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INTRODUCTION 
 

Among the most common forms of cancer, gastric 

cancer (GC) is a leading cause of cancer-related death 

worldwide, especially in East Asia [1, 2]. The patho-

logical kind of more than 95% of cases of GC are of the 

stomach adenocarcinoma (STAD) [3]. The usual course 

of action for GC is radical resection followed by 

adjuvant therapy. Despite accepting normal treatment, 

the 5-year survival rate is just 50%, and 70% of patients 

with GC experience recurrence or metastasis within  

5 years [4]. Sadly, the needs for earlier diagnosis and  

a longer survival duration are not met now by GC 

diagnosis and treatment. Therefore, research into novel 
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ABSTRACT 
 

Recent years have seen a sharp rise in the amount of research on the connection between oxidative stress, 
autophagy, and cancer cells. However, the significant functions of oxidative stress and autophagy-related genes 
(OARGs) in gastric cancer (GC) are yet to be investigated integrally. Therefore, it will be a new and promising 
concept to search for novel OARG-related biomarkers to predict the prognosis and treatment response of GC. 
First, we assessed changes in prognosis and tumor microenvironment (TME) characteristics across the various 
oxidative stress and autophagy-related modification patterns based on a detailed analysis of 17 OARGs with 
prognostic significance of 808 GC samples. We identified three distinct OARG alteration patterns which 
displayed unique biological characteristics and immune cell infiltration features. Using principal component 
analysis methods, the OARGscore was developed to evaluate the OARG modification patterns of certain 
tumors. The negative connection between OARGscore and immune cells was statistically significant. Increased 
survival, a higher incidence of mutations, and a better response to immunotherapy were all predicted to be 
related to patients’ high-OARGscore. In addition, the candidate chemotherapeutic drugs were predicted using 
the oncoPredict program. The low-OARGscore group was predicted to benefit more from Ribociclib, Alisertib, 
Niraparib, Epirubicin, Olaparib, and Axitinib, while patients in the high-OARGscore group were predicted to 
benefit more from Afatinib, Oxaliplatin, Paclitaxel, 5−Fluorouracil, Dabrafenib and Lapatinib. Our findings offer 
a specific method for predicting a patient’s prognosis and susceptibility to immunotherapy, as well as a 
promising insight of oxidative stress and autophagy in GC. 
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biomarkers with higher predictive values is urgently 

needed to enhance GC prognostication. 

 

Oxidative stress (OS) refers to the excessive 

accumulation of highly reactive molecules, such as 

reactive oxygen species (ROS) and reactive nitrogen 

species (RNS), in the body when subjected to various 

harmful stimuli, resulting in an imbalance of oxidative 

and antioxidant activity, leading to physiological  

and pathological responses from cells and tissues. 

Increased intracellular ROS concentrations can be 

caused by a number of conditions, including radiation, 

aging, viral illnesses, and heat stress. This can result in 

an intracellular OS response that can either protect or 

kill cells [5, 6]. According to prior studies, ROS has a 

significant role in all stages of cancer development, 

progression, and death [7, 8]. Additionally, several 

studies have demonstrated that OS can halt tumor 

growth and metastasis [9–11]. There is also evidence 

that GC may be reduced by reducing OS [12]. OS  

has also been linked to the tumor immune micro-

environment (TME) and demonstrated to regulate  

the activity of immune cells in ovarian cancer [13]. 

Likewise, a link between OS-induced apoptosis and 

TME has been discovered in patients with gastric  

and esophageal cancers, which can influence patient 

prognosis [14]. 

 
A conserved intracellular breakdown process called 

autophagy uses lysosomes to break down cellular 

organelles, proteins, and invader germs to provide 

cells their essential building blocks and energy. It has 

a dual impact on tumor development and metastasis.  

In the early phases of carcinogenesis, for example, 

autophagy functions as a tumor-suppressing mecha-

nism that restrains inflammation, preserves genomic 

stability, and protects against both chronic tissue harm 

and cellular damage [15–18]. Moreover, autophagy 

has diverse functions in various TME, and tumors can 

frequently alter the development and spread of tumors 

by controlling autophagy and, in turn, the immune 

response [19, 20]. It’s interesting to note that OS and 

ROS influence autophagy [21, 22]. Although the precise 

relationships between oxidative stress and autophagy 

have not been fully explored, it is known that OS may 

affect autophagy, typically increasing its induction 

[23–25]. At the same time, as far as we know, the  

OS and autophagy-related genes (OARGs) have not 

been uncovered in predicting clinical outcomes and 

therapeutic approaches in individuals of GC. Therefore, 

it is prospective to see the GC prognostic signature and 

developing better immunotherapy treatment options by 

employing OARG.  

