing 

tumor immunogenicity [17]. IPS has been proved to be 

an ideal predictor for ICIs responsiveness. An increased 

IPS value was indicative of a higher likelihood of 

benefiting from ICIs. 

 

Identification of key targets of ICF gene signature 

 

The STRING platform was employed to develop a PPI 

network of the ICF gene signature with interaction score 

≥ 0.4. The Cytoscape software was utilized to determine 

hub genes according to node connectivity. 

 

Molecular docking 

 

The molecular structures of 1379 FDA-approved 

compounds were obtained from the ZINC15 data- 

base (https://zinc15.docking.org/). The 3D structure  

of CD247 was collected from the PDB database 

(http://rcsb.org/). Firstly, “AutoDockTools-1.5.7” was 

used to process the structure of the protein, including 

adding hydrogens, removing the water, and adding the 

Gasteiger charges. Due to the small molecular weight of 

CD247 protein, global docking was performed. Small 

molecules were batch processed by “Obabel” and 

converted to pdbqt format. Finally, “Vina” was used for 

batch docking, and the default parameters were adopted.  

 

In vitro validation and survival analyses 

 

Between 2016 and 2017, a total of 80 patients who 

underwent surgical treatment and were pathologically 
confirmed to have HNSCC were randomly selected 

from Qilu Hospital. These patients were followed up 

until December 2022. Total RNA was extracted from 

http://www.cistrome.org/
https://zinc15.docking.org/
http://rcsb.org/
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frozen tumor tissues or cultured cells using TRIzol 

reagent from Absin, China. The cDNA was synthesized 

using the PrimeScript RT kit from Takara, Japan.  

RT-PCR was performed using the TB Green Premix  

Ex Taq II kit, also from Takara, Japan. The primer 

sequences used are provided in Supplementary Table  

2, and GAPDH was used as an internal control.  

The relative mRNA levels were calculated using the 

2−ΔΔCt method. 

 

A paraffin-embedded specimen from each patient was 

obtained from the pathology department and subjected 

to immunohistochemical (IHC) staining using an anti-

CD247 antibody (1:200, Abcam, UK). The specimens 

were scored using a semi-quantitative method as 

previously described [18]. The staining intensity was 

categorized as follows: 0 (negative), 1 (weak), 2 

(moderate), and 3 (strong). Survival analyses were 

performed using the “survminer” package. 

 

Cell lines and cell culture 

 

The primary oral mucosal epithelial cells, UMSCC, 

FaDu, and HN-5 cells were obtained from Meisen  

Cell Technology Company (China). The cells were 

maintained in a humidified incubator with 5% CO2  

at 37°C while being cultured in DMEM medium 

(HyClone, USA) supplemented with 10% fetal bovine 

serum (PAN, Germany), 100 U/mL penicillin, and 100 

µg/mL streptomycin. The methods for quantitative real-

time PCR have been described above. 

 

RESULTS 
 

Identification of the ICF immunophenotype and 

analysis of the immune microenvironment landscape 

 

We used ssGSEA to assess infiltration levels of  

29 functional immune cells in HNSCC samples 

(Supplementary Table 3). The hierarchical cluster 

analysis of HNSCC was carried out using T- 

SNE (t-Distributed Stochastic Neighbor Embedding) 

algorithm. When divided into three clusters, the intra-

cluster consistency and inter-cluster discrimination 

were found to be the highest (Supplementary Figure 

1). The heatmap depicted the diverse degrees of 

infiltration of 29 functional immune cells across the 

three clusters, ranging from low to high (Figure 1A). 

As a result, we have designated the three clusters as 

follows: “Immune-H” to signify the cluster with high 

immune cell infiltration, “Immune-M” to represent the 

cluster with moderate immune cell infiltration, and 

“Immune-L” to indicate the cluster with low immune 

cell infiltration. The ESTIMATE results showed that 

the Immune-H subtype exhibited a higher infiltration 

of immune and stromal cells compared to the Immune-

M and Immune-L subtypes. Correspondingly, the 

Immune-H subtype had the lowest tumor cell purity. 

Furthermore, similar immunophenotypes and micro-

environment characteristics were also confirmed in 

GSE65858 (Figure 1C). Survival analysis revealed that 

the Immune-H subtype had the most favorable survival 

prognosis of the three subtypes (Figure 1B, 1D). 

