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INTRODUCTION 
 

Esophageal cancer (ESCA) is a common and fatal 

malignancy that affects people worldwide [1]. The main 

histologic subtype of ESCA is esophageal squamous 

cell carcinoma (ESCC) [2]. Unfortunately, the lack of 

early clinical signs and symptoms of Delayed diagnosis 

of ESCC leads to untreatable 75% of patients [3].  

In addition, current clinical assessment metrics rely 

primarily on TNM staging [4]. Inaccurate prognostic 

prediction of ESCC patients has been reported. Patients 

with early ESCC can be treated by surgery; however, 

most ESCC patients are diagnosed in advanced stages, 

and there are few drug options for patients with 

advanced ESCC, with chemotherapeutic agents that  

are more cytotoxic to patients and have worse side 

effects. Recently, there have been breakthroughs in the 

treatment of ESCC patients with Immune Checkpoint 
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ABSTRACT 
 

Background: Precisely forecasting the prognosis of esophageal squamous cell carcinoma (ESCC) patients is a 
formidable challenge. Cuproptosis has been implicated in ESCC pathogenesis; however, the prognostic value of 
cuproptosis-associated long noncoding RNAs (CuRLs) in ESCC is unclear. 
Methods: Transcriptomic and clinical data related to ESCC were sourced from The Cancer Genome Atlas (TCGA). 
Using coexpression and Cox regression analysis to identify prognostically significant CuRLs, a prognostic 
signature was created. Nomogram models were established by incorporating the risk score and clinical 
characteristics. Tumor Immune Dysfunction and Rejection (TIDE) scores were derived by conducting an immune 
landscape analysis and evaluating the tumor mutational burden (TMB). Drug sensitivity analysis was performed 
to explore the underlying molecular mechanisms and guide clinical dosing. 
Results: Our risk score based on 5 CuRLs accurately predicted poorer prognosis in high-risk ESCC patients across 
almost all subgroups. The nomogram that included the risk score provided more precise prognostic predictions. 
Immune pathways, such as the B-cell receptor signaling pathway, were enriched in the datasets from high-risk 
patients. High TMB in high-risk patients indicated a relatively poor prognosis. High-risk patients with lower TIDE 
scores were found to benefit more from immunotherapy. High-risk patients exhibited greater responsiveness to 
Nilotinib, BI-2536, P22077, Zoledronate, and Fulvestrant, as revealed by drug sensitivity analysis. Real-time PCR 
validation demonstrated significant differential expression of four CuRLs between ESCC and normal cell lines. 
Conclusions: The above risk score and nomogram can accurately predict prognosis in ESCC patients and provide 
guidance for chemotherapy and immunotherapy. 

mailto:zhenghy9240@smmu.edu.cn
mailto:4203119067@email.ncu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 10474 AGING 

Inhibitors (ICIs) targeting programmed cell death 

protein 1 (PD1), programmed cell death 1 ligand 1 

(PDL1), or cytotoxic T lymphocyte antigen 4 (anti-

CTLA4) [5, 6]. However, only a small percentage of 

ESCC patients benefit from immunotherapy, while 

others develop innate resistance. Therefore, there is an 

urgent need for biomarkers that can help predict 

prognosis and guide therapy in ESCC patients at this 

stage. 

 

Numerous studies have investigated various forms of 

regulated cell death that shape the biological and 

therapeutic response to ESCC, including ferroptosis 

and macrophages. Excitingly, a recent study by 

Tsvetkov and colleagues published in the journal 

Science confirmed that copper-induced regulated  

cell death, also known as cuproptosis, is a newly 

discovered form of regulated cell death that is distinct 

from apoptosis, sepsis, and iron death [7]. Cuproptosis 

is intricately linked to the mitochondria, and the 

underlying mechanism entails the direct interaction  

of copper with lipidized constituents in the tricarbo-

xylic acid cycle (Figure 1) [8]. As a result of this 

interaction, fatty acylated protein aggregation occurs, 

along with iron-sulfur cluster protein loss. This cause 

stress and protein toxicity, which eventually results in 

cell death. 

 

Prognostic models of cuproptosis-related long noncoding 

RNAs (CuRLs) for head and neck squamous cell 

carcinoma and gastric cancer have already been 

established [9, 10]. However, many CuRLs remain 

underexplored. Therefore, we aimed to analyze the 

immunological association of CuRLs with ESCC and 

construct a prognostic model using the expression of 

lncRNAs from ESCC patients in the TCGA database.  

We examined the association between the prognostic 

models developed and the immune infiltration of tumors, 

response to immunotherapy, and susceptibility to targeted 

medications. The results of this study will facilitate 

prognostication and immunotherapeutic approaches for 

ESCC, as well as personalized patient management. 

 

MATERIALS AND METHODS 
 

Data extraction and collation and CuRL screening 
 

The transcriptome data of patients with esophageal 

cancer were obtained from the TCGA-GDC web- 

site, followed by annotation of the ESCC dataset. 

 

 
 

Figure 1. Schematic illustration indicates the mechanism of cuproptosis induction and research design. 
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R language was used to preprocess the commercial 

data to acquire clinically informative information on 

the pathology of the clinical specimens. Simultaneously, 

protein-coding genes and lncRNAs were converted 

using R language, and lncRNAs were extracted from 

transcriptome analysis set. After a series of exclusions, 

a cohort of 94 ESCC patients was analyzed for follow-

up purposes. After merging the lncRNAs with the 

clinical information, the patients were divided 1 to 1 

between a test (n = 47) group and a training (n = 47) 

group. The GSE53625 cohort (containing 179 ESCC 

patients) was downloaded from the Gene Expression 

Omnibus (GEO) for external validation of the predictive 

power of the prognostic model. 