 
We began this study by looking at the genetic  

variants and expression characteristics for OARG in 

GC. In order to conduct a thorough investigation  

of OARG change patterns and TME characterization, 

we then selected genomic data of 808 GC cases. By 

cluster analysis based on OARGs with prognostic 

significance, the GC samples were split into three 

groups with considerably different prognoses and 

TME, showing that OARG modifications had a major 

influence on the progression of specific TME traits.  

In order to achieve accurate prediction of precisely 

individualized patients, we established the OARGscore 

for assessing the efficacy of immunotherapy and fore-

casting the prognosis of people with GC. At last, we 

also evaluated the correlation between OARGscore 

and commonly used chemotherapy drugs in order to 

better guide clinical medication. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The TCGA-STAD dataset containing 375 tumor 

samples and 32 normal samples, including their 

annotated clinical and gene expression data, were  

all obtained from The Cancer Genome Atlas (TCGA). 

433 GC samples were obtained from the GSE84437 

cohort of the Gene Expression Omnibus (GEO) [26]. 

Genes that correspond to multiple probes should all  

be selected for the average expression value of that 

gene. We normalized the matrix data and removed the 

batch effect using the “limma” and “sva” packages in 

R [27–29]. Besides, 1495 OS-related genes (Relevance 

score > 5) were obtained from the GeneCards database. 

GeneCards is a searchable, integrated database that 

offers thorough, user-friendly details on every human 

gene that has been annotated or predicted. A total  

of 222 autophagy-related genes were obtained from 

The Human Autophagy Database [30]. 96 OARGs 

were gained by taking the intersection of the two gene 

groups, which were then represented using a Venn 

diagram. Using univariate Cox regression [31], the 

TCGA and GEO cohorts were checked for OARGs 

with prognostic values (P < 0.05). At last, 17 OARGs 

of prognostic relevance were found. 

 

Sample collection 

 

During the period spanning from 2023-06 to 2023- 

08, we meticulously procured a total of six sets of 

gastric cancer tissue samples along with an equivalent 

number of corresponding adjacent tissues. These 

specimens were meticulously obtained from the 

esteemed First Affiliated Hospital of Dalian Medical 

University. Notably, the origin of each of the 

aforementioned six pairs of human tissue samples can 

be traced back to six distinct patients who had 

undergone rigorous pathological scrutiny to confirm 
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the presence of gastric cancer. It is imperative to 

highlight that each patient subjected themselves to 

standardized preoperative interventions, thereby 

excluding any prior history of chemotherapy or 

radiation therapy. The designated adjacent tissues, 

deliberately situated at a minimum distance of more 

than two centimeters from the epicenter of the 

neoplastic lesion, were meticulously selected. 

Subsequent to surgical excision, the harvested human 

tissue specimens were promptly subjected to cryo-

preservation within liquid nitrogen, effectively 

arresting the degradation of RNA molecules and 

ensuring their suitability for ensuing RNA isolation 

procedures. It is noteworthy to mention that the 

implementation of this research endeavor garnered the 

explicit endorsement and ethical oversight from the 

Ethics Committee of the First Affiliated Hospital of 

Dalian Medical University.  

 

Real-time quantitative PCR 

 

Following the guidelines provided in the reagent 

specification, TRIzol reagent (Adamas Life, Shanghai, 

China) was employed to facilitate the extraction of  

total RNA from human tissue samples. Mechanical 

disruption of the human tissue was carried out utilizing 

low-temperature grinders. Subsequent to RNA extrac-

tion, the generated RNA was subjected to reverse 

transcription using a dedicated kit (Yugong Biolabs, 

Jiangsu, China) to synthesize complementary DNA 

(cDNA). For the final analysis, the expression levels 

of the target genes were assessed employing the SYBR 

Green dye fluorescence quantitative PCR method, a 

technique known for its sensitivity and accuracy in 

quantification (Yugong Biolabs, Jiangsu, China). The 

specific primers applied in this investigation were 

procured from Sangon Biotech (Shanghai, China).  