 
The CIBERSORT analysis revealed higher fractions of 

CD8+ T cells, naive B cells, helper follicular T cells, 

Treg cells, activated CD4+ T cells, M1 macrophages, 

and resting mast cells in the Immune-H subtype (Figure 

1E). On the other hand, the Immune-L subtype showed 

higher fractions of M0 macrophages, activated dendritic 

cells, and activated mast cells. The Supplementary 

Figure 2 and Supplementary Results show the impact  

of immune cell infiltration on patient survival. GSEA 

analysis revealed that the Immune-H subtype displayed 

significant activation of immune rejection and immuno-

deficiency pathways (Figure 1F). In contrast, except  

for the chemical carcinogenesis of DNA adducts, no 

significant enrichment of pathways was observed in  

the Immune-L subtype (Supplementary Figure 3A,  

3B). We also performed WGCNA to identify the 

immunophenotype-related gene module and hub genes 

(Supplementary Results and Supplementary Figure 4). 

Furthermore, it was observed that the expression of 

HLA alleles increased in correlation with the immune 

subtypes (Figure 1G). Additionally, the expression of 

most inhibitory immune checkpoints was found to be 

elevated in association with the ICF immune subtypes 

(Figure 1H). 

 
Construction and validation of the ICF gene 

signature 

 
It is expensive to determine the ICF immunophenotype 

by analyzing a large amount of genes through ssGSEA. 

Consequently, we developed an ICF gene signature for 

individualized prediction. The TCGA-HNSCC database 

was used as the training set, and GSE65858 served  

as the validation set (Supplementary Table 4). We 

identified 1177 DEGs by comparing the Immune-H and 

Immune-L subtypes. An intersection of DEGs and 

immune genes from IMMPORT yielded 373 immune-

related DEGs (IRDEGs) (Figure 2A, Supplementary 

Figure 5A, 5B and Supplementary Table 5). Univariate 

analysis identified 30 genes associated with prognosis 

(PIGs, Figure 2B), which were used in LASSO analysis 

to develop the gene signature: Risk score = CD19 × 

(−0.0663) + ZAP70 × (−0.1933) + TNFRSF4 × 

(−0.1303) + CCL22 × (−0.0038) + RBP5 × (−0.0244) + 

STC2 × (0.1637) + ROBO1 × (−0.0501) + CTSG × 

(−0.1122) (Figure 2C). We also investigated the possible 

transcription factors involved in the regulation of PIGs 

(Supplementary Results and Supplementary Figure 6). 
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The patients were stratified into high- and low-risk 

groups based on the median risk score. The survival 

analysis showed that the low-risk group had a 

significantly better survival compared to the high-risk 

group (P < 0.01, Figure 2D, 2E). The area under the 

curve (AUC) values for the ICF gene signature at 1-

year, 3-year, and 5-year were 0.682, 0.682, and 0.782, 

respectively (Figure 2F). These AUC values were 

higher than those reported by Du et al. for their 

metabolism-related gene signature (AUC at 1-year, 3-

year, and 5-year were 0.66, 0.67, and 0.75, respectively) 

[19]. The calibration curve demonstrated high accuracy 

 

 
 

Figure 1. Classification of HNSCC based on ICF and analysis of the immune microenvironment. (A, B) The heatmap shows the 

enrichment of 29 immune gene signatures and TME components in different ICF subtypes. (C, D) Kaplan-Meier analysis for overall survival 
of three ICF subtypes. (E) The fractions of immune infiltrating cells in three ICF subtypes. (F) GSEA of KEGG pathways in Immune-H. (G) The 
expression levels of HLA alleles in different ICF subtypes. (H) The expression levels of immune checkpoints in different ICF subtypes. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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(Figure 2G). Cox regression analyses revealed that age, 

tumor stage, and the ICF risk score were independent 

prognostic factors (Figure 2H). The predictive value of 

the ICF gene signature was further confirmed in the 

GSE65858 dataset (Supplementary Figure 5C–5F). A 

nomogram was constructed incorporating the ICF risk 

 

 
 

Figure 2. Construction and validation of the ICF gene signature. (A) Venn diagram shows 373 IRDEGs. (B) Univariate Cox analysis for 
PIGs. (C) Lasso regression analysis of PIGs. (D) Comparison of overall survival between high- and low-risk groups. (E) The correspondence 
between ICF risk scores and survival outcomes in the training set. The ROC curve (F) and calibration curve (G) of the ICF score for predicting 
1-year, 3-year and 5-year survival. (H) Univariate and multivariate survival analyses of ICF score and clinical traits. (I) Nomogram based on 
the ICF score and clinical traits for predicting 1-year, 3-year and 5-year survival. *p < 0.05, **P < 0.01. 
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score and clinical characteristics to predict 1-year,  

3-year, and 5-year survival (Figure 2I). The AUC  

values for the nomogram were 0.696, 0.735, and  

0.709, respectively (Supplementary Figure 5G). The 

calibration curve indicated a high level of agree- 

ment between the predicted and observed outcomes 

(Supplementary Figure 5H). 