 
Identification of CuRLs 

 
The expression of 25 cuproptosis-related genes 

(ATOX1, ATP7A, ATP7B, CCS, COX7B, CP, DLAT, 

DLD, DLST, FDX1, GCSH, LIAS, LIPT1, LIPT2, 

MITD1, NDUFA1, NDUFA2, NDUFB1, NDUFB2, 

PDHX, PIH1D2, SLC22A5, SLC23A2, SLC31A1, 

SLC6A3) was obtained by previous studies. To identify 

CuRLs clearly associated with ESCC (|Pearson R| > 

0.4, p < 0.001), Pearson-related analysis was performed 

[11], CuRLs were screened for prognosis-related 

lncRNAs (p < 0.05) using one-way Cox regression 

analysis [12], and a forest plot was drawn. 

 
Prognostic risk score 

 
The LASSO Cox regression algorithm was used to 

calculate the lncRNAs with the best prognostic value, 

which were used to create a risk score [13]. In the  

next step, we performed multivariate Cox regression 

calculations with the obtained optimal lncRNAs to 

model the associated risk score of prognosis, and the 

following equation for the ESCC case risk score was 

obtained: risk score = (AC021321.1 × 

−2.51860599311819) + (LINC01775 × 

−0.850960975441784) + (LINC00601 × 

0.671071886012604) + (EWSAT1 × 

0.616117492510334) + (AC138696.2 × 

−0.807041898484958). According to the median risk 

score obtained from the prognostic signature, the 

patients were divided into two groups: high risk  

and low risk. Then, Kaplan-Meier (KM) curves were 

generated separately for the training and test groups to 

determine whether there was a difference in overall 

survival [14]. To determine the degree of correlation 

between the model and patient clinical characteristics, 

we utilized two highly effective analytical tools: 
receiver operating characteristic (ROC) curves and area 

under the curve (AUC) calculations [15]. Decision 

curve analysis (DCA) was utilized to demonstrate the 

clinical applicability of this model. By employing these 

methods, we were able to generate comprehensive and 

insightful results. Principal component analysis (PCA) 

was used to visualize the spatial distribution of high-

risk and low-risk samples in esophageal tumor cases 

[16]. 

 
Nomogram plots and calibration plots 

 
Nomogram plots were constructed by combining the 

risk score and various clinical data in R language 

software to analyze the predicted 1-, 2-, and 3-year 

survival rates of ESCC patients, and we employed 

calibration curves. These curves provided us with 

valuable insights into the accuracy of our predictions, 

allowing us to make any necessary adjustments and 

improvements to the model [17]. 

 
Analysis of tumor mutation burden (TMB) and gene 

set enrichment analysis (GSEA) 

 
Using GSEA 4.3.2 software, enriched pathway analysis 

was conducted in both high- and low-risk groups using 

five distinct methods: Pathway Interaction Database 

(PID), Gene Ontology (GO), REACTOME, Wiki 

Pathways (WP), and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [18, 19]. |NES| > 1 and FDR < 0.25 

were used as criteria. We utilized the R package 

“maftools” to compare the association between risk 

score and TMB [20]. KM curves were used to compare 

the overall survival (OS) of the high and low TMB 

groups. 

 
Tumor microenvironment characteristics, drug 

sensitivity and mutation data 

 
We used several algorithms, including XCELL, TIMER, 

QUANTISEQ, MCPcounter, EPIC, CIBERSORT and 

CIBERSORT-abs, to evaluate the association between 

tumor immune infiltration and high/low-risk groups 

[21]. To assess drug sensitivity among different risk 

groups, the “prognostic” package in R was used [22], 

which predicts the 50% inhibitory concentration (IC50) 

of commonly administered chemotherapeutic and 

immunological agents for ESCC. 

 
Cell culture and qRT-PCR 

 
Human specimens were collected from patients who 

underwent ESCC resection at the Department of Thoracic 

Surgery of the Second Affiliated Hospital of Nanchang 
University. A total of 6 pairs of ESCC specimens and 

paracancerous specimens were collected. After separation 

of the samples, some of the esophageal cancer tissues 



www.aging-us.com 10476 AGING 

were rapidly frozen in liquid nitrogen and then stored  

in a −4°C refrigerator to avoid degradation. Normal 

human esophageal epithelial cell lines (HEEC) from 

JiNiu Biologicals (China) and TE-1, KYSE-30, KYSE-

410, and KYSE-520 cell lines from Wuhan Procell 

(China) were maintained in DMEM (Gibco, USA) 

(HyClone, USA) replenished in 10% FBS at 37°C and 

95% air with 5% CO2. 

 
RNA was extracted from the cells using TRIzol 

(Invitrogen, USA) and RNA extraction kits. RNA  

was converted into cDNA using the PrimeScript  

RT Reagent Kit (Takara, Japan) and analyzed for  

gene expression via qRT-PCR. Primers are shown in 

Supplementary Table 1. 

Statistical analysis 

 
Data were statistically divided and visualized by R 

language software, and data processing mainly employed 

the Perl programming language. Statistical differences 

between the groups were calculated using Student’s t-

test and analysis of variance (ANOVA). OS in the two 

groups was compared using KM analysis. Univariate, 

LASSO, and multifactorial Cox regression analyses 

were utilized to assess prognostic significance. Gene 

expression correlations were obtained using Pearson 

correlation analysis. Prognostic feature reliability and 

sensitivity were estimated using ROC curves and AUCs. 

Statistically significant differences were defined as 

bilateral p < 0.05 (Figure 2). 

 

 
 

Figure 2. Overall flow diagram of the study. 
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Availability of data and material 

 

The data sets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 
 

RESULTS 
 

Screening of lncRNAs associated with cuproptosis 

and the prognosis of esophageal cancer 

 

In the first step of the study, the ESCC dataset  

was retrieved from the TCGA-GDC website, and a total 

of 16877 lncRNAs were screened. Subsequently, 25 

cuproptosis-related genes were correlated with lncRNAs 

using Pearson correlation analysis. A total of 108 

lncRNAs were identified in this step (Figure 3A).  