The primers used in this study are as follows: β-actin: 

(Forward) CCTGGGCATGGAGTCCTGTG; (Reverse) 

TCTTCATTGTGCTGGGTGCC. PINK1, (Forward) 

GGAGTATGGAGCAGTCACTTACAG; (Reverse) 

AGCAGCGGCACGGAAGAG. FAS, (Forward) CA 

AGTGACTGACATCAACTCCAAGG; (Reverse) GG 

ACAGGGCTTATGGCAGAATTG. CXCR4, (Forward) 

ACGCCACCAACAGTCAGAGG; (Reverse) AAGTC 

GGGAATAGTCAGCAGGAG. DAPK1, (Forward) GC 

TTGGCACGGCTATTACTCTG; (Reverse) CTCTCC 

TTCTCGGTTCTTGATGTTC; HDAC1, (Forward) 

GTCGGAGTACAGCAAGCAGATG; (Reverse) CC 

ACAGAACCACCAGTAGACAAC. TP53, (Forward) 

ATGAGCCGCCTGAGGTTGG; (Reverse) CAGTGT 

GATGATGGTGAGGATGG. MAPK8IP1, (Forward) 

AGTGACTCTGCCACCGTCTATG; (Reverse) CCT 
CCTCATATTCCTCTCCGATGG. CASP8, (Forward) 

TTTGACCACGACCTTTGAAGAGC; (Reverse) GAG 

GATACAGCAGATGAAGCAGTC. BNIP3, (Forward) 

TTCCTTCCATCTCTGCTGCTCTC; (Reserve) AAG 

GTGCTGGTGGAGGTTGTC. IFNG, (Forward) TTT 

GGGTTCTCTTGGCTGTTACTG; (Reverse) TTAT 

CCGCTACATCTGAATGACCTG. HSPB8, (Forward) 

ATGCCCTTCTCCTGCCACTAC; (Reverse) CAAG 

AGGCTGTCAAGTCGTCTG. ITGB1, (Forward) AG 

ATGTGTCAGACCTGCCTTGG; (Reverse) AATTT 

GTCCCGACTTTCTACCTTGG. 

 

Immunohistochemistry of the OARGs 

 

Human Protein Atlas database (HPA, https://www. 

proteinatlas.org/) aims at creating expressed patterns  

in protein of cells as well as tissues [32]. We can 

download immunohistochemistry images of GC and 

normal tissues via HPA platform. 

 

Cluster analysis of OARG 

 

Consensus cluster was carried out utilizing 

“ConsensusClusterPlus” R package for GC samples 

based on the expression of 17 OARGs to detect 

distinctive OARG modification patterns [33]. The  

ideal clustering number was established based on the 

cumulative distribution function (CDF) curve as well  

as variations of CDF curve area. Principal component 

analysis (PCA) was used to demonstrate the accuracy of 

our clustering findings. Then the prognosis and clinical 

pathological features between different subtypes were 

further compared. 

 

Gene set variation analysis (GSVA) and single 

sample gene set enrichment analysis (ssGSEA) 

 

The GSVA was carried out using the “GSVA” R tool in 

order to discover biological process diversity across 

different OARG modification patterns [34]. We then 

evaluated the variations in infiltrated levels of immune 

cell subset between different subtypes. The relative 

abundance of each immune cell in each sample was 

represented by the enrichment scores obtained from the 

ssGSEA analysis [35, 36]. 

 

Differentially expressed genes (DEGs) were analyzed 

to determine the patterns of OARG modification 

 

According to three different OARG modification patterns 

that we have concluded, we screened out DEGs among 

GC patients by the R package “limma” with adjusted P < 

0.001 as the criterion [37]. In order to unravel the 

biological processes and functions DEGs are involved in, 

the “org.Hs.eg.db”, “clusterProfiler”, “enrichplot”, and 

“ggplot2” packages were utilized to perform GO and 
KEGG enrichment analyses [38]. The univariate Cox 

analysis was used to identify prognostic DEGs, and the R 

program “ConsensusClusterPlus” was used to conduct a 

https://www.proteinatlas.org/
https://www.proteinatlas.org/


www.aging-us.com 12516 AGING 

cluster analysis based on the prognostic DEGs [39]. 

Additionally, changes in OARG expression and the 

survival of various genotypes were examined. 
 

Construction of OARG gene signature 
 

Following that, we developed an OARG scoring system 

based on the results. The PCA of principle components 

was performed, and we selected principal components 1 

and 2 as feature scores. It is largely concentrated in the 

score of the gene block with the most significant 

correlation or inverse correlation. In the meanwhile, it 

took into account the extent the impact of untracked 

genes on other set members. The following equation 

was used to calculate the OARGscore: OARGscore = 

Ʃ(PC1i+PC2i). i in the equation stands for genes 

connected to the OARG phenotype [40]. 
 