 

We collected 80 cases of HNSCC from Qilu Hospital  

of Shandong University. Gene expression levels were 

quantified using qRT-PCR. The study cohort was 

divided into a high-risk group (n = 40) and a low-risk 

group (n = 40) based on the median ICF risk score.  

The heatmap of gene enrichment revealed that STC2 

was upregulated in the high-risk group, whereas CCL2, 

CTSG, ROBO1, CD19, RBP5, ZAP70, and TNFRSF4 

were highly expressed in the low-risk group (Figure 3A). 

Patients in the high-risk group exhibited a significantly 

lower survival rate compared to those in the low-risk 

group (P = 0.045, Figure 3B). In the stratified survival 

analysis, STC2 was found to be linked with an un-

favorable prognosis in HNSCC patients, whereas CCL2, 

CTSG, CD19, RBP5, ZAP70, and TNFRSF4 were 

associated with a favorable prognosis in these patients 

(Figure 3C). 

 

Characterization of the ICF score in molecule 

mechanisms and immune microenvironment 

 

GSVA was conducted to investigate the  

molecular mechanisms (Figure 4A). In the high- 

risk group, pathways such as the biosynthesis of 

glycosylphosphatidylinositol-anchored proteins (GPI-

APs), protein export, and pentose phosphate were

 

 
 

Figure 3. Validation of the ICF gene signature in Qilu cohort. (A) The heatmap illustrates the expression levels of eight ICF signature 

genes in the Qilu cohort. (B) Kaplan-Meier survival analysis demonstrates the survival outcomes of the high- and low-risk groups in the Qilu 
cohort. (C) Kaplan-Meier survival analysis stratified by the expression levels of eight ICF signature genes in the Qilu cohort. 
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significantly enriched. In the low-risk group, path- 

ways of immune activation and immunodeficiency, 

such as antigen presentation processing and primary 

immune deficiency, were significantly enriched. The 

expression of most inhibitory immune checkpoints was 

found to be negatively correlated with the ICF score 

 

 
 

Figure 4. Molecular mechanisms and the TME landscape of different ICF risk groups. (A) GSVA of KEGG pathways in high- and 
low-risk groups. (B) Correlation of the ICF score and the expression of immune checkpoint CD274 (PD-L1). (C) Correlation of the ICF score 
and cancer stemness indices (mRNAsi). (D) Comparison of TMB between high- and low- risk groups. The landscape of somatic variance of 
the low-risk group (E) and high-risk (F) group. (G) Comparisons of TME components between high- and low-risk groups. (H) The bar plot 
shows the fractions of 22 immune infiltrating cells in high- and low-risk groups. (I) Comparisons of the proportions of 22 immune infiltrating 
cells between high- and low-risk groups. 
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(Figure 4B and Supplementary Figure 7). The self-

renewal property and therapy resistance of cancer  

stem cells play a crucial role in the development of 

malignant tumor phenotypes [14]. However, there was 

no observed correlation between the ICF score and  

the cancer stem cell index (Figure 4C). Tumor gene 

mutation was considered as a prerequisite for immuno-

therapy. In this study, the high-risk group exhibited  

a significantly higher TMB compared to the low- 

risk group (Figure 4D). Survival analysis indicated 

that the ICF score and TMB had a synergistic effect  

on prognosis prediction (Supplementary Results and 

Supplementary Figure 8). Furthermore, somatic variance 

analysis revealed that the high-risk group had higher 

frequencies of TP53, KMT2D, and NSD1 mutations 

compared to the low-risk group (Figure 4E, 4F, and 

Supplementary Table 6, p < 0.05). We have investigated 

the correlation between the ICF signature genes and 

the infiltration of immune cells (Supplementary Results 

and Supplementary Figure 9). 

 

The ESTIMATE algorithm revealed that the high- 

risk group had lower fractions of immune and stromal 

components (Figure 4G). According to the CIBERSORT 

analysis (Figure 4H, 4I), the high-risk group had higher 

proportions of M0 macrophages, activated mast cells, 

and resting NK cells. Conversely, the low-risk group 

had higher fractions of CD8+ T cells, activated CD4+ 

memory B cells, Treg cells, M1 macrophages, naive  

B cells, plasma cells, follicular helper T cells, and 

resting mast cells. We have further compared our ICF 

immunophenotyping strategy with the previously repor-

ted immune typing strategy (Supplementary Results and 

Supplementary Figure 10). 

