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INTRODUCTION 
 

Esophageal carcinoma is a widespread malignancy on a 

global scale, and it is ranked as the sixth foremost 

cause of cancer-related mortality [1]. Esophageal 

squamous cell carcinoma (ESCC) is the primary 

histological subtype that prevails in cases of esophageal 

cancer in China, constituting over 90% of occurrences 
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ABSTRACT 
 

Background: The existing therapeutic approaches for combating tumors are insufficient in completely 
eradicating malignancy, as cancer facilitates tumor relapse and develops resistance to treatment interventions. 
The potential mechanistic connection between SARS-CoV-2 and ESCC has received limited attention. Therefore, 
our objective was to investigate the characteristics of SARS-CoV-2-related-genes (SCRGs) in esophageal 
squamous cancer (ESCC). 
Methods: Raw data were obtained from the TCGA and GEO databases. Clustering of SCRGs from the scRNA-seq 
data was conducted using the Seurat R package. A risk signature was then generated using Lasso regression, 
incorporating prognostic genes related to SCRGs. Subsequently, a nomogram model was developed based on 
the clinicopathological characteristics and the risk signature. 
Results: Eight clusters of SCRGs were identified in ESCC utilizing scRNA-seq data, of which three exhibited 
prognostic implications. A risk signature was then made up with bulk RNA-seq, which displayed substantial 
correlations with immune infiltration. The novel signature was verified to have excellent prognostic efficacy. 
Conclusion: The utilization of risk signatures based on SCRGs can efficiently forecast the prognosis of ESCC. A 
thorough characterization of the SCRGs signature in ESCC could facilitate the interpretation of ESCC's response 
to immunotherapy and offer innovative approaches to cancer therapy. 
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[2]. Despite the progress made in diagnostic and 

therapeutic approaches, this malignancy still 

demonstrates a discouraging prognosis, with a 5-year 

survival rate ranging between 15% and 25% [3]. The 

high mortality rate linked to esophageal carcinoma can 

be attributed to the insufficiency of effective diagnostic 

and therapeutic modalities [4, 5]. The elevated 

mortality rates can also be attributed to chemotherapy 

resistance. Numerous investigations have showcased 

that apoptosis disruption, aberrant autophagy, 

heightened DNA repair mechanisms, epithelial–

mesenchymal transition facilitation, deactivation of 

drug metabolism enzymes, and alterations in the 

expression or functionality of membrane transporters 

are intricately linked to the evolution of drug resistance 

[6]. Therefore, it is crucial to augment our under-

standing of the molecular mechanisms underlying the 

progression of esophageal malignancies in order to 

facilitate the clinical diagnosis and management of 

affected individuals. In 2020, a global pandemic was 

unleashed by SARS-CoV-2, the causative agent of 

COVID-19. SARS-CoV-2 belongs to the genus 

Betacoronavirus and is characterized as an enveloped, 

single-stranded RNA virus with a positive-sense 

genome [7]. The roles carried out by SARS-CoV-2 

proteins (such as ADRP, PLpro, DMV, among others) 

encompass safeguarding this pathogen, aiding in its 

attachment to host cells, obstructing the expression of 

host genes, and eluding the innate immune response—

thereby facilitating the virus’s replication and 

propagation. Over the preceding year, structural 

biologists have unveiled the pivotal configurations of 

both individual proteins and their complexes within 

SARS-CoV-2. This revelation offers an atomic-scale 

comprehension of the diverse processes unfolding in 

the viral life cycle. These structural insights hold 

significance not solely for deciphering the intricate 

mechanisms through which proteins and their 

assemblies execute distinct toggling or regulatory roles, 

but also for shedding light on the strategies employed 

by the virus to evade the immune system [8]. 
Coronaviruses exhibit a propensity for substantial 

genetic recombination and mutation rates, thereby 

leading to a wide range of ecological diversification 

[9]. In addition to affecting the respiratory and central 

nervous systems, SARS-CoV-2 also has significant 

effects on the digestive system, particularly the 

esophagus [10–12]. The infection induced by SARS-

CoV-2 requires the presence of crucial receptors, 

namely Angiotensin I-converting enzyme 2 (ACE2), 

along with type II transmembrane serine protease 2 and 

4 (TMPRSS2 and TMPRSS4). These receptors are 

expressed in different tissues or organs of tree shrews, 
with the kidney displaying the most elevated ACE2 

expression, followed by the lung and liver. Conversely, 

relatively high expression of TMPRSS2 and TMPRSS4 

is observed in the esophagus, lung, liver, intestine, and 

kidney [13]. Our hypothesis suggests that the 

expression levels of genes associated with SARS-CoV-

2 (SCRGs) may undergo a significant increase in the 

esophagus. Contemporary literature has allocated 

limited attention to examining the connection between 

SARS-CoV-2 and the potential for cancer 

development. Employing Mendelian randomization 

(MR), we undertook an investigation into the 

underlying causal relationships between the three 

distinct forms of SARS-CoV-2 exposure (namely, 

critically ill COVID-19, hospitalized COVID-19, and 

infection by the respiratory syndrome coronavirus 2, 

SARS-CoV-2) and 33 varied categories of cancers 

prevalent within the European population. The 

outcomes derived from the inverse-variance-weighted 

model have illuminated that the genetic predisposition 

towards critically ill COVID-19 exhibits suggestive 

and causal links to an elevated susceptibility to several 

forms of malignancies. Notable among these are 

esophageal cancer, HER2-positive breast cancer, 

colorectal cancer, gastric cancer, and colon cancer. 