Genomic information of immune checkpoint genes 

(ICGs) 
 

We compared the differential expression of ICGs like 

CTLA4, LAG3, CD40, CD80, CD86, and CD276  

in groups with low- and high-OARGscore. We also 

acquired the Immune Checkpoint Inhibitor (ICI) 

Immunophenoscore (IPS) dataset from The Cancer 

Immunome Atlas Database [35]. The immunotherapeutic 

implications of the OARGscore were investigated  

using IPS, a reliable tool for assessing tumor immuno-

genicity [41]. 
 

OARGscore and chemotherapeutic drug correlation 
 

Data regarding the therapeutic sensitivity of cancer cells 

and molecular markers of drug response can be found in 

a public dataset called Genomics of Drug Sensitivity in 

Cancer (GDSC) [42]. An R tool called “OncoPredict” 

predicts drug response in vivo or in cancer patients from 

GDSC [43].  
 

Statistical analysis 
 

All data analysis and visualization were done with  

R software. The best cutoff score was divided into 

groups with low- and high-OARGscore using the “surv-

cutpoint” function. The Kaplan-Meier (KM) method 

was used to create survival curves for progression 

experiments. The TCGA-STAD cohort’s patients in the 

high- and low-OARGscore groups were presented with 

their mutations using the waterfall function of the 

maftools package. P < 0.05 was regarded as statistically 

significant in all bilateral statistical p values. 
 

Availability of data and materials  
 

The datasets analyzed in this work may be found in the 

TCGA and GEO databases. 

RESULTS 
 

Data procession 

 

Figure 1 displayed the flowchart for the research. In 

order to get 96 OARGs, we first took the intersection  

of genes associated to OS and genes connected to 

autophagy (Supplementary Figure 1). A univariate Cox 

regression analysis was then performed on the 808  

GC samples to produce 17 prognostically significant 

OARGs for this study’s analysis.  

 

Landscape of the genetic variation of OARG in GC 

 

17 OARGs were ultimately found in this study and 

included for subsequent studies. The frequency of copy 

number variations (CNVs) and somatic mutations in  

the GC samples were compiled to obtain a thorough 

overview of the genetic variation of OARGs in GC. 239 

(55.2%) of the 433 samples had OARG mutations, with 

TP53 having the highest mutation frequency followed 

by DAPK1, EGFR, and CASP8. However, CASP1 and 

CXCR4 did not have any mutations (Figure 2A). The 

analysis of CNV alteration frequency revealed extensive 

CNV alteration in 17 OARGs, the majority of which 

were centered on copy number deletion, while CNV 

amplification was frequently observed in EGFR, IFNG, 

ITGB1, BNIP3, MAPK8IP1, ATG4D, CASP8, and 

HSPB8 (Figure 2B). The location of CNV alteration of 

OARGs on chromosomes was shown in Figure 2C. 

Additionally, we evaluated the mRNA expression levels 

of 17 OARGs across cancer and normal samples in 

order to determine the relationships between genetic 

variants and the expression of OARGs. The findings 

revealed that whereas HSPB8, BNIP3, MAPK8IP1,  

and PINK1 expression levels were decreased in  

tumor tissues, those for ITGB1, IFNG, CASP8, TP53, 

HDAC1, DAPK1, CXCR4 and FAS were up (Figure 

2D). Following these, the expression profiles of 12 

differentially expressed OARGs were validated by RT-

PCR and immunohistochemistry in clinical samples of 

GC (Supplementary Figure 2A, 2B). Due to the lack of 

protein expression information for CXCR4 in the HPA 

database, only the other 11 available OARG proteins 

were examined. These results were generally consistent 

with the bioinformatics results described above, and 

some of the differences may be due to the small sample 

size and the heterogeneity among tumors. 

 

Three OARG patterns of GC 

 

We integrated the expression data of GC samples  

using correlation and univariate regression analysis to 

investigate the association between the expression of 

OARGs and the prognosis of GC (Figure 3A). Then, 

depending on the expression of OARGs, GC patients 
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were grouped using consensus clustering. GC  

patients could clearly be identified when cluster  

number was three (Figure 3B, 3C and Supplementary  

Figure 3). Cluster A greatly outperformed Cluster B  

and Cluster C in terms of prognosis among the three  

molecular subtypes that were identified (Figure 3D).  