Next, the data of 94 ESCC patients were obtained after 

excluding three patients who did not have tumor or 

survival data. The comprehensive clinicopathological 

data of the patients are detailed in Table 1. Sub-

sequently, the 94 patients with ESCC were randomly 

divided equally into training and test groups. The 

prognostic risk score was built using the training group, 

and the test group was used for validation. Nine 

prognostic CuRLs were identified via one-way Cox 

 

 
 

Figure 3. Identification of significant prognosis CuRLs. (A) Sankey diagram depicting the relationships between 25 cuproptosis-

related genes and CuRLs co-expression. (B) LASSO Cox regression analysis revealed 9 CuRLs based LASSO cross validation plot. (C) LASSO 
coefficient of 9 CuRLs. (D) Forest plot of 9 one-way Cox regressions derived with prognosis-related lncRNAs. (E) Correlation heatmap of the 
association of 5 signature lncRNAs with cuproptosis-related genes. 
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Table 1. Demographic and baseline characteristics of ESCC cases from the TCGA. 

Characteristics 
Entire cohort (n = 94) 

n % 

Gender 

Female 14 15.79 

Male 80 74.21 

Age 

<65 71 74.74 

≥65 23 25.26 

Stage 

Stage I 7 7.37 

Stage II 55 58.95 

Stage III 26 27.34 

Stage IV 4 4.21 

Unknown 2 2.13 

T stage 

T0 8 8.42 

T1 32 33.68 

T2 48 51.56 

T3 4 4.21 

T4 2 2.13 

Unknown 8 8.42 

N stage 

N0 54 57.89 

N1 28 29.47 

N2 6 6.32 

N3 3 3.16 

Unknown 3 3.16 

M stage 

M0 82 87.37 

M1 4 4.21 

Unknown 8 8.42 

Abbreviations: ESCC: Esophageal squamous cell carcinoma; M: metastasis; N: lymph node; T: Tumor. 

 
analysis in the training group (Figure 3D). LASSO 

regression analysis was subsequently carried out to 

identify lncRNAs that are correlated with the prognosis 

of ESCC, and 5 CuRLs (AC021321.1, LINC01775, 

LINC00601, EWSAT1, and AC138696.2) were identified 

(Figure 3B, 3C). The LASSO regression analysis results 

are shown in Supplementary Table 2. The corrplot 

showed a strong association between these 5 CuRLs  

and cuproptosis-related genes (Figure 3E). 

 

Prognostic modeling and validation of CuRLs 

 

The regression coefficients of the 5 lncRNAs were 

obtained by multifactorial Cox regression of the training 

group in the previous step, and each patient’s risk score 

was calculated. Based on the median risk score, the 

patients were divided into two groups: a low-risk group 

and a high-risk group. We performed KM survival 

analysis for both groups and obtained survival curves 

showing that the high-risk group had a significantly 

lower survival rate than the low-risk group (Figure 4B). 

The feasibility of the risk score was verified using the 

ROC curve, with AUC values of 0.809, 0.817, and 

0.784 for 1, 2, and 3 years, respectively (Figure 4N). 

The scatter plots and heatmaps for the training set 

demonstrated that the low-risk group had significantly 

longer survival times than the high-risk group in the risk 

assessment (Figure 4E, 4H, 4K). We used the same 

methodology for the total and test groups and performed 

KM survival analysis. The results showed that the 

survival rate was significantly better in the low-risk 

group than in the high-risk group (Figure 4A, 4C). 
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Scatter plots and heatmaps were used to assess the risk 

in both groups and revealed a significant difference in 

survival time between the low-risk and high-risk groups 

(Figure 4D, 4G, 4J, 4F, 4I, 4L). The AUC values for  

the ROC curves were 0.746, 0.774, and 0.850 at 1, 2, 

and 3 years, respectively, for the total cohort and 0.690, 

0.665, and 0.821 for the test group (Figure 4M, 4O). 

The CuRL risk assessment model showed superior 

prognostic ability in all groups. 

 

Subgroup analysis and principal component analysis 

 

Patients were stratified into different groups and 

subsequently analyzed for survival using the KM 

 

 
 

Figure 4. Evaluation of the CuRLs prognostic signature in the total, training and test cohorts. (A–C) Overall survival Kaplan-

Meier survival curves. (D–F) Overall survival risk score. (G–I) Distribution of survival time and survival status. (J–L) Heatmap of 5 lncRNA 
expressions. (M–O) 1-, 2-, and 3-years overall survival area under the ROC curve of the signature. 
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Table 2. Univariate and multivariate cox regression analysis based on risk factors. 

Characteristic 
Univariate analysis Multivariate analysis 

HR HR (95% CI) P-value HR HR (95% CI) P-value 

Age 1.039 (1.001, 1.080) 0.047 1.042 (1.000, 1.086) 0.051 

Gender 4.982  (1.145, 21.675) 0.032  3.801  (0.860, 16.804) 0.078  

Stage 1.741  (1.084, 2.795) 0.022  1.338  (0.795, 2.249) 0.273  

Risk Score 1.106  (1.041, 1.175) <0.001 1.023  (1.005, 1.042) 0.014  

Abbreviations: CI: Confidence interval; HR: Hazard ratio. 

 
method, and we found that the risk assessment model 

could make meaningful predictions for most classi-

fications except for the ≥65 years subgroup and the 

female subgroup (Supplementary Figures 1B and  

2B). In all other subgroups, the overall survival was 

significantly higher in the low-risk group than in the 

high-risk group (Supplementary Figures 1A, 1C–1F and 

2A, 2C, 2D), with a statistical significance of p < 0.05. 