 

Evaluation of the ICF score in predicting 

chemotherapy and immunotherapy 

 

The aforementioned evidence indicated that the ICF 

score was associated with distinct TME characteristics 

and biological processes, potentially leading to different 

therapeutic responses. We further investigated the IC50 

values of 251 drugs in HNSCC (Figure 5A). Erlotinib 

and docetaxel were found to be more effective in  

the high-risk group, while vinblastine, cyclopamine, 

sunitinib, and rapamycin demonstrated higher sensi-

tivity in the low-risk group. Notably, the sensitivities 

of commonly used drugs for HNSCC, such as Cisplatin 

and Bleomycin, did not show significant differences 

between the high- and low-risk groups (Supplementary 

Figure 11). 

 

We investigated the utility of the ICF score  
in predicting immunotherapy response. Figure 5B 

demonstrated that the low-risk group had significantly 

lower T-cell exclusion scores, which was consistent 

with the higher immune components observed in  

this group. Additionally, the low-risk group exhibited 

higher T-cell dysfunction scores and comprehensive 

TIDE scores, which was in line with the activation of 

immune deficiency and autoimmune pathways in this 

population. There was no significant difference in 

microsatellite instability (MSI) between the high-risk 

and low-risk groups. Finally, the IPS values showed  

a significant increase in the low-risk group, indicating 

that this group may be more responsive to ICIs and 

more likely to benefit from them (Figure 5C). 

 

Identification of the key target CD247 and 

prediction of small molecule drugs 

 

Using the STRING platform, we constructed a protein-

protein interaction (PPI) network of the ICF gene 

signature (interaction score ≥ 0.4, Figure 6A). CD247 

was identified as the key target, located at the core  

of the network. HNSCC cell lines (Fadu, HN-5,  

and UMSCC) exhibited high expression of CD247 

compared to primary oral mucosal epithelial cells 

(Figure 6B). Immunohistochemical staining was 

performed on tumor tissues from 80 patients, and the 

expression of CD247 was scored based on staining 

intensity (Figure 6C). Our results indicated that 

patients with high CD247 expression (score 2 and 3) 

had a more favorable prognosis of survival (Figure 

6D), suggesting that CD247 may be a target for tumor 

immunity in HNSCC and that drugs targeting CD247 

could be a potential therapeutic strategy. 

 

In order to identify potential drugs that interact with 

CD247, we performed molecular docking using over 

1300 FDA-approved compounds. Three compounds 

with the lowest binding energies to CD247 were 

identified: Eltrombopag (−8.3 kcal/mol, Figure 6E), 

ZINC116473771 (−8 kcal/mol, Figure 6F), and 

Conivaptan (−7.8 kcal/mol, Figure 6G). For example, 

Eltrombopag formed hydrogen bonds with key amino 

acid residues TYR-12 and VAL-14 in the binding 

pocket of CD247, indicating a high affinity interaction. 

The top ten compounds with the highest affinity to 

CD247 are summarized in Supplementary Table 7. 

These compounds may be potential immunotherapy 

drugs for HNSCC. 

 

DISCUSSION 
 

In the past decade, ICIs represented by anti-PD- 

L1 antibody have greatly improved the prognosis  

of advanced HNSCC. Consequently, there has been  

a growing interest in studying the TME of HNSCC. 

Zhang et al. proposed an immune classification of 

HNSCC based on matrix and immune scores, providing 

valuable insights into the immune microenvironment of 
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HNSCC and its potential implications in immuno-

therapy [20]. In this study, we identified three 

immunophenotypes in HNSCC based on 29 functional 

immune cells. Furthermore, we have utilized a range  

of methodologies including ssGSEA, WGCNA, GSEA, 

and GSVA to conduct a comprehensive analysis of the 

characteristics of the tumor microenvironment (TME). 

These approaches have allowed us to explore potential 

molecular mechanisms, establish associations with 

clinical features, predict prognosis, assess treatment 

sensitivity, identify key targets, and even predict the 

efficacy of small molecule drugs. 

In our study, the Immune-H subtype exhibited the 

highest abundance of immune and matrix components 

within the tumor microenvironment. This subtype was 

characterized by a significant infiltration of classical 

anti-tumor immune cells, including CD8+ T cells and 

M1 macrophages, as well as immunosuppressive cells 

such as Treg cells. Moreover, both autoimmune and 

immunodeficiency pathways were prominently enriched 

in the Immune-H subtype. The expression levels of 

HLA molecules and ICIs were also notably elevated in 

the Immune-H subtype. These findings suggested that 

the Immune-H subtype possessed a high degree of 

 

 
 

Figure 5. Evaluation of the ICF score in predicting HNSCC treatment responsiveness. (A) The histogram shows the drugs with 

significant differences of IC50 value between high- and low- risk groups (Wilcoxon test, p < 0.05). (B) Comparisons of T cell exclusion and 
dysfunction scores, the comprehensive TIDE score, and the MSI score between high- and low-risk groups. (C) Comparisons of the IPS values 
between high- and low-risk groups. 
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immunogenicity and immune escape potential, similar 

to that of a “hot” tumor. In contrast, the Immune-L 

subtype showed a lack of immune cell infiltration and 

activation of immune-related pathways. This subtype 

could be considered as a “cold” tumor, where immune 

cells fail to recognize cancer cells effectively. On  

the other hand, the Immune-M subtype represented an 

intermediate status between “hot” and “cold” tumors, 

suggesting a mixed immune microenvironment. 