Figure 3E illustrated the clinical characteristics of  

the three clusters. Also, we evaluated at the enriched  

pathways in the three subtypes using GSVA. In  

KEGG pathways, cluster A significantly upregulated  

a number of immunity-related pathways, including  

T cell receptor signaling, FC gamma mediated  

phagocytosis, chemokine signaling, p53 signaling,  

and Toll like receptor signaling (Figure 3F–3H). The 

pathways for MAPK signaling, TGF BETA signa- 

ling, leukocyte transendothelial migration, and cell  

adhesion molecules were particularly enriched in  

Cluster C (Figure 3F–3H). Additionally, we examined  

the immune cell infiltration of the various clusters  

and discovered that, in addition to mast cells and  

type II IFN responses, cluster A had a high level of  

infiltration of the remaining immune cells (Figure 3I). 

DEGs between distinct OARG phenotypes 

 

We then screened DEGs between the three subtypes 

since clusters A, B, and C showed notable variations  

in overall survival, tumor microenvironment, and 

enriched pathways. The “limma” program was used to  

filter 1273 DEGs. Figure 4A, 4B display the findings  

of the GO and KEGG pathway enrichment analyses  

of DEG. These genes are primarily concentrated in 

pathways that connect to tumors and immunological  

function, such as immune receptor activity, T cell  

activation, leukocyte-mediated immunity, and regulation  

of T cell activation. The DEGs’ prognostic significance  

was examined using a single-variable Cox regression  

analysis, and 613 genes were discovered to be asso-

ciated with overall survival. Based on 613 prognostic  

DEGs, patients were again divided into three subgroups  

(geneClusters A, B and C) using unsupervised clustering  

to further explore the different OS and autophagy- 

related modification patterns in GC (Figure 5A and  

Supplementary Figure 4). Patients with GC in geneCluster  

B fared better than those in geneCluster A and C in 

 

 
 

Figure 1. The investigation’s flow chart. 
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terms of survival (Figure 5B). Figure 5C displays the 

various clinicopathological characteristics of these 

groupings. Additionally, Figure 5D demonstrated  

the expression levels of 17 OARGs in different 

geneClusters. 

 

Construction of OARGscore 

 

Based on these phenotype-related genes and taking  

into account the individual variety and complexity  

of OARG modification, we developed a set of scoring 

systems that we called OARGscore to measure the 

OARG modification pattern of specific GC patients. 

The attribute changes of specific patients were re-

presented by an alluvial diagram (Figure 6A). We then 

examined prediction of patient survival outcomes based 

on OARGscore. High-OARGscore patients have higher 

survival rates (Figure 6B). We also looked at the 

relationship between the TME and OARGscore. Higher 

OARGscores showed lower immune cell infiltration 

levels because the OARGscore was inversely connected 

with the majority of immune cells (Figure 6C). We 

chose a few significant ICGs, such as CTLA4, LAG3, 

CD40, CD80, CD86, and CD276 and assessed the 

 

 
 

Figure 2. Landscape of genetic and expression variation of OARGs in the TCGA-SATD cohort. (A) The frequency of mutation for 17 

OARGs. (B) CNV variation frequencies of OARGs. (C) Chromosomal locations of altered CNV in the OARGs. (D) The difference in 17 OARGs 
expression between healthy tissue and malignant tissue. 
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Figure 3. OARG modification patterns and the biological characteristics of each pattern. (A) The interaction of OARGs.  

(B) Consensus matrix. (C) Principal component analysis for three OARG patterns’ transcriptome profiles. (D) Survival analyses for the three 
OARG patterns. (E) Clinical characteristics of three OARG modification patterns. (F–H) The activation statuses of biological pathways are 
displayed in different OARG modification patterns. (I) The infiltration levels of immune cell subsets in three OARG modification patterns. 
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expression of each in groups with high- and low-

OARGscore. According to the results (Figure 6F– 

6K), the low-OARGscore group had higher expression 

levels of all six ICGs, indicating that suggesting that 

these ICGs may be potential therapeutic targets. The 

OARGscore was then used to perform survival 

analyses, categorize patients by sex, age >= 65 years,  

T stage, and N stage. It shows that our model is 

meaningful in different clinical features, according to 

the findings (Supplementary Figure 5).  