The inability to accurately predict the prognosis in the 

age ≥65 years and female subgroups may be explained 

by the small sample sizes in the TCGA-GDC database, 

which prevented accurate analysis. PCA compared the 

expression spectra of the high- and low-risk groups, 

including the total spectrum of expression, cuproptosis 

gene expression profiles, expression profiles of lncRNAs 

associated with 25 cuproptosis genes, and CuRL ex-

pression profiles (Supplementary Figure 3A–3D). Our 

analysis indicated that the developed prognostic model 

could effectively distinguish between the two risk 

groups. 

 

Clinical value validation of the model for risk 

prediction 

 

To validate the clinical value of the risk assessment model, 

we integrated the clinicopathological characteristics of 

94 ESCC patients, including age, gender, stage, and risk 

score. Subsequently, univariate and multivariate Cox 

regression analyses were conducted for both the risk 

score and clinicopathological characteristics, as presented 

in Table 2. The risk score had remarkable independent 

prognostic value in both the univariate and multivariate 

Cox regression analyses (p < 0.05) (Supplementary 

Figure 4A, 4B). We used risk assessment and other 

clinicopathological characteristics to construct nomo-

grams to predict 1-, 2-, and 3-year prognosis (Figure 5A 

and Supplementary Figure 4C). Calibration curves were 

used to validate the nomograms (Figure 5D). DCA 

demonstrated the clinical applicability value of this 

model (Figure 5E). The nomogram’s ability to predict 

survival was evaluated by assessing the concordance 
between predicted and actual survival using the C-index, 

which was 0.770 for the nomogram containing the risk 

score. We also constructed a nomogram model without 

the risk score and validated it using calibration curves, 

which had a C-index of 0.686. This demonstrated  

that the prediction model containing the risk score 

outperformed the conventional prediction model. The 

nomogram marker exhibited a higher C-index than any 

other risk factor (Figure 5C). The nomogram model 

ROC curve had an AUC value of 0.769 for the risk 

score, surpassing the AUC values of other pathological 

features, thereby indicating strong predictive ability 

when compared to other clinicopathological features 

(Figure 5B). 
 

External validation of prognostic characterization 

 

To verify the predictive ability of the model constructed 

with the risk score, we validated the model using  

the GSE53628 cohort, and the KM survival analysis 

revealed that patients in the high-risk group had a  

worse prognosis than those in the low-risk group,  

with a statistically significant difference (p < 0.001) 

(Supplementary Figure 5A). The feasibility of the risk 

score was verified using ROC curves with AUC values 

of 0.682, 0.698 and 0.582 at 1, 3 and 5 years, 

respectively (Supplementary Figure 5B). Subsequently, 

we performed univariate and multivariate Cox regression 

analyses of the risk score and clinicopathologic charac-

teristics, and the risk score had significant independent 

prognostic value in both the univariate and multivariate 

Cox regression analyses (p < 0.001) (Supplementary 

Figure 5C, 5D). We similarly constructed nomograms 

(Supplementary Figure 5E) predicting 1-, 3-, and 5-year 

prognosis using the risk score and other clinicopathologic 

characteristics (Supplementary Figure 5F). Validating 

the nomograms with calibration curves, we found high 

predictive accuracy. 

 

Identification of the biological pathways associated 

with the 5 CuRLs 

 

To further illustrate the association of the five CuRLs 

with biological processes, GSEA was performed, which 

yielded 332 GO functions, 28 KEGG pathways, 27  
PID pathways, 153 REACTOME-related pathways and 

68 WP-related pathways. GO analysis revealed that  

the major pathways for the lncRNAs were associated 

with BP terms such as cell receptor signaling, CC terms 
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such as immunoglobulin complexes and circulating 

immunoglobulin complexes, and MF terms such as 

immunoglobulin receptor binding and antigen binding 

(Figure 6A, 6B). The cytokine receptor interaction 

pathway ranked as the top KEGG signaling pathway in 

our analysis, followed by hematopoietic stem cells, 

complement and coagulation system, primary immuno-

deficiency, and intestinal immune network for IGA 

production (Figure 6C, 6D). The top five PID signaling 

pathways were the CD40 pathway, IL8_CXCR2 

pathway, TOLL_ENDOGENOUS pathway, BCR_5 

pathway and PLK1_pathway (Figure 7A, 7B). The 

REACTOME pathways and top five WP signaling 

pathways are shown in Figure 7C–7F. 

 

Effect of TMB and CuRL signaling on chemotherapy 

 

The somatic mutation database was downloaded to 

investigate the mutation rates in the high- and low-risk 

groups from the TCGA database. The 10 genes with  

the highest mutation rates were TP53, TTN, CSMD3, 

MUC16, SYNE1, LRP1B, PCLO, FLG, HMCN1, and 

SYNE1. Among them, TP53, TTN, CSMD3, MUC16 

and SYNE1 were the genes most commonly mutated in 

ESCC (Figure 8A, 8B). Furthermore, the high-risk 

group had a significantly higher TMB than the low-risk 

group (p < 0.05) (Figure 8C, 8D), and patients with high 

TMB had worse prognoses according to the KM curve 

analysis (Figure 8E). 

 

Immune landscapes and drug sensitivity in risk 

scores for CuRLs 

 

We employed multiple approaches to assess immune 

infiltration in the high- and low-risk groups (Figure 

9A). We investigated the association between the risk 

score for ESCC and immune-related activities and 

identified notable variations in the risk score for 

parainflammation, APC coinhibition, and CCR (Figure 

9B, 9C). We also investigated the correlation between 

the CuRLs and immune pathways and found that 

LINC00601 was significantly associated with multiple 

immune pathways (Figure 9D). In fact, TIDE scores 

were significantly higher in the low-risk group than in 

 

 

 
Figure 5. Construction of nomogram and validation of its predictive ability. (A) Nomogram to predict the overall survival of ESCC. 
(B) ROC curves for the risk score and other clinical characteristics. (C) C-Index curve for the risk score and other clinical characteristics. (D) 
Calibration curves for 1, 2, and 3 years of nomogram. (E) DCA curve of the nomogram. 
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the high-risk group in the TCGA cohort (p < 0.05), 

suggesting that patients in the high-risk group were 

more likely to benefit from immunotherapy. This was 

validated in the GSE53625 cohort (Figure 9E, 9F). 