Under the circumstances, more efficient diagnostic and 

therapeutic methods could be provided for esophageal 

cancer [14]. However, there is a lack of comprehensive 

investigations examining the correlation between 

SCRGs and the progression of esophageal cancer. In 

recent decades, the research on the development of 

esophageal squamous cell carcinoma (ESCC) has 

predominantly centered around the mutations and 

malignant transformation of squamous cells within the 

esophageal epithelium. Intriguingly, through extensive 

genomic analysis, certain mutated genes implicated in 

the regulation of the cell cycle and apoptosis, such as 

CCND1, CDKN2A, SOX2, and TP53, have been 

identified in a subgroup of ESCC patients [15]. Despite 

the thorough genomic characterization of individuals 

diagnosed with esophageal squamous cell carcinoma 

(ESCC), the translation of these discoveries into 

clinical application remains inadequate, offering 

limited advantages to patients. The existence of 

genomic and epigenomic heterogeneity, both intra- and 

inter-tumor, may partially contribute to this constraint 

[16]. Conversely, a growing body of evidence indicates 

that the interplay between mutated cells and immune 

cells within the tissue microenvironment exerts a direct 

influence on, and potentially governs, the advancement 

of cancer management [17]. Considering the systemic 

toxicity and multidrug resistance patients have during 

traditional chemotherapy, immunotherapy functions as 

a promising modality for cancer treatment, having anti-

tumor effects and increasing the OS of patients with 

various cancers [18]. Notably, immunotherapies 
directed at the tumor microenvironment, as opposed to 

the intrinsic tumor cells, have exhibited remarkable 

efficacy in combating diverse cancer types, thereby 
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presenting promising novel treatment modalities for 

esophageal squamous cell carcinoma (ESCC) [19]. The 

approval by the US Food and Drug Administration 

(FDA) of interferon-alpha2 anti-tumor cytokine marked 

the initiation of these advancements [20]. Since then, 

the scope of immunotherapeutic drugs has expanded to 

include anti-tumor cytokines, checkpoint inhibitors, 

adoptive transfer T-cell therapy, and cancer vaccines 

[21]. Furthermore, a growing array of immuno-

therapeutic agents has undergone rigorous clinical trials 

and been incorporated into the domain of clinical 

implementation. The fundamental principle of 

immunotherapy acknowledges the interconnectedness 

between tumors and their surrounding tumor micro-

environment, which includes host immune cells. It 

posits the ability to harness the immune system to 

initiate anti-tumor responses [22]. 

 

In this study, single-cell RNA sequencing (scRNA-seq) 

data and transcriptome data retrieved from publicly 

available databases were employed to discern sub-

clusters of SARS-CoV-2-related genes (SCRGs) and 

establish an ESCC risk signature based on these genes. 

The clinical significance of the SCRGs-based signature 

was evaluated, alongside an analysis of the immune 

landscape and an assessment of its immunotherapeutic 

potential. Furthermore, a novel nomogram was 

developed by integrating the risk signature with 

clinicopathological characteristics, thereby facilitating 

the clinical utilization of SCRGs in prognosticating 

ESCC. Our findings have the potential to provide novel 

insights into the pathophysiology of ESCC, enabling 

more personalized therapeutic strategies and improved 

outcomes for individuals affected by this condition. 

 

METHODS 
 

Data collection and processing 

 

The ESCC single-cell RNA sequencing (scRNA-seq) 

data was obtained from the Gene Expression Omnibus 

(GEO) database (accession number GSE196756). Two 

cohorts, namely GSE53624 and TCGA data, were 

chosen for subsequent analysis. Cells with fewer than 

250 expressed genes or genes expressed in less than 

three cells were excluded. The PercentageFeatureSet 

function from the Seurat R package was utilized to 

determine the percentage of rRNA and mitochondria, 

resulting in a final count of 12,118 cells for further 

analysis. 

 

Additionally, transcriptomic data and corresponding 

clinical data of esophageal squamous cell carcinoma 

(ESCC) were retrieved from The Cancer Genome 

Atlas (TCGA) database. Samples lacking outcome 

status or survival data were excluded, resulting in 94 

ESCC samples for external validation. The training 

cohort consisted of 119 tumor samples and 119 

normal samples from the GSE53624 dataset obtained 

from the Gene Expression Omnibus (GEO) database, 

after excluding samples without follow-up 

information. Based on relevant literature, the gene 

expression profiles of ten cancer-associated pathways 

(Cell Cycle, NRF1, MYC, NOTCH, HIPPO, PI3K, 

TP53, PI3K, WNT, and TGF-Beta) were analyzed in 

our dataset. 

 

SCRGs identification 

 

The Seurat package was employed to conduct a 

comprehensive analysis of esophageal squamous cell 

carcinoma (ESCC) single-cell RNA sequencing 

(scRNA-seq) data, aiming to evaluate the gene 

expression profiles of scRNA-seq genes (SCRGs) 

associated with ESCC. The initial data preprocessing 

involved excluding cells with gene expression below 

250 or above 6000, followed by log-normalization of 

the remaining expressed genes. To address potential 

batch effects from the four samples, the Find-

IntegrationAnchors function was utilized. 

Dimensionality reduction was achieved using a non-

linear t-distributed Stochastic Neighbor Embedding 

(tSNE) method with a resolution of 0.1 and selection of 

30 principal components. The categorization of 

individual cells into distinct subgroups was performed 

using the FindNeighbors and FindClusters functions 

with a dimensional parameter of 30 and a resolution of 

0.1. Further tSNE dimensional reduction was carried 

out using the RuntSNE function. The SCRGs were 

annotated using NLRX1 and SLC9A3R1 as marker 

genes, followed by re-clustering using the FindClusters 

and FindNeighbors functions. Marker genes for each 

SCRG cluster were identified using the FindAllMarkers 

function, comparing different clusters based on 

parameters such as minpct, logFC, and adjust p-value. 

Finally, the CopyKAT R package was utilized  

to analyze the copy number variation (CNV) 

characteristics of the SCRG clusters, enabling the 

differentiation between tumor cells and normal cells. 