 

Goodman et al. performed a retrospective analysis 

involving 151 patients with multiple types of solid 

tumors who were treated with ICIs [21]. Their findings 

revealed that patients with high TMB (TMB-H) 

 

 
 

Figure 6. Identification and validation of the key target and prediction of candidate small molecule compounds.  (A) The PPI 

network of the ICF gene signature (interaction score ≥ 0.4). (B) The expression analysis of CD247 in control mucosal epithelia cells and 
HNSCC cell lines. (C) IHC staining of CD247 in HNSCC tissues. (D) Kaplan-Meier survival analysis of HNSCC patients according to CD247 IHC 
scores. The molecular docking diagram shows the interaction between the small molecules Eltrombopag (E), ZINC116473771 (F), and 
Conivaptan (G) with CD247. 
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exhibited a significantly higher response rate compared 

to those with low TMB (TMB-L). Several studies have 

also suggested a positive correlation between TMB-H 

and improved survival in gastric cancer and ovarian 

cancer [22, 23]. However, in this study, it was observed 

that TMB-H was associated with poor survival in patients 

with HNSCC. Comprehensive analysis suggested that 

the low-risk group, which mostly comprised patients 

with TMB-L, may be more favorable for immuno-

therapy. This group exhibited increased immune cell 

infiltration, immune checkpoint expression, HLA 

molecule expression, and higher IPS values, suggesting 

a stronger immunogenicity. Consequently, the effective-

ness of ICIs treatment in HNSCC may be influenced by 

multiple factors due to the heterogeneity of the tumor 

microenvironment. 

 

M0 macrophages were typically considered as the 

precursor cells that can differentiate into M1 or M2 

macrophages, but they did not exhibit specific functional 

properties themselves [24]. In our study, we observed a 

high infiltration of M0 macrophages in the high-risk 

group, implying their tumor-promoting role. Recent 

evidence has also revealed the extensive differentiation 

and tumorigenic potential of M0 macrophages in 

hepatocellular carcinoma and glioma, challenging the 

traditional M1/M2 paradigm [25, 26]. Chan et al. 

reported that upon contact with cancer cells, active NK 

cells could transform into a resting state, and played a 

role in tumorgenesis and metastasis [27]. This was in 

line with our study, resting NK cells had a higher 

proportion in the high-risk group. Our results revealed 

the activation of multiple metabolic reprogramming 

pathways in the high-risk group, including steroid bio-

synthesis and the pentose phosphate pathway. Similarly, 

Ringel et al. demonstrated that tumor cells upregulate 

the free fatty acid pathway to competitively suppress  

the fuel utilization and functionality of CD8+ T cells, 

thereby promoting tumor development [28]. 

 

In order to identify potential targets for immunotherapy, 

we focused on the hub gene CD247 of the ICF gene 

signature. Down-regulation of CD247 has been observed 

to induce immunosuppression in chronic inflammation 

and tumors [29]. To explore potential interactions  

with CD247, we screened over 1300 small molecule 

compounds approved by the FDA. Eltrombopag, a 

thrombopoietin receptor agonist that stimulates the 

proliferation of megakaryocytes [30], may be a candidate 

small molecule for immunotherapy if it can also act  

as a TCR agonist to promote anti-tumor immunity. 

However, further experiments are needed to verify this 

speculation. 
 

Our study has a few limitations that should be 

acknowledged. Firstly, the ICF-based classification 

strategy requires validation in larger multicenter 

cohorts. Secondly, due to the absence of expression 

data from HNSCC patients undergoing immunotherapy, 

our findings need to be further confirmed in HNSCC 

patients who have received immunotherapy. 