Potential treatment options were predicted by analyzing 

198 commonly used chemotherapeutic agents, and we 

found differences for 66 drugs (p < 0.05). Among  

them, seven drugs (Selumetinib, BI-2536, P22077, 

BMS-754807, Zoledronate, Fulvestrant, and Nilotinib) 

had significant associations (p < 0.01) (Figure 10A–

10G). Sensitivity analysis showed greater sensitivity to 

Selumetinib and BMS-754807 in the low-risk group 

than in the high-risk group. These findings suggest that 

risk assessment can guide personalized drug therapy  

for ESCC patients (Supplementary Tables 3–5). 
 

In vitro experimental validation of CuRLs as 

biomarker candidates 
 

To further validate the prognostic potential of the CuRL 

model, we performed in vitro experiments to explore 

the expression trends of different CuRLs. Our team 

measured the expression levels of EWSAT1, AC138696.2, 

AC021321.1, LINC00601, and LINC01775 in KYSE-

30, KYSE-410, and KYSE-520 cancer cell lines and  

in patient cancer tissues and paracancerous tissues using 

RT-qPCR. The results showed an overall increasing trend 

in the expression of these lncRNAs (Supplementary 

Figure 6A–6E), except for LINC01775, which showed 

no differential expression (Supplementary Figure 7A–

7E). The RT-qPCR results are for reference only. 

Overall, our experimental results support our model. 

 
DISCUSSION 

 
ESCA is a widespread malignancy that is the ninth 

worst malignant cancer in the world [1]. Although 

treatment modalities have evolved in recent years and 

achieved remarkable results, the prognosis of ESCC 

patients is still unsatisfactory [23, 24]. The current 

mainstream prediction model is TNM staging, but it 

 

 

 
Figure 6. Functional analysis between the high‐risk and low‐risk groups. (A, B) The pathways of GO enriched in the low- and 

high‐risk group. (C, D) The pathways of KEEG enriched in the low- and high‐risk group. 
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does not meet the actual needs of clinical treatment 

[25]. Therefore, establishing an accurate prognostic 

prediction method is urgently needed for the current 

treatment and diagnosis of ESCC. In this study, we 

identified CuRLs that play a significant prognostic role 

and developed a new prognostic signature that can 

precisely forecast the prognosis of ESCC patients. We 

found enrichment of B-cell receptor signaling pathways 

in the high-risk group, specifically the BCR5 pathway. 

High-risk patients exhibited immunosuppression and

 

 
 

Figure 7. Functional analysis between the high‐risk and low‐risk groups. (A, B) The pathways of PID enriched in the low- and 

high‐risk group. (C, D) The pathways of REACTOME enriched in the low- and high‐risk group. (E, F) The pathways of WP enriched in the low- 
and high‐risk group. 
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high TMB, whereas the two risk groups had varying 

sensitivity to immunotherapy and chemotherapeutic 

agents. 

 

This study developed a new prognostic signature using 

five CuRLs that showed high accuracy in predicting 

patient outcomes, which is a commonly used approach 

for constructing prognostic signatures in various cancers, 

including lung adenocarcinoma and colon cancer  

[26–28]. A higher risk score was associated with a 

worse prognosis in ESCC patients, as revealed by our 

findings. A nomogram was developed to predict patient 

 

 
 

Figure 8. Tumor mutation burden (TMB) analysis. (A, B) Waterfall plots of somatic mutation characteristics in the two groups. (C) 

Kaplan-Meier survival curves between the high- and low-TMB groups. (D) Kaplan-Meier survival curves between the four groups. (E) TMB 
between the low-risk and high-risk groups. 
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prognosis by integrating clinical indicators and the  

risk score, and the model with the risk score exhibited 

better predictive power than the model without the risk 

score (C-index: 0.770 vs. 0.686). Furthermore, our prog-

nostic model demonstrated better predictive power than 

similar models. Among the five identified lncRNAs, 

EWSAT1 was found to be involved in the development 

of osteosarcoma and has a role in metastasis, with a 

significant association with ROCK1, according to Shen 

et al. [29]. Li et al. reported a significant association 

 

 
 

Figure 9. Results of immunity analysis. (A) Differences in immune infiltration between high- and low-risk groups using TIMER, 

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and EPIC. (B) Differences in expression of common immune checkpoints in 
the at-risk group. (C) Analysis of common immune cell differences in the risk group. (D) Analysis of CuRLs and immune cell correlation. 
(E) TIDE scores between the two groups in TCGA group. (F) TIDE scores between the two groups in GSE53625 group. 
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between AC021321.1 expression and poor survival as 

well as immune infiltration in bladder cancer (BC), 

and it may serve as a prognostic biomarker for BC 

[30]. LINC00601 was found to be upregulated in 

hepatocellular carcinoma and promoted the develop-

ment of the disease through the activation of the 

MAPK signaling pathway [31]. However, functional 

studies of the other lncRNAs, namely, LINC01775  

and AC138696.2, have not been reported in cancer 

studies. Finally, RT-qPCR experiments confirmed the 

significant differential expression of the four CuRLs  

in normal versus cancer tissues to construct the 

prognostic model. 