 

 
 

Figure 4. Function enrichment analysis of DEGs. (A) GO enrichment analysis. (B) KEGG enrichment analysis. 
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Figure 5. Identification of subtypes based on DEGs. (A) Consensus matrix heatmap when cluster number k = 3. (B) KM analysis of GC 

patients in three geneClusters. (C) These subgroups’ various clinicopathological traits are displayed by a heatmap. (D) The expression of 17 
OARGs in three geneClusters.  
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Patterns of OARG modification in TCGA molecular 

subgroups and cancer somatic mutations 

 

There is growing evidence that links somatic mutations 

in tumor genomes to the response to immunotherapy. 

The distributions of tumor mutation burden (TMB) 

among the various OARGscore groups were therefore 

examined. Figure 7A shows that the high-OARGscore 

group had a greater TMB than the low-OARGscore 

group and that the OARGscore was positively cor-

related with TMB (Figure 7B). Additionally, patients 

with large mutational burdens had a noticeably better 

likelihood of surviving (Figure 7C). Likewise, we 

discovered that high-OARGscore group with a high 

TMB demonstrated greater survival (Figure 7D). Then, 

we assessed the distribution of common gene mutations 

in the high- and low-OARGscore populations. Twenty 

genes with the highest mutation frequency in two 

groups were shown in Figure 7E, 7F. In conclusion, 

somatic mutations and OARG changes interact, and  

the categorization of OARGscore may be influenced  

by the variation. These results indicated that patients 

with high-OARGscore group could benefit more from 

immunotherapy. 

 

OARGscore and immunotherapy 

 

We looked at the effect of OARGscore in predic- 

ting immunotherapy response in the TCGA cohort  

since patients had comprehensive immunotherapy 

information. The findings indicate that individuals with 

high OARGscore experienced considerable therapeutic 

 

 
 

Figure 6. Creation of OARG signature and study of its clinical implications. (A) The Sankey diagram showed the relationship 
between the survival status of GC patients and the OARGcluster, geneCluster, and OARGscore. (B) Survival outcomes of patients by 
OARGscore. (C) Association between immune cells and OARGscore. (D) Analysis of OARGscore variation between OARGclusters. (E) Analysis 
of OARGscore variation among gene clusters. (F–K) Expression of immune checkpoints (CTLA4, LAG3, CD40, CD80, CD86 and CD276) between 
low- and high-OARGscore groups.  
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Figure 7. Characteristics of OARG modification in cancer somatic mutation. (A) The differences in the TMB between low- and high-
OARGscore groups. (B) The relationship between the TMB and OARGscore. (C) Survival analysis utilizing KM curves for low- and high-TMB 
groups. (D) KM curves for patients stratified by both TMB and OARGscore. (E, F) Waterfall plot of cancer somatic mutations constructed from 
patients with (E) high-OARGscore and (F) low-OARGscore. 
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advantages and had significantly higher survival rate 

(Figure 8A, 8B). Microsatellite instability-high (MSI-H) 

is a potential predictor of immunotherapy response 

targeting PD-1 or its ligand PD-L1 [44]. We found  

that MSI-H made up a sizable amount of the high-

OARGscore group (Figure 8C). The effects of CTLA-

4/PD-1 inhibitor therapy were different for the groups 

with high and low-OARGscore, as shown in Figure  

8D–8G. The high-OARGscore group had higher IPS 

scores, indicating that they were predicted to be more 

immunogenic on ICIs and more likely to benefit from 

immunotherapy. These findings imply that OARGscore 

can be employed to forecast patient immunotherapy 

response. 

 

 
 

Figure 8. OARGscore in the role of immunotherapy. (A, B) The percentage of patients who survived in groups with low- and high-

OARGscore. (C) The proportion of MSI grouping in low and high-OARGscore groups. (D–G) A comparison of the IPS relative distribution across 
groups with low- and high-OARGscore. 
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OARGscore guided chemotherapy strategies 

 

Given that chemotherapy is also an effective method  

for the treatment of GC, it has important clinical 

application value and prospects. We therefore inves-

tigated whether the OARGscore could predict drug 

sensitivity in GC patients. We found that low-

OARGscore group was predicted to benefit more from 

Ribociclib, Alisertib, Niraparib, Epirubicin, Olaparib, 

and Axitinib (Figure 9A–9F), while patients in the  

high-OARGscore group was predicted to benefit more 

from Afatinib, Oxaliplatin, Paclitaxel, 5−Fluorouracil, 

Dabrafenib and Lapatinib (Figure 9G–9L). 
 