 

Hub genes identification according to SCRGs 

 

The limma package was utilized to identify 

differentially expressed genes (DEGs) between normal 

and tumor tissues, applying criteria of 

|log2(FoldChange)|>1 and FDR <0.05. Subsequently, 

the correlations between SCRGs clusters and DEGs 

were evaluated to identify pivotal SCRGs with p < 

0.01 and cor >0.4. Prognosis-related genes were 
determined through univariate Cox regression analysis 

using the survival package, followed by lasso 

regression (with lambda = 0.0595) for gene count 
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reduction. The SCRG-based risk signature was 

established through multivariate Cox regression 

analysis employing the stepwise regression method. 

The risk signature was calculated using a formula 

involving multiple genes and normalized to stratify 

patients into low- and high-risk groups. The prognostic 

value of the risk signature was assessed using the 

timeROC package for ROC analysis, revealing its 

significant prognostic relevance for patients. Our 

analysis yields valuable insights into the molecular 

mechanisms underlying tumor development and 

underscores the potential of SCRGs as prognostic 

biomarkers for cancer patients. 

 

Developing a novel nomogram founded on risk 

signature 

 

After conducting univariate and multivariate Cox 

regression analyses incorporating the risk signature and 

clinicopathological characteristics, an innovative 

nomogram was constructed to prognosticate the 

outcome of ESCC. This was achieved by selecting 

variables with p-values below 0.05 in the multivariate 

Cox model. A calibration curve was generated to 

evaluate the predictive precision of the model. 

 

Immune landscape in ESCC 

 

The association between the tumor immune micro-

environment (TIME) and the risk signature was 

thoroughly examined using multiple algorithms, 

including CIBERSORT, EPIC, MCPCOUNTER, and 

TIMER. Various metrics were employed to quantify the 

heterogeneity of the tumor microenvironment, such as 

stromal scores, immune scores, and estimate scores 

(obtained by summing stromal scores and immune 

scores), utilizing the “estimate” R package. 

Additionally, the CIBERSORT algorithm was utilized 

to estimate the proportions of 22 immune cell subtypes 

within the GSE53624 cohort. Furthermore, the 

correlation between the signature genes and immune 

scores was investigated to illuminate the significant 

influence of these genes on immune-related functions. 

 

Response to immunotherapy 

 

Subsequently, transcriptomic data and relevant clinical 

data were acquired from patients enrolled in the 

IMvigor210 cohort, who were treated with anti-PD-L1 

therapy. This was done to evaluate the predictive 

capacity of our risk signature in determining the 

responsiveness to immunotherapy, specifically immune 

checkpoint blockade. Additionally, transcriptomic data 
from the GSE78220 cohort, consisting of melanoma 

patients who underwent anti-PD-1 checkpoint inhibition 

therapy, were obtained for further analysis. 

Consensus clustering and drug sensitivity analysis 

 

The heterogeneity of esophageal squamous cell 

carcinoma (ESCC) was examined by categorizing 

patients into distinct clusters based on the expression of 

single-cell RNA sequencing genes (SCRGs), utilizing 

the ‘ConsensusClusterPlus’ R package. Survival, tumor 

immune microenvironment (TIME), and immune 

checkpoints were compared between the subgroups. An 

immune landscape heatmap was generated to visualize 

the variations among ESCC patients in different 

clusters. To evaluate the clinical relevance of the risk 

model in ESCC treatment, the IC50 values of 

commonly used chemotherapeutic agents in the 

GSE53624 dataset were calculated using the 

‘pRRophetic’ R package. Violin plots were used to 

compare the IC50 values of different antitumor drugs 

between the cluster groups. These statistical models 

allow the prediction of clinical chemotherapeutic 

response solely based on baseline tumor gene 

expression data and drug sensitivity data derived from 

cell lines in the Cancer Genome Project. 

 

RNA isolation and quantitative RT-PCR (qRT-PCR) 

assay 

 

Total RNA from esophageal squamous cell carcinoma 

(ESCC) cells or tissues was extracted using TRIzol 

reagent (Thermo Fisher Scientific, Waltham, MA, 

USA). Complementary DNA (cDNA) synthesis was 

conducted according to the manufacturer’s instructions, 

employing the RevertAid™ First Strand cDNA 

Synthesis Kit (Thermo Fisher Scientific). Subsequently, 

quantitative reverse transcription PCR (qRT-PCR) was 

carried out using a SYBR Green PCR kit (Takara Bio, 

Otsu, Japan) on a StepOne Real-Time PCR system 

(Thermo Fisher Scientific). The 2−ΔΔCT method was 

utilized to quantify the relative gene expression levels. 

 

Statistical analysis 

 

All statistical analyses were performed using R software 

(version 4.1.0). The Wilcoxon test was employed to 

compare groups, while correlation matrices were 

evaluated using either Spearman or Pearson correlation. 

Survival differences were assessed using the Log-rank 

test and visualized with Kaplan-Meier curves, 

considering a p-value < 0.05 as statistically significant. 

 

Data availability statement  
 

The data that support the findings of this study  

are available from the corresponding author 
upon reasonable request. We have uploaded all the raw 

data, code and images to the Jianguo Yun. This 

data is easily access at the following link: 
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https://www.jianguoyun.com/p/DbCR0TIQjdemCxiu4II

FIAA. 
 

RESULTS 
 

Screening the SCRGs based on scRNA-seq samples 
 

The study’s flowchart is presented in Figure 1. An 

analysis of scRNA-seq data yielded a total of 18,024 

cells. Further details on data preprocessing can be found 

in Supplementary Figure 1. After log-normalization and 

dimensionality reduction, 32 distinct subpopulations 

were identified, as depicted in Figure 2A. Additionally, 

based on the expression of NLRX1 and SLC9A3R1 as 

marker genes, eight distinct SCRG populations were 

delineated and visualized in Figure 2B. The 

distributional differences between tumor and normal 

cells within these eight SCRG clusters are illustrated in

 

 
 

Figure 1. The flow chart of this study. 

https://www.jianguoyun.com/p/DbCR0TIQjdemCxiu4IIFIAA
https://www.jianguoyun.com/p/DbCR0TIQjdemCxiu4IIFIAA
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Figure 2C. The relative proportions of these eight 

clusters in each cohort were calculated and presented in 

histograms shown in Figure 2D. Moreover, the 

expression levels of the top five DEGs were visualized 

using bubble diagrams (Figure 2E) and volcano plots 

(Figure 2F). 

