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INTRODUCTION 
 

Skeletal muscle is the most abundant tissue in the 

human body, making up approximately 40% of total 

body mass in a healthy adult. Muscle is crucial in 
controlling our movements and posture, protecting 

internal organs and tissues, storing energy, and 

regulating body temperature and metabolism. As 
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ABSTRACT 
 

The loss of skeletal muscle strength mid-life in females is associated with the decline of estrogen. Here, we 
questioned how estrogen deficiency might impact the overall skeletal muscle phosphoproteome after 
contraction, as force production induces phosphorylation of several muscle proteins. Phosphoproteomic 
analyses of the tibialis anterior muscle after contraction in two mouse models of estrogen deficiency, 
ovariectomy (Ovariectomized (Ovx) vs. Sham) and natural aging-induced ovarian senescence (Older Adult (OA) 
vs. Young Adult (YA)), identified a total of 2,593 and 3,507 phosphopeptides in Ovx/Sham and OA/YA datasets, 
respectively. Further analysis of estrogen deficiency-associated proteins and phosphosites identified 66 
proteins and 21 phosphosites from both datasets. Of these, 4 estrogen deficiency-associated proteins and 
4 estrogen deficiency-associated phosphosites were significant and differentially phosphorylated or regulated, 
respectively. Comparative analyses between Ovx/Sham and OA/YA using Ingenuity Pathway Analysis (IPA) 
found parallel patterns of inhibition and activation across IPA-defined canonical signaling pathways and 
physiological functional analysis, which were similarly observed in downstream GO, KEGG, and Reactome 
pathway overrepresentation analysis pertaining to muscle structural integrity and contraction, including AMPK 
and calcium signaling. IPA Upstream regulator analysis identified MAPK1 and PRKACA as candidate kinases and 
calcineurin as a candidate phosphatase sensitive to estrogen. Our findings highlight key molecular signatures 
and pathways in contracted muscle suggesting that the similarities identified across both datasets could 
elucidate molecular mechanisms that may contribute to skeletal muscle strength loss due to estrogen 
deficiency. 
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muscle contracts, the sarcomere, the basic contractile 

unit in skeletal muscle, shortens and generates 

molecular force (i.e., muscle strength). The loss of 

muscle strength significantly impacts the activities and 

quality of life of the aging population. Age-related 

muscle strength loss occurs earlier in females than 

males [1, 2]. Compared to male counterparts, post-

menopausal women experience decreased functional 

capacity, greater strength declines, impairments in 

muscle repair, and increased sarcopenia and 

osteoporosis rates with age [3, 4]. Poor muscle strength 

in postmenopausal women is identified as a strong risk 

factor for total mortality [5].  

 

Decline in muscle strength mid-life in females 

associates with the reduction of estrogen, specifically 

estradiol (E2), the primary circulating estrogen. 

Reduction in ovarian hormones (E2 and progesterone) 

is a natural biological process that concludes with 

menopause, which occurs between the ages of 40–50 

in the United States [6]. With the average life 

expectancy of females being 79.9 years in the United 

States [7], more than one-third of a woman’s life is 

now spent in the postmenopausal phase, i.e., in an 

estrogen-deficient state. In addition, females may also 

undergo estrogen deficiency due to other events  

[8–12], thereby, extending this estrogen-deficient state 

in the life of many women. Clinical and preclinical 

studies have shown that estrogen deficiency 

contributes to muscle strength loss in females [13–17] 

and can be prevented and/or reduced in peri-

menopausal and postmenopausal women on estrogen-

based hormone therapy compared to those not on 

therapy [18, 19]. Similarly, in rodent studies, skeletal 

muscle force generation is lower in ovariectomized 

(Ovx) females and those treated with E2 had muscle 

force restored to ovarian-intact females [20]. 