DISCUSSION 
 

China accounts for about 50% of GC cases, and the 

majority of these cases are discovered at a late stage 

 

 
 

Figure 9. OARGscore guided chemotherapy strategies. (A–F) Predicted sensitivity of Ribociclib, Alisertib, Niraparib, Epirubicin, 
Olaparib, and Axitinib, which were candidate chemotherapeutic agents for low-OARGscore patients. (G–L) Predicted sensitivity of Afatinib, 
Oxaliplatin, Paclitaxel, 5−Fluorouracil, Dabrafenib and Lapatinib, which were candidate potent drug options for high-OARGscore patients. 
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[45]. Although advancements in the use of multimodal 

of treatment for GC, the total survival rate in the patient 

population is still far from ideal [46]. The best ways  

to reduce GC death rates at the moment are suggested  

to be prevention and individualized treatment [47]. 

Therefore, a possible progress in improving the prog-

nosis and extending the survival in people of GC could 

result from the development of new and practicable 

prognostic biomarkers and treatment targets. 
 

In our bodies, oxidation takes place constantly. The 

main products of OS are ROS, also known as free 

radicals. They harm molecules that make up DNA, 

proteins, and lipids in order to acquire higher stability, 

which causes tissue damage [25]. There is a lot of  

proof that the body's ongoing production of ROS can 

both encourage and prevent cancer cells from surviving 

[48]. Numerous tumors have been found to produce 

increased ROS, and it has been demonstrated that this 

has a range of impacts. For instance, they could increase 

cell survival and proliferation, activate protumorigenic 

signals, and facilitate genetic instability and DNA 

damage, among other things. What’s more, ROS can 

encourage antitumor transmission of signals and start 

OS-induced tumor death of cells. ROS disturb the redox 

equilibrium between cancerous cells and normal ones, 

which raises the possibility that ROS could be a target 

for tumor immunotherapy. Autophagy is a multistep 

lysosomal breakdown system that is highly regulated. 

To encourage the metabolism and renewing for the cells, 

it breaks down injured organelles, unfolded proteins, 

and toxic substances and delivers those to the lysosome 

for digesting [49]. Autophagy can play a dual part  

in carcinoma. On one hand, as a divisor of tumor 

suppression, it limits the buildup of damaged organelles 

and proteins. On the other hand, it is also a cell’s 

surviving mechanism, promoting the growth of 

established tumors [50]. It has also been found that 

autophagy is closely related to anti-cancer immunity 

[51, 52]. A large body of evidence suggests that OS  

is closely related to autophagy, and that ROS and  

RNS are the main intracellular signaling sensors that 

maintain autophagy [25]. Therefore, it is promising to 

research the molecular mechanism and immunotherapy 

of OARGs related to GC. 
 

A total of 17 OARGs that associated with the prognosis 

of GC were included in our analysis. Firstly, somatic 

mutations, copy number changes and expression levels 

of OARGs in GC patients were preliminarily evaluated, 

and it was found that most OARGs had copy number 

changes and differential expression. These findings 

suggest that the imbalance of OARG expression was 

highly correlated to GC incidence and development. 

Concentrating on the way distinct OARGs interact with 

one another, cross-talk in OARGs might be important  

in the formation of different OARG modification 

patterns and TME cell-infiltrating characteristics in 

specific malignancies. 

 
Besides that, GC samples were clustered into three 

subgroups with various biological behaviors and TME 

features based on the expression of OARGs. Cluster A 

has the best prognosis and is enriched in immune-

related pathways. Higher immune infiltration might be 

the potential cause for more favorable prognosis. To 

further explore the modification modes of different 

OARGs in GC, we conducted differential analysis on 

three clusters, and functional enrichment analysis indi-

cated that these genes were mainly linked to immune-

related functions as well as some cancer- associated 

pathways. Then we carried out consensus cluster 

analysis again based on the prognosis-related DEGs. 

Interestingly, GC patients were again divided into three 

categories with significant prognostic differences. These 

results indicate that there may indeed be three different 

OARG-related modification modes in GC. GC patients 

with different OARG-related modification modes had 

distinctly varied clinical and transcriptome features. 