 

The cancer-related pathways in SCRGs  

 

The relationship between tumor progression and SCRGs 

clusters was investigated by examining the 

characteristics of ten pathways associated with tumor 

development in eight distinct clusters. Gene Set 

Variation Analysis (GSVA) scores were utilized to 

assess the variations in these pathways among the 

SCRGs clusters, as shown in Figure 3A. Notably, the 

SCRGs_3 cluster exhibited a significant difference in 

the proportion of malignant cells compared to the other 

clusters. Moreover, the SCRGs_2, SCRGs_5, and 

SCRGs_7 clusters displayed considerably higher 

proportions of malignant cells than the other clusters. In 

contrast, the SCRGs_1 and SCRGs_6 clusters 

demonstrated the highest proportion of non-malignant 

cells (Figure 3B). Additionally, a comparison of GSVA 

scores for the ten tumor-associated pathways was 

conducted to assess differences between malignant and 

non-malignant cells within each SCRGs cluster, 

revealing only minor disparities (Figure 3C–3J). 

 

Associations between SCRGs clusters and prognosis 

 

To evaluate the association between SCRGs clusters 

and prognosis, the ssGSEA score of the top five DEGs 

in each SCRGs cluster was calculated for individual 

samples in the GSE53624 cohort. The results revealed 

that tumor samples in SCRGs_2, SCRGs_4, and 

SCRGs_5 clusters exhibited significantly higher scores 

compared to normal samples. Conversely, the remaining 

 

 
 

Figure 2. The identification of SCRGs clusters according to scRNA data of ESCC patients. (A) tSNE plots of distribution of 32 
clusters and SARS-CoV-2 marker genes expression. (B) tSNE plots of distributions of eight fibroblasts after clustering. (C) tSNE distribution of 
malignant and non-malignant cells predicted by copycat package. (D) Subgroups in cancer and adjacent tissue and proportion as well as cell 
number calculation. (E) Bubble diagram of the top5 marker gene expression of subgroups. (F) Volcano plot of the top5 marker gene 
expression of subgroups. 



www.aging-us.com 10507 AGING 

SCRGs clusters demonstrated the opposite trend (Figure 

4A–4H). Subsequently, utilizing the optimal cut-off 

value, the survminer R package was utilized to 

categorize ESCC samples from the GSE53624 dataset 

into high and low SCRGs score groups. Notably, 

significant differences were observed between the high- 

and low-SCRGs score groups in SCRGs_3, SCRGs_4, 

and SCRGs_5 clusters, while no correlation with ESCC 

prognosis was observed in other clusters (Figure 4I–4P). 

These findings suggest a potential significant role of 

SCRGs_3, SCRGs_4, and SCRGs_5 in the progression 

of ESCC. 

 

Hub genes identification correlated with SCRGs 

 

A prognostic signature was established by comparing 

tumor and normal samples, resulting in the 

identification of 17,080 DEGs, including 7,556 down-

regulated and 9,524 up-regulated genes (Figure 5A). 

Out of these, 770 genes showed significant associations 

with prognosis-related SCRGs clusters. Univariate Cox 

regression analysis was conducted to evaluate the 

prognostic value of each gene, leading to the 

identification of 9 genes associated with protective 

factors and 7 genes correlated with risk values. 

Subsequently, Lasso Cox regression analysis was 

performed to reduce the number of genes (Figure 5B). 

Using the stepwise regression method, a risk signature 

comprising eight genes was constructed (Figure 5C, 

5D): KCNMA1, F2RL2, CHST15, B3GNT8, BARHL2, 

EXPH5, SLC4A9, and MAGEC3. The risk signature 

was formulated as follows: “−0.073EXPH5 + 

0.137F2RL2 + 0.154KCNMA1 + 0.025B3GNT8 + 

−0.024BARHL2 + 0.094CHST15 + −0.314MAGEC3 + 

−0.186SLC4A9”. The risk score for each sample was 

calculated using z-mean normalization, and patients 

were categorized into high and low-risk groups. Kaplan-

Meier survival analysis demonstrated that patients in the 

 

 
 

Figure 3. The characteristics of tumor-associated pathways in SCRGs clusters. (A) Heatmap of 10 tumor-associated pathways 
enriched in SCRGs cells. (B) Comparison between each cluster based on proportions of malignant and non-malignant cells. (C–J) 
Comparison of each pathway between malignant and non-malignant cells based on GSVA score in SCRGs clusters. (Wilcox. Test, *P < 0.05; 
**P < 0.01; ***P < 0.001; Abbreviation: ns: not significant). 
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high-risk clusters had poorer prognosis compared to 

those in the low-risk clusters in both the GSE53624 

(Figure 5E) and TCGA cohorts (Figure 5F). Moreover, 

the model exhibited excellent predictive capability, as 

indicated by commendable AUC values in both cohorts. 

The distribution of patient survival outcomes, risk 

scores, and the expression of hub genes were illustrated 

in Supplementary Figure 2 for both GEO and TCGA 

cohorts, emphasizing the significantly unfavorable 

status of patients in the high-risk group. (A brief 

description of the sample size and characteristics used 

in the study was elucidated in file ‘Table 1’). 

 

Recognition of independent risk factors and 

nomogram development 

 

The integration of clinicopathological characteristics 

and risk score through univariate and multivariate Cox 

regression analyses has enhanced the precision of the 

prognostic model. The risk signature was identified as a 

significant independent prognosticator for ESCC, with a 

p-value below 0.001, as illustrated in Figure 6A, 6B. 