 

Protein phosphorylation, a reversible post-translational 

modification that fine tunes cellular function and 

signaling, contributes to and regulates a host of skeletal 

muscle functions including fiber-type differentiation, 

muscle hypertrophy, plasticity, regeneration, excitation-

contraction coupling, calcium (Ca2+) sensitivity, and 

overall contractile function [21–31]. Previously, 

estrogen deficiency has been shown to remodel the 

phosphoproteome of resting, noncontracting muscles 

[32]. However, skeletal muscle contraction is an 

external stimulus that induces protein phosphorylation 

[30, 31]. More, it has been established that phospho-

rylation of myosin regulatory light chain (pRLC) 

regulates conformational states of myosin, thus 

impacting myosin kinetics and binding to actin during 
contraction, influencing force generation [33]. pRLC 

has been reported to be 1.8-fold lower in muscle of 

older compared to young women, with no difference 

between young and older men [34]. Furthermore, a 

~20% decrease in muscle force in vitro was correlated 

with 50% decreased pRLC in Ovx compared to Sham 

mice [29]. As myosin is only one of many proteins of 

the sarcomere that undergoes phosphorylation, we 

hypothesized that estrogen deficiency, via Ovx or 

natural aging, will modulate phosphorylation of other 

muscle proteins in response to contraction and force 

generation. Because skeletal muscle contraction induces 

protein phosphorylation, [30, 31] this study investigated 

phosphoproteomic alterations that occur in skeletal 

muscle immediately after contraction in order to capture 

estrogen deficiency influences specifically on contraction-

induced phosphorylation. We used two mouse models: 

an ovariectomy model (to represent physiological  

loss of estrogen) and a natural aging-induced ovarian 

senescence model (to represent aging more 

comprehensively, including estrogen loss and other 

factors), and compared their phosphoproteomic profiles 

to their respective controls (Ovx vs. Sham and Older 

Adult (OA) vs. Young Adult (YA); Figure 1A). 

Performing a comparative analysis across both 

datasets, the present work identified parallel alterations 

in contraction-related molecular and cellular sig-

natures, pathways, and upstream regulator activity in 

skeletal muscle. Importantly, identification of these 

altered phosphosites and candidate kinases and 

phosphatases sensitive to the presence of estrogen will 

help advance our understanding of the contributions of 

estrogen deficiency to muscle strength loss in aging 

females. 

 

RESULTS 
 

Mouse and Tibialis Anterior (TA) muscle 

morphometrics and torque analysis 

 

Significant differences in body mass across the groups 

were measured (p < 0.001) (Figure 1B). Mean body 

masses for Sham, Ovx, YA, and OA mice were 35.8 ± 

3.9, 38.4 ± 6.2, 22.3 ± 1.0, and 30.2 ± 5.4, respectively. 

Uterine mass was significantly different between Ovx and 

Sham mice (p = 0.016), with the mean uterine masses 

being 19.3 ± 5.1 and 135.7 ± 70.3, respectively (Figure 

1C). In addition, cytology confirmed persistent diestrus in 

Ovx mice and estrous cycling in Sham mice, as expected. 

Sham and Ovx TA muscle mass were significantly 

different from OA (p = 0.001) (Supplementary Figure 

1A), with mean muscle masses of 49.6 ± 4.6, 53.7 ± 3.1, 

45 ± 1.2, and 37.1 ± 4.7 mg for Sham, Ovx, YA, and 

OA, respectively. TA muscle mass normalized to body 

mass was greater in YA mice than Sham, Ovx, and OA 

(p = 0.003) (Supplementary Figure 1B).  

 

No significant differences among the four groups in 

absolute torque for pre-tetanic twitch torque, maximal 
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isometric tetanic torque, or post-tetanic twitch torque 

were measured (0.61 ± 0.09, 2.54 ± 0.53, and 0.84 ± 

0.12 mN∙m, respectively for all mice; p ≥ 0.158) 

(Supplementary Figure 1C–1E). However, when body 

mass was considered, significant differences in 

normalized torque (torque/body mass) were measured 

in pre-tetanic twitch torque (p = 0.034), tetanic torque 

(p = 0.044), and post-tetanic twitch torque (p = 0.003) 

(Supplementary Figure 1F–1H). These data demonstrate 

robust muscle contraction intended to trigger protein 

phosphorylation within each group, as also shown by 

the twitch torques after the tetanic contraction being 

greater than the pre-tetanic twitch torques. To note, this 

study was not designed or powered to detect contractile 

differences between estrogen-deficient and -replete 

groups as has been shown previously [15, 29, 35, 36]. 