 

In this paper, after performing GSVA with five 

methods, the high-risk group was observed to have  

an enrichment of immune-related pathways, including 

the intestinal immune network for IGA production, B-

cell receptor signaling pathway, BCR pathway, antigen 

activating BCR leading to second messengers, and  

other immune pathways [32]. The immune response  

in high-risk patients was enriched in immune-related 

pathways, indicating a stronger immune response  

that may contribute to a worse prognosis compared to 

low-risk patients. Our study also found that lncRNA-

based prognostic features were substantially associated 

with immune cell infiltration, as ssGSEA showed 

significant activation of immune features (parainflam-

mation, APC coinhibition, and CCR) when the risk score 

was elevated. These findings suggest that prognostic 

features may contribute to the discovery of regulatory 

mechanisms of tumor immunity and provide new 

insights for future tumor microenvironment (TME) 

studies. Moreover, TMB is commonly used as an 

indicative biomarker of immunotherapy for various 

cancers. Our study revealed that patients with high 

expression of TP53 and TTN in the high-risk group had 

a poorer prognosis, which is consistent with the known 

association between high TMB and worse prognosis 

[33]. In our study, we also detected specific mutations 

in the TP53, TTN, and MUC16 genes, with mutation 

frequencies of 74%, 30%, and 20%, respectively.  

TP53 is a well-established oncogene that regulates 

malignancy in ESCC cells. Prior research indicates that 

 

 
 

Figure 10. Chemotherapy sensitivity. (A–G) Chemosensitivity difference between two risk groups. 
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mutations in TTN are linked to increased responsiveness 

of solid tumors to ICIs. Additionally, MUC16 mutations 

are associated with prognosis and may be related to 

sites that affect tumor prognosis and progression. The 

high-risk group in our study demonstrated poorer OS, 

and mutations identified in this group may impact 

ESCC development. Hence, the expression of CuRLs 

with high risk scores could potentially enhance the 

therapeutic efficacy and prognosis of ESCC patients. In 

summary, our study highlights the potential of lncRNAs 

as prognostic markers and elucidates the role of the 

immune system and TMB in ESCC development and 

prognosis. The findings of this study could serve as a 

foundation for future research into the underlying 

mechanisms of ESCC and the development of more 

effective treatment strategies. 

 

TIDE is an important tool for predicting the effectiveness 

of immunotherapy for cancer patients. Previous research 

has shown that immunotherapy benefits patients with 

lower TIDE scores [34]. The high-risk group showed a 

lower TIDE score in our study. Patients in the high-risk 

group with lower TIDE scores may have an increased 

potential to benefit from immunotherapy compared to 

their low-risk counterparts. Currently, chemotherapy 

and immunotherapy remain the primary treatment 

options for advanced cancer patients [35]. Due to the 

specificity of ESCC tumors and the varying effects of 

different drugs, we conducted drug sensitivity trials and 

identified five drugs (BI-2536, P22077, Zoledronate, 

Fulvestrant, and Nilotinib) to which high-risk patients 

are sensitive. BI-2536 suppresses Plk1 activity at low 

nanomolar concentrations. In a study by Wu et al.,  

BI-2536 sensitized ESCC cells to DDP by inhibiting 

DNA damage repair pathways and inducing focal death 

[36, 37]. While BI-2536 is effective in most ESCC 

patients, some patients are unable to achieve efficacy 

due to cancer specificity. We believe that our risk score 

model can assist in guiding their dosing. P22077 may 

have anti-inflammatory effects by promoting TRAF48 

degradation through K6-linked polyubiquitination [38]. 

At present, there are no known effects of Zoledronate 

on ESCC. However, its main mechanism of inhibiting 

the metastatic progression of ESCC cells involves 

uptake by the tight junction protein occludin [39]. 

Nilotinib was found to be a potent inhibitor of ILK by 

Juan Liu et al. As such, it has the potential to target 

ILK-mediated signaling pathways and manage ESCC 

[40]. 

 

The strengths of this study are notable and demonstrate 

its significance in advancing our understanding of 

cuproptosis-related gene signatures that are predictive 
of ESCC patient prognosis. This study represents  

the first attempt to investigate CuRLs as predictors of 

ESCC patient prognosis. Second, it includes the largest 

number of cuproptosis-related genes, allowing for a more 

comprehensive analysis. Third, this study reports a high 

accuracy in predicting patient prognosis compared to 

similar models, suggesting the potential clinical utility of 

CuRLs in ESCC prognosis prediction. Fourth, the study 

identifies multiple pathways that are simultaneously 

enriched, providing a more holistic understanding of  

the mechanisms underlying ESCC. Finally, the use of 

cell lines to validate CuRLs reduces the interference of 

external factors and reveals more accurate expression 

differences. There are limitations to this study: there  

are no further externally validated data, no siRNA 

experiments on cancer cell lines, and no animal models 

to study the effects of cuproptosis. In addition, the 

function and molecular mechanisms of CuRLs need to 

be further investigated. Addressing these limitations in 

future studies will improve the clinical applicability  

of CuRLs in the prognostic assessment of ESCC. 

 
CONCLUSIONS 

 
The nomogram model based on the risk score and 

clinical characteristics was effective in predicting  

the prognosis of patients. Further mechanistic analysis 

showed that the high-risk group was enriched in the  

B-cell receptor signaling pathway and BCR5 path- 

way and exhibited high TMB expression. In the  

drug sensitivity analysis, high-risk patients exhibited 

greater responsiveness to Nilotinib, BI-2536, P22077, 

Zoledronate, and Fulvestrant. Due to this study’s general 

shortcomings, the findings need to be confirmed in  

a large prospective sample and further mechanistic 

analysis and wet trials. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Kaplan-Meier survival curves for low- and high-risk populations by different clinical variables. 
(A, B) Age; (C, D) N0 and N1-3; (E, F) Stage I–II and Stage III–IV. 
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Supplementary Figure 2. Kaplan-Meier survival curves for low- and high-risk populations by different clinical variables. 
(A, B) Sex; (C, D) T1–2 and T3–4. 
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Supplementary Figure 3. PCA analysis of the prognostic signature. (A) PCA of all genes; (B) PCA of cuproptosis genes; (C) PCA 
of CuRLs; (D) PCA of risk LncRNAs. 
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Supplementary Figure 4. Independent prognostic analysis of the prognostic signature. (A) Univariate and (B) Multivariate Cox 

regression analysis to examine the value of clinical characteristics and risk score as independent prognostic predictors. Nomograms for 
predicting 1-, 2-, 3-year overall survival (OS) for a randomly selected patient in test cohort (C). 