 

CONCLUSIONS 
 
Based on ICF, we have classified HNSCC into three 

distinct immunophenotypes (Immune-L, Immune-M 

and Immune-H), which were associated with different 

clinical features, molecular profiles, and biological 

processes. The characteristics of Immune-H were 

consistent with those of “Hot” tumors, while Immune-

L was in line with “Cold” tumors, and Immune-M  

was intermediate between the two. Furthermore, the 

ICF score, which was constructed based on the 

immunophenotypes, demonstrated robust performance 

in predicting prognosis. The ICF score was also found 

to be associated with TMB, immune checkpoints,  

HLA alleles, and responsiveness to chemotherapy and 

immunotherapy. Collectively, our work provides a 

new perspective on the immune microenvironment of 

HNSCC, which facilitates the interpretation of the 

HNSCC heterogeneity and developing personalized/ 

precision medicine. 
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SUPPLEMENTARY MATERIALS 

Supplementary Results 
 

Impact of immune cell infiltration on patient 

survival 

 

Survival analysis was performed to assess the  

impact of immune cell infiltration on patient outcomes 

(Supplementary Figure 2). The results revealed that 

patients with higher levels of infiltration of naive B 

cells, resting dendritic cells, resting mast cells, plasma 

cells, helper follicular T cells, and Treg cells had more 

favorable prognoses. These immune cell types were 

predominantly abundant in the Immune-H subtype. On 

the other hand, patients with higher levels of activated 

mast cells, neutrophils, resting CD4+ memory cells, and 

M2 macrophages had poorer prognoses. 

 

Identification of the immunophenotype-related gene 

module and hub gene 

 

WGCNA analysis identified 16 gene modules potentially 

responsible for the immunophenotype (Supplementary 

Figure 4A). The black module consisted of 1907 genes 

(Supplementary Table 8) that exhibited a positive cor-

relation with the Immune-H subtype and a negative 

correlation with the Immune-L subtype (Supplementary 

Figure 4B). Moreover, the black module gene showed  

a significant association with survival time. GO and 

KEGG analyses indicated that black module genes were 

significantly enriched in pathways related to immune 

cell communication (Supplementary Figure 4C, 4D).  

A protein-protein interaction (PPI) network was con-

structed, consisting of 154 hub genes from the black 

module (Supplementary Figure 4E). Within this 

network, SAHS3, CD53, and NCKAP1L occupied 

central positions. Additionally, SASH3, CD53, and 

NCKAP1L showed higher expression levels in the 

Immune-H subtype, while lower expression levels in the 

Immune-L subtype (Supplementary Figure 4F). These 

genes might possess the strongest biological significance 

within the black module. 

 

Exploration of transcription factors in the regulation 

of prognosis-related immune genes (PIGs) 

 

We also investigated the involvement of transcription 

factors in the regulation of PIGs through co-expression 

analysis (Supplementary Figure 6A). Our analysis 

revealed fifteen transcription factors, including FOXP3, 

IRF1, and STAT4, which exhibited redundancy in  

the regulation of PIGs. These transcription factors  
may play crucial roles in driving different risk groups. 

Additionally, the PPI network displayed potential inter-

actions between PIGs and the identified transcription 

factors. Notably, CTLA4, CD3D, and CD19 were  

found to be positioned at the core of the network 

(Supplementary Figure 6B). 

 
Synergistic effect of the ICF Score and TMB on 

prognosis 

 
Survival analysis revealed that patients with  

TMB-H had significantly worse survival compared  

to those with TMB-L (Supplementary Figure 8A). 

Furthermore, the combination of the ICF score and 

TMB had a synergistic effect in predicting prognosis. 

Patients with both TMB-H and high-risk scores had 

the shortest median survival time, while those with 

TMB-L and low-risk scores had the most favorable 

survival outcome (Supplementary Figure 8B). 

 
Correlation between ICF signature genes and 

infiltration of immune cells 

 
We investigated the correlation between the expression 

levels of the ICF signature genes and the infiltration of 

immune cells (Supplementary Figure 9). The majority 

of the signature genes displayed significant correlations 

with immune cell infiltration. Notably, ZAP70 exhibited 

a positive correlation with CD8+ T cells and follicular 

helper T cells, while showing a negative correlation 

with activated mast cells and M0 macrophages. Besides, 

CD19 demonstrated a positive correlation with plasma 

cells and naive B cells, but a negative correlation with 

M0 macrophages. 