Comparative skeletal muscle phosphoproteomes in 

Ovx/Sham and OA/YA mice  

 

In the two models of estrogen-deficient mice, a total of 

2,593 phosphopeptides and 3,507 phosphopeptides 

were identified in Ovx/Sham and OA/YA TA muscles, 

respectively (Figure 2A and 2B). Phosphorylation was 

most prevalent on serine (Ser, ~ 78%), followed by 

threonine (Thr, ~ 17%), and tyrosine (Tyr, ~ 4%), 

which is consistent with literature and was similar 

across both datasets (Figure 2C and 2D) [37], 

demonstrating reproducible sample preparation and 

peptide detection. Further analysis identified 222  

and 408 significant and differentially regulated 

phosphopeptides in Ovx/Sham and OA/YA datasets, 

respectively (Figure 2E and 2F). 

 

 
 

 

Figure 1. Schematic of experimental design created with https://www.biorender.com and mouse characteristics. (A) 6 mo 
C57BL/6J female mice were assigned to a Sham or Ovx group and underwent their respective surgeries. YA and OA mice were 4 mo and 
24 mo, respectively. The left leg of anesthetized mice was subjected to in vivo contractions and then tibialis anterior muscles were 
immediately dissected. Frozen TA muscles underwent peptide extraction with trypsin digestion and TiO2 phosphopeptide enrichment. nLC-
MS/MS was performed on the Orbitrap Fusion Tribrid mass spectrometer for label-free phosphoproteomic analysis. (B) Body mass of all 
four groups of female mice measured before the terminal contraction experiment. Data was analyzed by a one-way ANOVA with Tukey’s 
multiple comparison test (p < 0.001); n = 3–4/group. (C) Uterine mass of Ovx and Sham mice dissected and weighed after the terminal 
contraction experiment. Data was analyzed by a pooled t-test (Ovx vs. Sham, p = 0.016); n = 4/group. Values represents mean ± SD. *p < 
0.05, ***p < 0.001, ****p < 0.0001. 

https://www.biorender.com/
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The datasets were processed to identify intersecting 

proteins and phosphosites, which were then deemed to be 

associated with estrogen deficiency. After filtering for 

robustness (i.e., relative abundance detected in at least 

3 out of the 4 biological replicates in Ovx or Sham and 

2 out of 3 biological replicates in OA or YA groups),  

66 estrogen deficiency-associated proteins were 

identified (Supplementary Table 1). Of these 

 

 
 

Figure 2. Characteristics of the Ovx/Sham and OA/YA phosphoproteomes. Proteome Discoverer (v2.4) was used for database 

search and identification of phosphopeptides and proteins. Venn diagram of identified phosphopeptides unique to each group and common 
to both groups in (A) Ovx/Sham and (B) OA/YA datasets. Prevalence of phosphorylation on amino acid residues serine (S), threonine (T), 
and tyrosine (Y) in (C) Ovx/Sham and (D) OA/YA datasets. Volcano plots of differentially regulated phosphopeptides (p < 0.05 and 1.4-fold 
change) in (E) Ovx/Sham and (F) OA/YA mice. 
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Table 1. Estrogen deficiency-associated phosphosites in Ovx/Sham and OA/YA datasets. 

Uniprot 
accession ID 

Gene 
symbol 

Protein description 
Phosphosite 

(Score) 
Log2 ratio: 
Ovx/Sham 

Log2 ratio: 
OA/YA 

A2AUD5 Tpd52l2 Tumor protein D54  S166 (100) 6.64 −6.64 

Q03265 Atp5f1a ATP synthase subunit alpha, mitochondrial  S521 (100) 1.61 −6.64 

Q8CE04 Cast Calpastatin  S82 (100) 6.64 6.64 

Q9CQH3 Ndufb5 
NADH dehydrogenase [ubiquinone] 1 beta 
subcomplex subunit 5, mitochondrial  

S182 (100) 1.04 −6.64 

Q9ESX5 Dkc1 H/ACA ribonucleoprotein complex subunit DKC1 S481 (100) −6.64 −6.64 

Q9JK37 Myoz1 Myozenin-1  S134 (100) 3.23 6.64 

Q5EBG6 Hspb6 Heat shock protein beta-6 S16 (100) −0.80 −3.38 

A0A1D5RLD8 Gm10358 Glyceraldehyde-3-phosphate dehydrogenase T182 (100) −0.58 −2.88 

P31001 Des Desmin  S28 (100) −0.87 −2.53 

P48678 Lmna Prelamin-A/C  S390 (100) −0.93 −2.18 

A0A494B9J0 Ankrd2 Ankyrin repeat domain-containing protein 2 
S321 (100); 
T325 (100) 