 



www.aging-us.com 10495 AGING 

 
 

Supplementary Figure 5. Risk model external validation in the GSE53625 group. (A) Overall survival Kaplan-Meier survival curves. 

(B) 1-, 3-, and 5-years overall survival area under the ROC curve of the signature. (C) Univariate and (D) Multivariate Cox regression analysis 
to examine the value of clinical characteristics and risk score as independent prognostic predictors in GSE53625. (E) Nomograms for 
predicting 1-, 3-, 5-year overall survival (OS) for a randomly selected patient in test cohort. (F) Calibration curves for 1, 2, and 3 years of 
nomogram. 

 

 
 

Supplementary Figure 6. Relative mRNA expression of cuproptosis-related long non-coding RNAs in four cell lines (HEEC, 
TE-1, KYSE-30, KYSE-410 and KYSE-520). (A) AC021321.1, (B) AC138696.2, (C) EWSAT1, (D) LINC00601 and (E) LINC01775. 
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Supplementary Figure 7. Relative mRNA expression of cuproptosis-related long non-coding RNAs in cancer tissue and 
paracancerous tissue. (A) AC021321.1, (B) AC138696.2, (C) EWSAT1, (D) LINC00601 and (E) LINC01775. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 1. Primers for RT-qPCR experiments with 5 cuproptosis-related lncRNAs. 

Gene ID Forward primer Reverse primer 

AC021321.1 GGGGCTCATAACAGAGCCAG AGACAGACTACCGGAGGCAT 

LINC01775 AGATTCGAGACCCCGGTTTG AGGTTTGGGTGGGAAATGGG 

LINC00601 CTTTCTCCCCACAGTCGCTT AAGTTCCTGATGCGCGAAGA 

EWSAT1 GTGTCTGGCAAGGAACACTA GGTGGAGAAGAGGGACAATAAG 

AC138696.2 GCCTCAGGATGCAACCTTCT GGATCTCAGCCAAGCAGAGG 

Abbreviations: LncRNA: Long non-coding ribonucleic acid; RT-qPCR: Reverse transcription quantitative-polymerase chain 
reaction. 

 

 

Supplementary Table 2. 5 CuRLs connected with the over survival of the ESCC patients after multivariate cox 
analysis in training cohort. 

CuRLs HR 95% CI P-value 

AC021321.1 0.168 0.029–0.979 0.047 

LINC01775 0.316 0.115–0.871 0.026 

LINC00601 2.778 1.295–5.958 0.009 

EWSAT1 1.756 1.008–2.833 0.021 

AC138696.2 0.366 0.157–0.851 0.02 

Abbreviations: CuRLs: Cuproptosis-related long non-coding RNAs; ESCC: Esophageal squamous cell carcinoma; HR: Hazard 
ratios; CI: confidence interval. 
 

 

Supplementary Table 3. IC50 of clinical drug sensitivity for ESCC patients in high and low risk groups. 

Drugs 
High-risk group Low-risk group 

P-value 
Sensitive 
groups Media IQR Media IQR 

ABL signaling 

Nilotinib 44.46  29.56–76.25 26.68  16.27–41.11 0.00  High 

Apoptosis regulation 

WEHI-539 42.83  25.52–63.09 30.57  18.46–45.63 0.02  High 

Venetoclax 9.87  7.36–11.82 8.23  6.28–10.45 0.02  High 

UMI-77 16.05  10.61–24.54 11.97  8.33–18.6 0.03  High 

Sepantronium bromide 0.02  0.01–0.04 0.01  0.01–0.02 0.04  High 

Cell cycle 

AZD7762 1.14  0.73–2.33 0.78  0.55–1.28 0.02  High 

Wee1 Inhibitor 9.38  6.09–12.83 6.54  4.19–8.94 0.00  High 

RO-3306 18.45  11.62–24.33 12.09  9.92–17.22 0.01  High 

BI-2536 1.60  1.04–2.1 1.04  0.59–1.41 0.00  High 

MK-1775 2.09  1.31–2.89 1.46  1.07–2.11 0.01  High 

MK-8776 24.16  14.91–50.62 20.25  11.46–25.41 0.04  High 

Chromatin histone acetylation 

Vorinostat 5.06  3.72–6.68 3.69  2.61–4.58 0.00  High 

EPZ004777 197.38  132.02–252.74 157.35  115.66–181.22 0.00  High 
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EPZ5676 293.08  218.71–384.14 225.75  180.71–281.33 0.01  High 