 
However, besides to the aforementioned evaluations  

of the patient population, a scoring system called 

OARGscore that quantifies the OARG modification 

pattern was developed based on these OARG signature 

genes because of the unique variety and complexity of 

the OARG modification in different patients. The link 

between OARGscore and immune cell infiltration were 

analyzed to further investigate a possible relationship 

between OARGscore and TME. The result indicated 

that OARGscore was inversely linked to the degree of 

immune cell infiltration. High OARGscore were found 

to be associated with a higher rate of survival in 

patients. ICG expression was elevated in the group with 

a low-OARGscore, meanwhile. As everyone known  

that tumor cells may defend themselves through the 

immunological checkpoint pathway and are incorrectly 

believed to be a normal component of the body. The 

low-OARGscore group with a larger percentage of 

immunological components had a poorer prognosis, 

demonstrating the activation of ICG mechanisms. A 

possible GC target might be the over expression of 

CTLA4, LAG3, CD40, CD80, CD86, and CD276. 

 
The efficacy of immunotherapy in GC has been variable 

because of a lack of a thorough knowledge of the 

immunological environment in GC and the difficulty to 

pinpoint a specific patient’s immune status. According 

to reports, TMB can be utilized as a predictor of 

immunotherapy effectiveness and has evolved into a 

biomarker among certain kinds of cancer for identifying 

people who can profit from immune therapy [53, 54]. 
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This might be because there’s a chance that elevated 

TMB levels will result in more neoantigens that the 

immune system will detect and start a stronger anti-

tumor immunological reaction [55]. Microsatellites are 

short tandem repeats with a high mutation rate that are 

dispersed across the entire genome and range in length 

from 1-6 nucleotides. MSI is therefore defined as a 

hyper-mutable circumstance that develops at genomic 

Microsatellite in the presence of a deficient DNA 

mismatch repair machinery [56]. MSI-H cancers are 

linked to elevated tumor-infiltrating lymphocytes and 

enriched PD-L1 expression across tumor types. Our 

research revealed that TMB is higher in the high-

OARGscore group, and a survival analysis revealed that 

people who have high TMB expression among the same 

OARGscore group had a higher survival rate. Moreover, 

the proportion of MSI-H in high-OARGscore was larger 

than that in low-OARGscore. This finding demonstrates 

that the high-OARGscore subgroup of patients may gain 

more from immunotherapy. After that, more research 

was done to determine the relative IPS distribution 

between the groups with low- and high-OARGscore. 

Again, the results show that high scores were predicted 

to benefit from immunotherapy. 

 
Additionally, the OARGscore can forecast the suscep-

tibility to chemotherapeutic drugs. Low-OARGscore 

group was predicted to benefit more from Ribociclib, 

Alisertib, Niraparib, Epirubicin, Olaparib, and Axitinib, 

while patients with high-OARGscore was predicted  

to benefit more from Afatinib, Oxaliplatin, Paclitaxel, 

5−Fluorouracil, Dabrafenib, and Lapatinib. 

 
To our knowledge, this is the first instance in which  

the role of OS and autophagy in GC prognosis, 

immunotherapy, and chemotherapy has been examined 

using bioinformatics. However, there are certain limi-

tations to this analysis. First off, further prospective 

studies need be conducted to corroborate these findings 

since the research was retrospective analysis. Second, 

there is no in vitro or in vivo testing to validate the 

veracity for the mechanistic analyses in the evidence. 

As a result, several research will be carried out in the 

future to show the molecular relationships among these 

genes and GC development. 

 
CONCLUSIONS 

 
This study showed that OARG alteration patterns are 

crucial in determining the complexity and diversity of 

TME. The OARGscore was established to identify the 

OARG modification mode of individual patients, which 
can effectively predict the prognosis, TME, immuno-

therapy response and chemotherapy drug sensitivity for 

people of GC. 
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Supplementary Figure 1. Venn diagram to find 96 OARGs. 
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Supplementary Figure 2. Validation of the expression traits of OARGs. (A) RT-PCR of clinical samples (tumor tissues vs normal 

adjacent tissue). (B) Immunohistochemistry of clinical samples. 
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Supplementary Figure 3. Unsupervised cluster analysis to establish OARG clusters. (A) CDF cumulative distribution curve. (B) Area 

under the CDF curve. (C) Tracking plot. 
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Supplementary Figure 4. Unsupervised cluster analysis to establish gene clusters. (A) CDF cumulative distribution curve. (B) Area 

under the CDF curve. (C) Tracking plot. 
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Supplementary Figure 5. Survival analysis between OARGscore and different types of patients. (A, B) Survival analysis between 

OARGscore and patients of age >/≤ 65. (C, D) Survival analysis between OARGscore and patients of different gender. (E) Survival analysis 
between OARGscore and patients with T3-4. (F) Survival analysis between OARGscore and patients with N1-3. 