−1.09 −2.28 

G5E8J6 Hrc Histidine rich calcium binding protein S104 (100) −3.25 −1.33 

Q9CYR6 Pgm3 Phosphoacetylglucosamine mutase S64 (100) 1.30 −1.51 

A0A0G2JEX1 Nexn Nexilin S559 (100) 3.54 −1.40 

A0A0A0MQC7 Mapt Microtubule-associated protein  S188 (100) −6.64 −0.61 

G5E8J6 Hrc Histidine rich calcium binding protein S354 (100) 0.36 −1.17 

P48678 Lmna Prelamin-A/C  
S390 (100); 
S392 (100) 

−0.10 −1.19 

Q9ET80 Jph1 Junctophilin-1  S501 (100) 3.43 1.14 

Q9JK37 Myoz1 Myozenin-1  S164 (100) −6.64 −1.40 

A0A0R4J1B1 Tnnt3 Troponin T S2 (100) −6.64 −0.42 

P97457 Mylpf Myosin regulatory light chain 2 S16 (99) 0.45 −0.01 

The red font denotes significant and differentially regulated phosphosites (BH p-value < 0.05 and |FC| ≥ 1.4). 

 

66 estrogen deficiency-associated proteins, four were 

significant and differentially phosphorylated (eukaryotic 

translation initiation factor 4E-binding protein 1, 

ankyrin repeat domain-containing 2, heat shock protein 

beta-6, and heterogeneous nuclear ribonucleoprotein U-

like protein 2) in the OA/YA Adult dataset. Two 

(phosphoacetylglucosamine mutase and myc box-

dependent interacting protein1) were differentially 

phosphorylated in the Ovx/Sham dataset.  

 

A total of 21 estrogen deficiency-associated phosphosites 

were found in the two datasets, of which 4 phosphosites 

were differentially regulated in both, tumor protein D54 

Ser-166, ATP synthase subunit alpha Ser-521, calpastatin 

(CAST) Ser-82, and H/ACA ribonucleoprotein complex 

subunit DKC1 (DKC1) Ser-481 (Table 1). CAST Ser-

82 and DKC1 Ser-481 were the only two phosphosites 

that had the same directionally across both datasets, 

upregulation and downregulation, respectively in 
estrogen-deficient mice. Although we did identify 

estrogen deficiency-associated phosphosites on six 

sarcomeric proteins (myozenin-1 Ser-134, desmin Ser-28, 

nexilin Ser-559, junctophilin-1 Ser-501, troponin T  

Ser-2, and myosin regulatory light chain 2 Ser-16), only 

myozenin-1 Ser-134 was differentially regulated in the 

OA/YA dataset; whereas, myozenin-1 Ser-164 and 

troponin T Ser-2 were differentially regulated in the 

Ovx/Sham datasets. These data show that Ovx and OA 

mice compared to their respective control, Sham or YA, 

had some similar phosphoproteomic alterations in 

contracted muscles induced by estrogen deficiency. 

 

GO term overrepresentation analysis  

 

To gain insight on the biological significance of 

estrogen deficiency in the skeletal muscle phospho-

proteome after contraction in Ovx and OA mice, a 

comparative GO term overrepresentation analysis was 

performed. The top 10 most overrepresented GO terms 

for cellular compartment, molecular function, and 

biological process are shown in Figure 3A–3C, 
respectively. There was significant overrepresentation 

of GO terms (FDR < 0.05) across all GO domains with 

numerous similarities between both datasets. GO 
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molecular function analysis had similar terms enriched 

in both datasets relating to actin/actin filament binding, 

structural constituent of the cytoskeleton and muscle, 

calmodulin binding, tropomyosin binding, and 

translation regulator activity. However, there was a 

preferential enrichment in phosphatase activity in the 

Ovx/Sham dataset; whereas, a preferential enrichment 

in translation activity in the OA/YA dataset (Figure 

3A).  All top 10 GO cellular component terms per-

taining to the muscle fiber were enriched across both 

datasets, with reduced enrichment in the myosin 

complex in the OA/YA dataset. Likewise, all GO 

biological process terms except one, glycogen 

metabolic process, was enriched across both datasets. 

Overall, the top 10 GO term enrichments across many 

molecular functions, and essentially all cellular 

components and biological processes were consistent in 

the Ovx/Sham and OA/YA datasets suggesting that 

estrogen deficiency confer parallel changes in the 

phosphoproteome of contracted muscles. 