Furthermore, a novel nomogram incorporating T-stage, 

N-stage, and the risk score has been formulated, as 

depicted in Figure 6C. Through calibration and decision 

plot analysis, this nomogram exhibits robust predictive 

potential for actual survival outcomes, as indicated in 

Figure 6D, 6E. 

 

Pathway enrichment analysis 

 

Gene Set Enrichment Analysis was conducted utilizing 

the eight genes encompassed in the risk signature, 

revealing a notable association with nine pathways 

(refer to Supplementary Figure 3A, 3B). R2RL2, 

KCNMA1, and CHST15 exhibited positive correlations 

with most pathways, except for neuroactive ligand 

receptor interaction and olfactory transduction, which 

have been implicated in suppressing the migration and 

progression of ESCC. The up-regulated genes 

predominantly enriched systemic lupus erythematosus 

and cytokine-cytokine receptor interaction, as depicted 

 

 
 

Figure 4. GSVA analysis based on SCRGs clusters. (A–H) Comparison of ssGSVA score based on each cluster between normal samples 

and tumor ones. (I–P) K-M curves of the high and low SCRGs score groups in the SCRGs clusters. (**P < 0.01; ***P < 0.001; ****P < 0.0001). 
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in Supplementary Figure 3C. Conversely, the down-

regulated genes demonstrated significant correlations 

with linoleic acid metabolism and olfactory trans-

duction. The findings of the GO analysis are presented 

in Supplementary Figure 3D–3F. 

 

Immune infiltrations landscape and correlation 

between risk genes and immunity 

 

Figure 7A showcased an elevation in the infiltration of 

immune and stromal cells among patients belonging to 

the high-risk group in comparison to the low-risk group. 

To estimate the proportions of immune cells in both 

groups, the CIBERSORT algorithm was employed. The 

outcomes revealed higher proportions of Macrophages 

(M1), Macrophages (M2), and Eosinophils in the high-

risk group, while naive B cells and monocytes were 

more enriched in the low-risk group (Figure 7B). Figure 

7C presented the distinctions in immune-related 

functions between the high- and low-risk groups. The 

correlation between risk genes and immunity was 

explored, unveiling a negative association between 

protective genes (EXPH5, BARHL2, MAGEC3, and 

SLC4A9) and several immune infiltration cells, while 

risk genes (F2RL2, KCNMA1, B3GNT8, and CHST15) 

exhibited a positive association with these cells (Figure 

7D, 7E). Moreover, the risk genes, including F2RL2, 

KCNMA1, and CHST15, displayed positive 

correlations with the ImmuneScore and StromalScore 

(Figure 7G). Lastly, Figure 7F demonstrated the 

reciprocal communication between the 75 immune-

related genes and the eight model genes. 

 

Immunotherapy response prediction of risk 

signature 

 

The assessment of the prognostic value of the immune-

checkpoint therapy signature was carried out in the 

GSE78220 and IMvigor210 cohorts, considering the 

recent advancements in T-cell immunotherapy. In the 

 

 
 

Figure 5. A novel risk signature constructed based on several SCRGs. (A) Volcano plot of differentially expressed genes between 

tumor and normal samples in GSE53624 cohort. Volcano plot of prognosis-correlated genes obtained by univariate Cox regression analysis. 
(B) Each independent variable’s trajectory and distributions for the lambda. (C) The multivariate Cox coefficients for each gene in the risk 
signature. (D) Circle plot showing each gene in the risk signature. (E) K-M and ROC curves of the risk signature in GSE53624 cohort. (F) K-M 
and ROC curves of the risk signature in TCGA cohort. 
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Table 1. Characteristics of different cohorts of ESCC patients. 

Variables Group Training set (n = 238) Testing set (n = 95) 

Age 
≤65 176 – 

>65 62 – 

Gender 
Female 42 15 

Male 196 80 

Vital status 
Alive 92 64 

Dead 146 31 

Survival time  1111 459 

Clinical Stage 

I 12 7 

II 94 56 

III 132 26 

IV – 4 

Unknow – 2 

T stage 

T1 16 8 

T2 40 32 

T3 124 49 

T4 58 4 

Tx – 2 

N stage 

N0 108 55 

N1 84 28 

N2 26 6 

N3 20 3 

Nx – 3 

M stage 

M0 – 83 

M1 – 4 

Mx – 8 

 

IMvigor210 cohort, which included 348 patients 

exhibiting varying degrees of responsiveness to anti-

PD-L1 receptor blockers (PD, SD, PR, and CR), Figure 

8A–8C illustrated that patients in the high-risk group 

displayed a higher proportion of PD/SD and 

experienced a poorer prognosis compared to those in the 

low-risk group. Furthermore, SD/PD patients exhibited 

higher risk scores than CR/PR patients. Importantly, 

significant differences in survival were observed only 

among different risk subgroups in patients with Stage 

I+II disease, rather than those with Stage III+IV disease 

(Figure 8D, 8E). The findings were validated in the 

GSE78220 cohort, yielding consistent results with those 

of the IMvigor210 cohort; patients with PR or CR had 

lower risk scores and were less likely to be classified 

into the high-risk group (Figure 8F–8H). 

 

Consensus clustering and immune infiltrations 

analysis 

 
Unsupervised consensus clustering was conducted to 

explore the molecular subtypes based on the expression 

of SCRGs, which were integrated into the risk signature. 

By using an optimal clustering stability k-value of 2, the 

GSE53624 cohort was partitioned into two distinct 

clusters. The distribution of these clusters is visually 

presented in the ridge plot (Figure 9A). Cluster 1 (C1) 

exclusively comprised individuals in the low-risk group, 

while cluster 2 (C2) consisted of both high-risk and low-

risk patients, as depicted in the Sankey diagram (Figure 

9C). Subsequent survival analysis revealed that patients 

in the C1 group demonstrated a more favorable outcome 

compared to those in the C2 group (Figure 9B). TME 

scores were calculated for each cluster, indicating that 

the C2 cluster exhibited higher immune, stromal, and 

estimate scores, along with lower tumor purity, in 

contrast to the C1 cluster (Figure 9D–9G). Examination 

of immune checkpoint inhibitors revealed significant 

associations between the expression of most immune 

checkpoints and the C2 cluster, with the exception of 

CD276, TNFRSF25, and PDCD1 (Figure 9H). 