 
Advantages of ICF immunophenotyping strategy in 

HNSCC classification 

 
We further compared our ICF immunophenotyping 

strategy with a previously reported immune typing 

strategy by Ve´ steinn et al. In their study, solid tumors 

were categorized into six immune subtypes, with 

HNSCC primarily classified as C1 (wound healing) and 

C2 (INF-γ dominant) [1]. However, this classification 

system heavily relied on the differentiation of CD4+ T 

cells, which may not effectively distinguish HNSCC 

(Supplementary Figure 10). In contrast, our method 

divided HNSCC into three ICF subtypes and further 

stratified them into high- and low-risk groups. The 

Immune-H subtype predominantly fell into the low-risk 

group, while the Immune-L subtype mainly belonged to 

the high-risk group. Additionally, the low-risk group 

showed a higher proportion of patients with improved 
survival outcomes. As a result, our ICF-guided immuno-

phenotyping strategy demonstrated clear advantages in 

characterizing HNSCC. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Cluster dendrogram (left panel) and the enrichment analysis of 29 functional immune cells (right panel) when 

TCGA-HNSCC samples were divided into 2 (A), 3 (B) and 4 (C) clusters. 
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Supplementary Figure 2. Survival analyses based on immune cell infiltration. (A) Naïve B cells, (B) resting dendritic cells, (C) 

resting mast cells, (D) plasma cells, (E) T follicular helper cells, (F) regulator T cells, (G) activated mast cells, (H) neutrophils, (I) memory 
resting CD4+ T cells, and (J) M2 macrophages. 
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Supplementary Figure 3 Biological processes in different immunophenotypes. (A) GSEA shows only the chemical carcinogenesis 

(DNA adducts) pathway is enriched in the Immune-L subtype. (B) The bubble plot shows the enrichment result of KEGG terms in Immune-H 
and Immune-L subtypes. 
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Supplementary Figure 4. Identification of the immunophenotype-related gene module by WGCNA. (A) Cluster dendrogram of 

gene co-expression modules after merged (1-TOM). (B) Correlation analysis of gene modules and phenotypes of HNSCC. GO functional 
enrichment (C) and KEGG pathway enrichment (D) analyses for genes in the black module of WGCNA. (E) The protein-protein interaction 
network of the hub genes in the black module. (F) The expression levels of SAHS3, CD53 and NCKAP1L in the three immunophenotypes. 
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Supplementary Figure 5. Construction and validation of the ICF gene signature. Heatmap of DEGs (A) and IRDEGs (B) between 

the Immune-H and Immune-L subtypes. (C) Comparisons of overall survival between high- and low-risk groups in the test set. The ROC 
curve (D) and calibration curve (E) of the ICF score for predicting 1-year, 3-year and 5-year survival in the test set. (F) Correspondence 
between risk scores and survival in the test set. The ROC curve (G) and calibration curve (H) of the nomogram for predicting overall survival 
at 1-year, 3-year and 5-year. 
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Supplementary Figure 6. Analysis of candidate transcription factors (TFs) for prognosis-related immune genes (PIGs). (A) 

The alluvial diagram shows the TFs co-expressed with PIGs, and the lines indicate the co-expressed relationship between the two. (B) 
Protein-protein interaction network of PIGs and TFs. 
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Supplementary Figure 7. The correlations between immune checkpoints and ICF scores in HNSCC. CTLA4 (A), HAVCR2 (B), 

LAG3 (C), PDCD1 (D), and TIGIT (E). 

 

 

 
 

Supplementary Figure 8. Survival analysis for HNSCC patients stratified by TMB and ICF risk score. (A) Kaplan-Meier survival 

analysis for HNSCC patients with different TMB. (B) Kaplan-Meier survival analysis for patients according to TMB and ICF score stratifications. 
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Supplementary Figure 9. Correlation analyses between the model genes and immune infiltrating cells. 
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Supplementary Figure 10. The alluvial diagram shows the correspondence of pan-cancer immune subtypes, ICF subtypes, 
ICF risk groups and the survival status in HNSCC. 

 



www.aging-us.com 12614 AGING 

 
 

Supplementary Figure 11. Comparisons of the IC50 values of common HNSCC drugs between high-risk and low-risk groups. 
Cisplatin (A), Bleomycin (B), Doxorubicin (C), Gefitinib (D), Gemcitabine (E), Paclitaxel (F). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 5 and 8. 

 

Supplementary Table 1. 29 immune gene signatures (gene sets). 

 

Supplementary Table 2. qRT-PCR primer sequences. 

CCL2 
Forward GATCTCAGTGCAGAGGCTCG 

Reverse TCTCCTTGGCCACAATGGTC 

CD19 
Forward CTCCCATACCTCCCTGGTCA 

Reverse GCCCATGACCCACATCTCTC 

CTSG 
Forward GAGTCAGACGGAATCGAAACG 

Reverse CGGAGTGTATCTGTTCCCCTC 

RBP5 
Forward CTGGCGTCCCAAATGAAAGA 

Reverse GAGAGCGGAGATTGGTTGTTCT 

ROBO1 
Forward TCCACACAGCAATAGCGAAG 

Reverse CCTGTAACATGGGCTGGAGT 

STC2 
Forward ATGCTACCTCAAGCACGACC 

Reverse TCTGCTCACACTGAACC 

TNFSFR4 
Forward ATGGAAGGGGAAGGGGTTCAACC 

Reverse TCACAGTGGTACTTGGTTCACAG 

ZAP70 
Forward GTTGACTCATCCTCAGAGACGAAT 

Reverse AGGTTATCGCGCTTCAGGAA 

CD247 
Forward GGCACAGTTGCCGATTACAGA 

Reverse CTGCTGAACTTCACTCTCAGG 

 

 

Supplementary Table 3. ssGSEA analysis of 29 immune gene signatures in HNSCC samples. 