 

KEGG and Reactome pathway overrepresentation 

analysis 

 

To further explore biological pathways associated with 

estrogen deficiency in the datasets, overrepresentation 

analysis of KEGG and Reactome pathways was 

performed. Using the K-means clustering algorithm, 

mutual overlapping pathways were clustered together 

via the similarity between nodes, and the stronger the 

similarity, the shorter and thicker the connecting lines 

(Figure 4). Similar to the GO term analyses, among the 

top 10 pathways, all but one KEGG and three Reactome 

pathways were associated across both datasets. Only the 

“pathways of neurodegeneration – multiple diseases” 

from the KEGG analysis was unique to the OA/YA 

dataset. Out of the four apoptosis related pathways from 

the Reactome analysis, three were unique to the 

Ovx/Sham dataset suggesting that apoptosis was more 

of a factor for Ovx than it was for natural OA mice. In 

summary, many enriched KEGG and Reactome 

pathways were similar across both datasets suggesting 

that these pathways may be sensitive to estrogen levels 

and may contribute to muscle contractile dysfunction. 

 

IPA’s predicted downstream effects and upstream 

regulator analytics 

 

A comparative analysis between the two core analyses 

was then performed to identify parallel activation states 

via IPA’s Z-score algorithm across IPA-derived 

molecular and cellular functions, canonical pathways, 

and upstream regulators. For reference, IPA's  

Z-score indicates a predicted overall activation or 

inhibition of functions/pathways and activated or 

inhibited upstream regulators, where a negative Z-score 

signifies inhibition/inhibited and a positive Z-score 

signifies activation/activated [38].  

 

 
 

Figure 3. Comparative GO term enrichment analysis between Ovx/Sham and OA/YA.  Phosphopeptides were mapped back to 

their precursor protein and submitted for Gene Ontology (GO) overrepresentation analysis using the clusterProfiler package in R. The 
top 10 overrepresented GO terms in the dataset for (A) molecular functions, (B) cellular components, and (C) biological processes are 
listed. P-value was adjusted using Benjamini – Hochberg post-hoc analysis for multiple comparison. Significant GO terms were accepted 
at p.adjusted < 0.05. 
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IPA molecular and cellular functions analysis 

Seventeen biological processes were identified across 

both datasets with similar directionality in activation 

and were broadly related to muscle quantity and 

function, filament formation and stabilization, transport 

of molecules, autophagy, and RNA expression and 

translation (Figure 5A). Four molecular and cellular 

functions (quantity of muscle, necrosis, force 

generation, and expression of RNA) were in activation 

states, with necrosis activation being significant 

 

 
 

Figure 4. Comparative KEGG and Reactome pathway enrichment analysis between Ovx/Sham and OA/YA. Significant and 

differentially regulated phosphopeptides (adjusted p-value < 0.05 and |FC| ≥ 1.4) were mapped back to their precursor protein and the list 
was submitted to R for analysis of KEGG and Reactome pathways. The top 10 overrepresented (A) KEGG and (B) Reactome pathways were 
clustered using K-means clustering. The size of the circle represents the number of proteins associated to the pathway, and the connecting 
lines represents the strength of the similarity (i.e., shorter and thicker lines correspond to stronger similarity and inversely. 
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(Z-score = 2.52) in the OA/YA dataset. The remaining 

molecular and cellular functions were in inhibition 

states, with a strong inhibition of polymerization of 

filaments (Z-score = 1.94) in the Ovx/Sham dataset. 

These parallel molecular and cellular functions 

identified across both datasets suggest a compromise 

not only in the force-generating capacity of skeletal 

muscle but also mechanisms involved in skeletal 

muscle maintenance and integrity when estrogen is 

deficient. 