PCI-34051 107.68  71.5–170.82 75.64  59.35–116.39 0.03  High 

GSK591 107.15  89.97–148.57 82.05  66.16–110.64 0.01  High 

Cytoskeleton 

BDP-00009066 10.68  8.99–15.34 9.08  6.7–13.05 0.01  High 

Chromatin other 

PFI3 202.49  177.5–246.39 182.96  156.32–207.78 0.01  High 

RVX-208 129.01  103.47–157.32 107.49  87.94–124.78 0.01  High 

JQ1 13.43  9.55–19.21 9.58  7.28–14.78 0.03  High 

DNA replication 

Cyclophosphamide 200.68  143.63–236.85 173.61  124.6–199.26 0.01  High 

Gemcitabine 0.67  0.18–3.49 0.24  0.14–0.93 0.01  High 

Pyridostatin 31.72  24.46–40.39 24.27  20.07–31.57 0.01  High 

ERK MAPK signaling 

Trametinib 1.23  0.81–2.41 2.13  1.1–3.96 0.02  Low 

Selumetinib 61.14  56.52–65.58 67.39  63.5–72.67 0.00  Low 

EGFR signaling 

Sapitinib 39.07  17.12–80.46 76.30  33.18–125.05 0.02  Low 

Genome integrity 

KU-55933 72.18  53.59–87.15 79.96  65.13–110.44 0.04  Low 

AZD6738 8.23  5.04–16.28 5.52  3.2–10.15 0.01  High 

BIBR-1532 157.32  113.29–228.05 126.51  88.38–158.78 0.01  High 

VE821 75.44  48.28–113.77 52.27  26.96–70.33 0.00  High 

Hormone-related 

Fulvestrant_1200 21.12  16.88–25.65 16.91  14.62–19.72 0.00  High 

Fulvestrant_1816 109.56  81.11–145.67 83.50  63.94–105.21 0.00  High 

GDC0810 147.82  122.82–195.65 125.93  93.2–152.57 0.02  High 

IGF1R signaling 

BMS-754807 1.17  0.76–1.5 1.73  1.19–2.55 0.00  Low 

Metabolism 

Daporinad 0.01  0.01–0.03 0.01  0.01–0.01 0.01  High 

Mitosis 

Docetaxel 0.01  0.01–0.02 0.01  0.01–0.02 0.03  High 

PD173074 75.29  35.57–117.31 43.45  31.07–68.79 0.19  High 

Paclitaxel 0.09  0.04–0.16 0.05  0.02–0.08 0.03  High 

Tozasertib 21.89  12.85–27.76 16.10  11.48–19.7 0.00  High 

Vincristine 0.19  0.11–0.48 0.10  0.06–0.35 0.05  High 

Other 

Cytarabine 6.77  3.42–17.21 3.66  2.25–7.19 0.01  High 

5-Fluorouracil 130.13  92.83–222.36 100.03  37.7–173.73 0.05  High 

Pevonedistat 2.46  1.4–4.35 1.32  0.81–2.82 0.01  High 

Zoledronate 52.19  36.95–65.81 37.68  30.92–48.21 0.00  High 

BPD-00008900 99.34  74.94–135.8 82.71  56.9–100.21 0.01  High 

Other, kinases 

Sorafenib 16.65  11.66–22.46 14.12  8.79–18.19 0.04  High 

JAK1_8709 58.36  39.22–77.12 65.91  57.14–87.95 0.04  Low 

GSK2578215A 147.26  121.12–171.83 125.98  103.33–148.47 0.02  High 

p53 pathway 
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MIRA-1 266.91  177.77–375.43 197.15  132.69–249.58 0.01  High 

PI3K/MTOR signaling 

MK-2206 21.93  16.84–33.07 17.99  14.57–24.66 0.03  High 

Dactolisib 0.24  0.16–0.45 0.17  0.08–0.27 0.00  High 

Rapamycin 0.15  0.11–0.24 0.10  0.07–0.13 0.00  High 

CZC24832 173.99  143.84–199.51 157.30  125.39–180.58 0.05  High 

Ipatasertib 40.38  23.59–59.89 27.00  16.73–43.62 0.02  High 

AMG-319 145.74  115.24–181.25 116.73  99.55–139.35 0.01  High 

Uprosertib_2106 20.02  11.83–34.05 14.41  7.87–18.5 0.02  High 

LJI308 184.82  151.1–218.79 151.09  130.03–176.65 0.03  High 

AT13148 51.37  25.33–75.28 29.71  19.8–49.09 0.03  High 

Protein stability and degradation 

P22077 119.56  74.37–166.27 74.76  54.59–99.64 0.00  High 

RTK signaling 

Axitinib 28.54  28.54–28.54 28.54  28.54–28.54 0.02  High 

Crizotinib 27.50  20.07–42.43 19.93  15.59–29.16 0.01  High 

AZD4547 19.74  12.64–33.19 14.67  10.14–21.28 0.01  High 

Cediranib 9.68  6.84–12.02 7.63  6.23–10.33 0.05  High 

Unclassified 

Gallibiscoquinazole 16.42  12.5–20.99 11.91  9.77–16.2 0.00  High 

WNT signaling 

SB216763 185.20  162.54–207.12 200.15  180.43–224.37 0.04  Low 

MN-64 125.20  92.03–158.05 93.06  73.9–133.96 0.02  High 

Abbreviations: ESCC: Esophageal squamous cell carcinoma; IC50: half maximal inhibitory concentration; IQR: Interquartile range. 

 

 

Supplementary Table 4. IC50 of clinical drug sensitivity for ESCC patients in high and low risk groups with no 
difference. 

 

 

Supplementary Table 5. Summary of anti-tumor drug categories. 

Category 
A: Number of 

high-risk 
sensitive 

B: Number of 
significant 
differences 

C: Total 
quantity of 

drugs 
B/C A/B 

ABL signaling 1 1 1 100 100 

Apoptosis regulation 4 4 12 33.33 25 

Cell cycle 6 6 12 50 100 

Chromatin histone acetylation 5 5 8 62.5 100 

Chromatin other 3 3 7 42.86 100 

Cytoskeleton 1 1 3 33.33 100 

DNA replication 3 3 15 20 100 

EGFR signaling 0 1 7 14.29 NULL 

ERK MAPK signaling 0 2 12 16.67 NULL 

Genome integrity 3 4 11 36.36 75 

Hormone-related 3 3 4 75 100 

IGF1R signaling 0 1 6 16.67 NULL 

JNK and p38 signaling 0 0 1 0 NULL 
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Metabolism 1 1 4 25 100 

Mitosis 5 5 9 55.56 100 

Other 5 5 15 33.33 100 

Other, kinases 2 3 14 21.43 66.67 

p53 pathways 1 1 3 33.33 100 

PI3K/MTOR signaling 9 9 22 40.91 100 

Protein stability and 
degradation 

1 1 5 20 100 

RTK signaling 4 4 11 36.36 100 

Unclassified 1 1 6 16.67 100 

WNT signaling 1 2 9 22.22 50 

 
 