 

Drugs sensitivity 

 

Upon conducting an assessment of the effectiveness of 

various chemotherapeutic agents across distinct clusters, 
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it has come to our attention that patients categorized 

under cluster 2 (C2) manifested heightened IC50 values 

in response to chemotherapeutic agents including 

Bosutinib, Gefitinib, and AICAR (Figure 10A, 10B, 

10F), whereas individuals belonging to cluster 1 (C1) 

exhibited more favorable response rates to Gemcitabine, 

Pazopanib, among others (Figure 10C–10E, 10G, 10H). 

 

The experiment of genes involved in the risk 

signature 

 

Four genes implicated in the risk signature of ESCC 

were selected for additional validation in ESCC 

patients. Figure 11 portrays the expression patterns of 

these genes, wherein F2RL2 and CHST15 displayed 

increased expression levels in tumors, while SLC4A9 

and EXPH5 demonstrated significantly decreased 

expression levels in tumors. These observed distinctions 

align with our bioinformatic discoveries, suggesting the 

potential of these genes as novel biomarkers for early 

diagnosis of ESCC. 

 

DISCUSSION 
 

Esophageal squamous cell carcinoma, characterized by 

its high malignancy, represents a substantial menace to 

human health as a result of limited efficacious 

therapeutic interventions [23]. Until September 14, 

2020, the worldwide ramifications of the SARS-CoV-2 

virus, known for inducing severe acute respiratory 

syndrome, have impacted a population surpassing 29 

million, resulting in more than 900,000 fatalities. 

Notably, significant focus has been placed on the 

human cell receptor ACE2 due to its involvement in 

SARS-CoV-2 infection. Moreover, several studies have 

explored the association between ACE2 and cancer 

[24]. Furthermore, recent inquiries have revealed an 

association between the upregulation of ACE2 and 

 

 
 

Figure 6. Development of a novel nomogram integrating the risk signature and several clinicopathologic features. (A) Results 

of univariate Cox regression analysis based on risk score and clinicopathologic features. (B) Results of multivariate Cox regression analysis 
based on risk score and clinicopathologic features. (C) Construction of the nomogram integrating the T, N-stage and risk score. (D) Decision 
curve for nomogram. (E) Calibration curves for 1, 2, and 3 years of nomogram. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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improved survival outcomes in various types of cancer, 

including esophageal carcinoma. Moreover, apart from 

ACE2, the transmembrane protein AXL has been 

recognized for its involvement in several vital 

biological processes, including cell growth, migration, 

aggregation, metastasis, and adhesion. Importantly, this 

protein holds significant relevance in both the 

pathogenesis of COVID-19 and the advancement of 

cancer [25]. Moreover, recent studies have unveiled a 

correlation between elevated ACE2 expression and 

enhanced overall survival in diverse malignancies, 

including esophageal carcinoma. Furthermore, apart 

from ACE2, the transmembrane protein AXL has been 

implicated in various essential biological phenomena, 

including the facilitation of cellular growth, migration, 

aggregation, metastasis, and adhesion. It is worth noting 

that this protein plays a crucial role in both the 

pathogenesis of COVID-19 and the advancement of 

cancer [26]. Besides, one research has revealed that 

Diminished AGTR1 expression was frequently 

observed within tumors in contrast to their normal tissue 

counterparts, whereas AGTR2 and MAS1 exhibited 

notably subdued expression levels in both tissues and 

cell lines. The distinctive expression profiles of ACE 

within ovarian serous cystadenocarcinoma (OV) and 

kidney renal clear cell carcinoma (KIRC) demonstrated 

a discernible association with ubiquitin modification, 

facilitated by E3 ligases. Genomic alterations within the 

RAS gene family were comparatively rare across the 

TCGA pan-cancer program, with ACE displaying the 

highest frequency of alterations among its counterparts. 

The diminished AGTR1 expression might be attributed 

to promoter hypermethylation [27]. Hence, the 

association between SARS-CoV-2 and the intricate 

 

 
 

Figure 7. The immune infiltrations analysis. (A) Heatmap of results on immune cells of tumor microenvironment (TME) in ESCC with 

multialgorithm, including existing data from platform TIMER and MCP-counter. TME-related scores were exhibited in the top bar. (B) 
Comparison of proportions of 22 immune-related cells between high-and-low-risk groups. (C) Comparison of proportions of immune-
related functions between high-and-low-risk groups. (D) Correlations between eight hub genes and 22 immune-related cells. (E) 
Correlations between the eight genes and immune score. (F) The correlation analysis between eight hub genes and 75 immune-associated 
genes. (G) Correlations between the eight genes and immune score, stromal score, estimate score. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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mechanisms underlying the emergence, advancement, 

and immunological milieu of esophageal cancer has 

sparked our keenness to engage in pertinent 

investigations. 

 

Our investigation aims to explore the potential 

correlations between SARS-CoV-2 and esophageal 

squamous cell carcinoma by acquiring two genes that 

display specific expression in esophageal tissue and 

have associations with SARS-CoV-2, as sourced from 

the Human Protein Atlas. In order to identify an 

extensive repertoire of genes related to SARS-CoV-2, 

single-cell RNA-sequencing analysis was employed. 

Subsequently, a meticulous selection process involving 

differential analysis, univariate Cox regression, lasso 

regression, and multivariate Cox regression led to the 

identification of a set of eight genes (KCNMA1, 

F2RL2, CHST15, B3GNT8, BARHL2, EXPH5, 

SLC4A9, and MAGEC3). These genes were employed 

to construct a novel risk signature, serving as the 

foundation for our investigation. 