 

 
 

Figure 5. IPA’s predictive downstream effect and upstream regulator analytics between Ovx/Sham and OA/YA. 
Phosphopeptides identified in both the Ovx/Sham and OA/YA datasets were submitted to IPA for comparative analysis. (A) 

canonical pathways, (B) functions, and (C) kinases and phosphatases using IPA’s predictive activation Z-score to determine downstream and 
upstream effects of estrogen deficiency. Pathways, functions, and kinases identified in both datasets are represented. Significant Z-scores 
were accepted at |Z| ≥ 2. Red box denotes significant Z-scores. 
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IPA canonical pathway analysis 

Seven canonical pathways were identified having the 

same directionality of activation across both datasets, 

with all showing inhibition except for 14-3-3 protein 

mediated signaling which was activated in an estrogen 

deficient condition (Figure 5B). All pathways were 

significantly enriched (p < 0.05) across both datasets 

except for phagosome formation in the OA/YA dataset 

(p = 0.299). The top three canonical pathways, AMPK 

signaling, 14-3-3 protein mediated signaling, and 

calcium signaling, had significant Z-scores in the 

Ovx/Sham dataset (-2.23, 2.0, and -2.0, respectively). 

The similarities in inhibition or activation of canonical 

pathway profiles indicate important calcium, kinase, 

and cellular signaling in skeletal muscle that may be 

compromised in estrogen-deficient mice, which could in 

turn contribute to changes in muscle force generation. 

 

IPA upstream regulatory analysis 

Ten upstream regulators (i.e., candidate kinases and 

phosphatases) were identified across both datasets 

(Figure 5C). All candidate kinases and phosphatases 

were inhibited (negative Z-scores) with the exception of 

serine/threonine-protein phosphatase 2A catalytic 

subunit (PPP2C) being activated in both the Ovx/Sham 

(Z-score = 0.79) and OA/YA (Z-score = 1.98) datasets. 

Mitogen activated protein kinase 1 (MAPK1 also 

known as ERK2, Z-score = −3.23) and cAMP-

dependent protein kinase (PKA) catalytic subunit alpha 

(PRKACA, Z-score = −2.74) were significantly 

inhibited and SET (Z-score = −1.94) and AMPK 

(Z-score = −1.92) was highly inhibited in the OA/YA 

compared to the Ovx/Sham dataset (Z-scores = −0.58, 

−1.07, −0.57, and −1.13 for MAPK1, PRKACA, SET, 

and AMPK, respectively). Calcineurin proteins(s) 

(Z-score = −2.11) was the only phosphatase regulator 

that was significantly inhibited in the Ovx/Sham dataset 

compared to the OA/YA (Z-score = −0.13). Overall, the 

parallel activation status of these candidate kinases and 

phosphatases across both datasets suggests sensitivity to 

the loss of estrogen in skeletal muscle of female mice, 

with more robust inhibited or activated score in the 

OA/YA group potentially due to the compounded 

effects of aging. 

 

DISCUSSION  
 

The purpose of this study was to utilize two models of 

female estrogen deficiency, ovariectomy and natural 

aging-induced ovarian senescence, to identify estrogen 

sensitive alterations in the phosphoproteomic landscape 

of skeletal muscle after contraction. We identified 

parallel alterations in molecular and cellular signatures 

and pathways in both models related to skeletal muscle 

contractile function and structural integrity coupled with 

enriched pathways for AMPK, 14-3-3, and calcium 

signaling. This work provides insight into 

phosphorylation alterations and potential candidate 

kinases and phosphatases related to force-generating 

capacity of skeletal muscle affected by estrogen 

deficiency that may contribute to muscle strength loss in 

females. 

 

Estrogen deficiency by Ovx influences phosphorylation 

of muscle proteins in resting, noncontracted TA 

muscles; including proteins related to calcium 

handling and identifying AMPK as a candidate kinase 

[32]. Not surprisingly, here in response to contraction, 

phosphorylation alterations in the TA muscle from two 

models of estrogen deficiency, Ovx and aged, ovarian 

senescent mice, were measured and inhibition of 

AMPK and calcium signaling pathways were 

identified as well. Dysregulation in AMPK signaling 

and perturbed calcium handling in skeletal muscle is 

consistent with other reports in Ovx and aging mice 

[39–41]. Taken together, these results suggest that 

whether in resting, noncontracted or contracted 

skeletal muscle, estrogen deficiency may modulate 

phosphorylation alterations pertaining to AMPK 

signaling and calcium handling in females that may 

impact force generation. 