 

 

Supplementary Table 4. Clinicopathological features of the training set and the test set. 

Total 
train set (TCGA-HNSC) test set (GSE65858) P-value (Chi-Square Test) 

499 270  

Age 

≤65 324 86 
<0.001 

>65 175 184 

Gender 

Female 133 47 
0.004 

Male 366 223 

T stage 

T0-1 46 35 

0.728 
T2 131 80 

T3 96 58 

T4 171 97 

Unknown 55 0  
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N stage 

N0 170 94 

0.015 N1 65 32 

N2-3 171 144 

Nx 93 0  

M stage 

M0 185 263 
0.201 

M1 1 7 

Mx 313 0  

NCCN stage 

I 25 18 

0.302 
II 69 37 

III 78 37 

IV 259 178 

Unknown 68 0  

Grade 

G1 61 NA 

NA 
G2 298 NA 

G3 119 NA 

G4 2 NA 

Unknown 19 NA  

 

 

Supplementary Table 5. Construction of the immune cell function (ICF) gene signature in HNSCC. 

 

 

Supplementary Table 6. Comparisons of somatic variances between high- and low- risk groups. 

Gene Low-mutation (%) Low-wild (%) High-mutation (%) High-wild (%) P-value (chi-square test) 

TP53 134 (54.7) 111 (45.3) 173 (70) 74 (30) <0.001 

TNN 81 (33.1) 164 (66.9) 91 (36.8) 156 (63.2) 0.379 

FAT1 49 (20) 196 (80) 54 (21.9) 193 (78.1) 0.612 

CDKN2A 44 (18) 201 (82) 44 (17.8) 203 (82.2) 0.966 

MUC16 42 (17.1) 203 (82.9) 40 (16.2) 207 (83.8) 0.778 

CSMD3 42 (17.1) 203 (82.9) 40 (16.2) 207 (83.8) 0.778 

PIK3CA 39 (15.9) 206 (84.1) 40 (16.2) 207 (83.8) 0.934 

NOTCH1 39 (15.9) 206 (84.1) 37 (15) 210 (85) 0.773 

SYNE1 39 (15.9) 206 (84.1) 35 (14.2) 212 (85.8) 0.588 

LRP1B 32 (13.1) 213 (86.9) 35 (14.2) 212 (85.8) 0.72 

KMT2D 20 (8.2) 225 (91.8) 42 (17) 205 (83) 0.003 

PCLO 27 (11) 218 (89) 32 (13) 215 (87) 0.509 

NSD1 34 (13.9) 211 (86.1) 20 (8.1) 227 (91.9) 0.04 

DNAH5 27 (11) 218 (89) 27 (10.9) 220 (89.1) 0.975 

USH2A 29 (11.8) 216 (88.2) 22 (8.9) 225 (91.1) 0.286 

FLG 22 (9) 223 (91) 27 (10.9) 220 (89.1) 0.47 

CASP8 27 (11) 218 (89) 20 (8.1) 227 (91.9) 0.27 
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RYR2 20 (8.2) 225 (91.8) 22 (8.9) 225 (91.1) 0.768 

PKHD1L1 17 (6.9) 228 (93.1) 25 (10.1) 222 (89.9) 0.207 

XIRP2 25 (10.2) 220 (89.8) 15 (6.1) 232 (93.9) 0.094 

 

 

Supplementary Table 7. Molecular docking results of the top 10 compounds. 

Rank ZINC ID Compound name Binding energy (kcal/mol) 

1 ZINC000011679756 Eltrombopag −8.3 

2 ZINC000116473771 none −8 

3 ZINC000012503187 Conivaptan −7.8 

4 ZINC000003784182 Differin −7.6 

5 ZINC000052955754 Ergotamine −7.5 

6 ZINC000003945984 Vexol −7.5 

7 ZINC000003795819 Palonosetron −7.4 

8 ZINC000084668739 Lifitegrast −7.4 

9 ZINC000003875484 Androxy −7.3 

10 ZINC000064033452 Lumacaftor −7.3 

 

 

Supplementary Table 8. Genes in the black module of WGCNA. 

 

 