Evidence suggests that KCNMA1-AS1 is significantly 

upregulated in epithelial ovarian cancer (EOC) tissues 

when compared to normal tissues. This upregulation 

contributes to the inhibition of apoptosis in EOC cells 

and acts as a prognostic indicator for adverse outcomes 

in patients with EOC [28], suggesting the diagnosis and 

prognosis prediction value that KCNMA1 has on EOC. 

Besides, the upregulation of KCNMA1 has been 

observed to promote the reversal effect of verapamil  

on the chemoresistance to cisplatin in esophageal 

squamous cell carcinoma cells [29]. The proliferative 

and metastatic capacities of cells in clear cell renal cell 

carcinoma are facilitated by CHST15 through the 

signaling pathway involving miR-125a-5p/EIF4EBP1, 

indicating its potential as a promising prognostic 

biomarker [30]. Like KCNMA1 and CHST15, F2RL2 

and B3GNT8 have also been demonstrated to stimulate 

the onset and advancement of multiple malignancies 

[31–33]. In contrast, SLC4A9 has been identified to 

cause acidification in neoplastic cells and inhibit tumor 

progression by blocking the hypoxia-induced transport 

 

 
 

Figure 8. Prediction of responsiveness to immunotherapy using our signature based on public database. (A) Prognostic 

differences between risk subgroups in the IMvigor210 cohort. (B) Differences among immunotherapy responses based on risk scores in the 
IMvigor210 cohort. (C) Distribution of immunotherapy responses based on risk subgroups in the IMvigor210 cohort. (D) Prognostic 
differences between risk subgroups based on early stage (stage I–II) in the IMvigor210 cohort. (E) Prognostic differences between risk 
subgroups based on advanced patients (stage III–IV) in the IMvigor210 cohort. (F) Prognostic differences between risk subgroups in the 
GSE78220 cohort. (G) Differences among immunotherapy responses based on risk scores in the GSE78220 cohort. (H) Distribution of 
immunotherapy responses based on risk subgroups in the GSE78220 cohort. (*P < 0.05). 
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of bicarbonate, thereby exhibiting a protective role [34], 

which aligns with our bioinformatic discoveries. 

Subsequently, the GSEA analysis was employed, 

revealing a notable enrichment of defensive genes 

implicated in olfactory transduction, whereas genes 

linked to risk exhibited significant associations with 

diverse pathways, including vascular smooth muscle 

contraction and pathways involved in the development 

of cancer. 

 

Moreover, the inquiry has yielded substantiating 

evidence regarding the prognostic importance of the 

innovative signature in individuals afflicted with 

esophageal squamous cell carcinoma (ESCC), as 

confirmed by external validation utilizing the TCGA 

ESCC cohort. Upon stratifying patients into high- and 

low-risk categories based on the median risk score, 

subsequent analysis has unveiled significantly superior 

survival outcomes in the low-risk group compared to 

the high-risk group. Both univariate and multivariate 

Cox regression analyses have established the risk score 

as an autonomous prognostic determinant for overall 

survival. Furthermore, a nomogram has been formulated 

employing the risk signature, exhibiting a remarkable 

level of concordance between predicted and observed 

outcomes for the overall survival of ESCC patients. 

These findings affirm the reliability of the risk signature 

as a precise prognostic tool for ESCC patients. 

 

The remarkable progress in the field of cancer 

immunotherapy has provided a new outlook on cancer 

management, relying on a deep understanding of the 

immune milieu existing within the tumor micro-

environment [35]. Lately, immunotherapy has 

effectively found application within clinical settings as 

an innovative modality for addressing solid tumors, 

instilling renewed optimism among individuals afflicted 

by cancer. Various immunotherapeutic approaches, 

 

 
 

Figure 9. Consensus clustering based on nine prognostic SCRGs expression. (A) PCA depicted the distribution for clusters. 

(B) Survival analysis based on the two clusters. (C) The Sankey diagram of the connection between clusters and high-and low-risk group. 
(D) ESTIMATEScore difference between two clusters. (E) SromalScore difference between two clusters. (F) ImmuneScore difference 
between two clusters. (G) TumorPurity difference between two clusters. (H) Expression difference of immune checkpoints between two 
clusters. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 10. Prediction of chemotherapy drug sensitivity in ESCC patients based on different clusters. Chemotherapy drug 
sensitivity of AICAR (A), Bosutinib (B), Gemcitabine (C), Pazopanib (D), Axitinib (E), Gefitinib (F), JNK.Inhibitor.VIII (G), Temsirolimus (H). 

 

 
 

Figure 11. The experiment of ESCC risk-related genes. The expression of F2RL2 (A), CHST15 (B), EXPH5 (C), and SLC4A9 (D) in normal 

esophageal tissue and ESCC tissue of patients. t-test was used to compare the expression of genes between normal and tumor. (*p < 0.05, 
**p < 0.01). 
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exemplified by immune checkpoint inhibitors (ICIs), 

chimeric antigen receptor T-cell therapy, and tumor 

vaccines, have attained noteworthy milestones in the 

realm of esophageal cancer (EC) treatment. Neverthe-

less, the overall response rate (ORR) of immunotherapy 

in EC patients registers at below 30%, and a substantial 

proportion of patients who undergo initial immuno-

therapeutic intervention are predisposed to the eventual 

emergence of acquired resistance (AR) over the course 

of time. Immunosuppressive influences substantially 

undermine both the endurance and efficacy of immuno-

therapeutic modalities [36]. The significance of the 

biomolecule Dipeptidyl peptidase 4/CD26 (DPP4/CD26) 