 

In addition, calcium-mediated proteolysis appears to be 

affected by the estrogenic environment. Significant 

upregulation of CAST (a calpain inhibitor) Ser-82 

phosphorylation combined with altered phosphorylation 

of calpain substrates - downregulation of desmin and 

troponin T in both datasets and downregulation of 

myosin regulatory light chain phosphorylation in 

OA/YA dataset with upregulation in the Ovx/Sham 

dataset - imply abrogation of calpain activities in 

contracted muscle. Hyperphosphorylation of CAST 

positively regulates calpain inhibition [42], and 

phospho-modifications on calpain substrates has been 

shown to regulate the susceptibility of the substrate to 

calpain degradation [43]. Calpain-mediated proteolytic 

activities in skeletal muscle are crucial for myofibrillar 

protein turnover and aid in muscle plasticity through 

disassembly of the myofibril [44]. Impaired proteostasis 

by decreased proteolytic activity and/or increased 

protein aggregation – a hallmark in skeletal muscle 

aging [45], may contribute to the loss of strength in 

females due to estrogen deficiency. Interestingly, such 

estrogen-sensitive phosphorylation alterations in 

calpain-related proteolytic activities appear to be 

mediated by muscle contraction, as CAST was not 

significantly upregulated in noncontracted Ovx female 

muscle [32]. 

 
The present study suggests that loss of estrogen 

modulates kinase and phosphatase activities in 

contracted muscle that may affect the force-generating 
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capacity in female mice, as predicted by the significant 

changes in activation status from IPA’s upstream 

regulator analysis. All identified kinases and 

phosphatases had analogous directionality of activation 

in both models of estrogen deficiency with MAPK1/ 

ERK2 and PRKACA predicted to be significantly 

inhibited in the OA/YA Adult dataset. Identification of 

the involvement of the MAPK pathway via MAPK1/ 

ERK2 as a potential candidate kinase sensitive to 

estrogen level is consistent with previous work in 

contracted ex vivo and noncontracted muscle [29, 32]. 

Total MAPK1/ERK2 levels have also been reported to 

be significantly decreased in skeletal muscle from Ovx 

compared to Sham mice after a fatiguing contraction 

protocol [39], and reduced activation was observed after 

a bout of resistance exercise in older men compared to 

young men [46]. Furthermore, C2C12 cells exposed to 

hydrogen peroxide exhibited cytoskeleton disorganiza-

tion, mitochondrial redistribution, and fragmented 

nuclei – features associated with apoptosis, and were 

rescued upon E2 pretreatment, which was found to exert 

anti-apoptotic effects via ERK and p38 MAPK 

activation [47]. Therefore, downregulation of MAPK1/ 

ERK2 activity in contracted muscle may indicate 

increased activation in apoptotic pathways and 

increased perturbations of the cytoskeleton, consistent 

with our enrichment analyses.  

 

Another candidate kinase identified from IPA’s 

upstream regulator analysis was PRKACA. PRKACA is 

the catalytic subunit alpha of PKA that is released upon 

binding of cAMP to the regulatory subunit dimer of 

PKA.  Unlike MAPK1/ERK2, there is limited 

information on the specific role of PRKACA in skeletal 

muscle. However, PKA has also been identified as a 

potential candidate kinase sensitive to E2 [29]. 

Overexpression of the PKA catalytic domain in skeletal 

muscle was revealed to inhibit Forkhead box O activity 

and contribute to muscle remodeling [23]. In addition, 

incubation of skeletal muscle single fibers with PKA 

enhanced contractile function by modifying protein-

binding protein C in older compared to young men [48]. 

Importantly, it is well established that PKA regulates 

calcineurin [49], which was also predicted to be 

downregulated in contracted muscle from both estrogen 

deficient models.  Calcineurin inhibition has been 

shown to induce muscle defects, such as fiber atrophy, 

immature myotube formation, calcification, and 

inflammation [50]. The impact of PKA and/or 

calcineurin have been extensively studied and details on 

their impact on hypertrophy, regeneration, metabolism, 

and muscle disorders in skeletal muscle can be found in 

a number of exceptional reviews [51–56]. The 
implication of both PKA and calcineurin being inhibited 

in our two datasets suggest comprised contractile 

function, fiber maturation, and muscle remodeling that 

may in turn contribute to decreased force-generating 

capacity of skeletal muscle in estrogen-deficient 

females, whether via ovariectomy or natural aging-

induced ovarian-senescence. 
 