has been proposed in elucidating susceptibility to 

neoplastic growth and coronaviruses, as well as its 

participation in the immune response [37], implying that 

SCRGs may exert a substantial impact on cancer 

immunotherapy. The neoplastic micro-environment is a 

complex and intricate ecosystem consisting of various 

cellular lineages that significantly influence cancer 

pathophysiology and the effectiveness of medical 

interventions [38]. Notwithstanding the utilization of 

immunomodulatory interventions, a considerable pro-

portion of patients afflicted with esophageal squamous 

cell carcinoma (ESCC) continue to encounter an 

adverse clinical prognosis, possibly attributed to 

mechanisms of immune evasion or immune tolerance 

[39], we conducted a comprehensive analysis of the 

immune landscape of ESCC, based on the risk 

signature associated with SCRGs. Our investigation 

has demonstrated that the subgroup of patients 

classified as high-risk displays an elevated degree of 

immune cell infiltration. Nevertheless, our analysis has 

identified that the high-risk cohort is predominantly 

distinguished by the predominance of macrophage (M2) 

immune infiltrating cells, which have been validated to 

elicit immune evasion within the realm of cancer 

immuno-therapy, thereby resulting in an unfavorable 

response to immunotherapeutic inter-ventions [40]. 

Therefore, our hypothesis posits that patients categorized 

in the low-risk classification may encounter more 

advantageous outcomes with regards to immunotherapy. 

Subsequently, to validate our pro-position, an evaluation 

of the IMvigor210 and GSE78220 cohorts was 

conducted. Our analyses unveiled that the individuals 

assigned to the low-risk sub-group demonstrated a 

heightened occurrence of partial and complete response 

subsequent to immuno-therapy via the administration of 

anti-PD-L1 receptor blockade. These findings align with 

our prior results, thus indicating that individuals within 

the low-risk group appear to derive greater advantages 

from immunotherapy in comparison to those within the 

high-risk group. 
 

The acknowledged concept of the considerable 

heterogeneity of esophageal squamous cell carcinoma 

(ESCC) is widely recognized. A comprehensive 

understanding of ESCC heterogeneity has the potential 

to bring about substantial changes in the management of 

this cancer, consequently leading to improved patient 

outcomes. To address this, consensus clustering was 

employed to analyze the GSE53624 cohort using a risk 

signature. Cluster 2, primarily composed of the high-

risk group displaying a poorer prognosis, exhibited 

elevated immune score, stromal score, and estimate 

score, along with a noteworthy correlation with various 

immune checkpoints including BTLA, CD48, CD27, 

CTLA4, CD28, IDO2, among others. This suggests that 

patients within Cluster 2 may experience greater 

advantages from immunotherapy utilizing immune 

checkpoint inhibitors. Furthermore, it also signifies that 

this risk signature holds the potential to anticipate the 

immunotherapeutic response in a manner that extends 

beyond the constraints of anti-PD-1 or anti-PD-L1 

treatments. Lastly, F2RL2 and CHST15 demonstrated 

significant overexpression in tumors, while SLC4A9 

and EXPH5 exhibited significant downregulation in 

tumors, thereby confirming the involvement of several 

SCRGs indicated in the risk signature. 
 

Despite the valuable insights gleaned from our study, 

there exist certain limitations that warrant careful 

consideration. Firstly, it is imperative to acknowledge 

that the development of our risk signature relied on 

retrospective data derived from publicly accessible 

databases. Thus, to mitigate potential biases, the 

inclusion of additional prospective and multicenter 

cohorts of esophageal squamous cell carcinoma (ESCC) 

becomes crucial. Secondly, it is vital to recognize that 

our risk signature specifically pertains to the prediction 

of response to anti-PD-L1 immunotherapy. Con-

sequently, further investigations are warranted to 

evaluate its efficacy in predicting response to other 

targeted therapies in future applications. Lastly, to 

validate the functional significance of the genes 

implicated in the risk signature, in vitro and in vivo 

experiments are indispensable. 
 

CONCLUSION 
 

In this study, we undertook a comprehensive 

investigation into the small non-coding RNA genes 

(SCRGs) in esophageal squamous cell carcinoma 

(ESCC). Through our analysis, we successfully 

identified eight distinct clusters of SCRGs. Notably, 

three of these clusters exhibited significant associations 

with the prognosis of ESCC. Utilizing these findings, 

we developed a prognostic risk signature comprising 

eight genes derived from the SCRGs. Furthermore, we 

created a novel nomogram that integrated the risk 

signature with clinicopathological characteristics. 

Impressively, this nomogram demonstrated remarkable 
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performance in prognosticating clinical outcomes for 

ESCC patients. Additionally, we established a 

correlation between the risk signature and the immune 

landscape, suggesting its potential as a predictive tool 

for assessing the responsiveness of ESCC patients  

to immunotherapy targeting PD-L1 blockade. By 

amalgamating SCRGs with Esophageal Squamous Cell 

Carcinoma (ESCC), our study furnishes a fresh 

perspective on ESCC. Through the formulation of a risk 

signature, the approach to addressing this exceptionally 

virulent neoplasm attains a heightened level of 

individualization and precision. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The details of re-process of scRNA-seq data of ESCC. (A–C) The relationship between the amount of 

mRNA/UMI and mitochondrial genes, the relationship between the amount of mRNA and UMI. (D) tSNE distribution of different samples. 
(E) tSNE distribution of malignant and non-malignant samples. 
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Supplementary Figure 2. Correlations between risk score and prognosis of ESCC patients. (A) Patient risk score distribution, 

scatter diagram of patient survival status, and expression pattern of prognostic genes in training cohort (GSE53624). (B) Patient risk score 
distribution, scatter diagram of patient survival status, and expression pattern of prognostic genes in test cohort (TCGA). 
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Supplementary Figure 3. Gene Set Enrichment Analysis (GSEA). (A) Heatmap exhibiting enrichment score for key pathways based 

on the hub genes. (B) Gene-pathway correlation heatmap. (C) Gene Set Enrichment Analysis of up-regulated and down-regulated genes (D) 
GO-BP analysis (E) GO-CC analysis (F) GO-MF analysis. 

 

 