The current study examined the impact of estrogen 

deficiency in the skeletal muscle phosphoproteome after 

contraction and force generation and identified 

corresponding alterations in protein phosphorylation, 

pathways, and upstream regulators in both Ovx and 

natural aged, ovarian-senescent female mice. The 

results provide two rich datasets for further study  

of estrogen deficiency-induced phosphoproteomic 

alterations in female skeletal muscle. For example, 

further analyses could probe estrogen sensitivity 

changes of the phosphoproteomic landscape in the 

transition from resting muscle to contracting muscle. 

Our study on noncontracted muscle [32] and here on 

contracted muscle utilized the tibialis anterior muscle of 

the leg, which in mice consists of fibers expressing type 

2 myosin heavy chain. Thus, future studies comparing 

estrogen deficiency-induced phosphoproteomic altera-

tions in muscles composed of type 1 fibers to datasets 

from TA muscle would be highly informative. 

Furthermore, to confirm estrogen deficiency was the 

unifying factor in the surgical and aging estrogen-

deficiency models used here, an estradiol replacement 

intervention in either or both of the models would be 

ideal. In summary, our results from contracted skeletal 

muscle highlight CAST Ser-82 as a candidate 

phosphosite, and MAPK1/ERK2, PRKACA, and 

calcineurin as candidate upstream regulators sensitive 

to estrogen deficiency that may contribute to changes 

in the force-generating capacity of skeletal muscle. 

Future studies based on these bioinformatic and 

computational modeling analyses will be key 

confirmatory experiments to test the extent to which 

the predicted candidate phosphosites, kinases and 

phosphatases, and pathways affect muscle strength in 

aging females. 

 

MATERIALS AND METHODS 
 

Animals 
 

Female C57BL/6J (6, 4, and 24 mo) mice were 

purchased from Jackson Laboratories (Bar Harbor, ME, 

USA). All mice were housed in groups of four to five 

with access to phytoestrogen-free food and water ad 

libitum. The room was maintained on a 14:10 h 

light/dark cycle. 
 

Experimental design 
 

The study design to investigate the skeletal muscle 

phosphoproteome after contraction in two model of 
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estrogen deficiency, Ovx vs. Sham (6 mo; n = 4/group) 

and OA (24 mo) vs. YA (4 mo; n = 3/group), is 

summarized in Figure 1A. C57BL/6J female mice 

were randomly assigned to a sham or ovariectomy 

surgery. Sham and Ovx mice were 14 mo at the 

terminal experiment and Ovx mice were estrogen 

deficient for 32 wk. Vaginal cytology was performed 4 

weeks post-surgery and uterine mass was measured at 

the terminal experiment. OA and YA mice were 

purchased from Jackson Lab and were acclimatized for 

two weeks before the terminal experiment. We chose 

24 mo of age for the OA group, as C57BL/6J mice are 

ovarian-senescent as previously determined by 

cessation of estrous cycling between 13-16 mo [57] 

and in another study at <20 mo as determined by 

vaginal cytology and plasma E2 [58]. Age, evaluation 

of vaginal cytology, and measurement of uterine mass 

are proxies to indicate estrogen deficiency; a 

shortcoming of this study is that serum E2 was not 

measured. 

 

An in vivo muscle contraction protocol of the anterior 

crural muscles was performed on each mouse in all 

four groups. The protocol (detailed below) primarily 

consisted of one maximal isometric tetanic 

contraction. A single tetanic contraction was chosen to 

mitigate potential complications of muscle fatigue that 

might occur with multiple maximal contractions. 

Immediately following the muscle contraction 

protocol, the contracted tibialis anterior (TA) muscles 

from anesthetized mice were dissected within 5 min, 

flash frozen in liquid nitrogen, and stored at −80ºC 

until sample preparation and phosphopeptide 

enrichment for nanoflow LC-MS/MS acquisition. The 

TA muscle was selected for study for several reasons 

including; (1) consistency with phosphoproteomic 

results from our previous work on non-contracted 

muscles [32], (2) specificity of stimulating contraction 

and measuring peak tetanic and twitch torques of the 

anterior crural muscles [59], and (3) the muscle is 

composed of type II fibers [60] rendering it more 

sensitive to contraction-induced contractile protein 

phosphorylation relative to a muscle composed of 

type 1 fibers [61]. 

 

Sham and ovariectomy surgeries 

 

Anesthetized (1.75% isoflurane and 200 ml O2 per min) 

mice received a subcutaneous injection of slow-release 

buprenorphine (1 mg/kg) immediately prior to surgeries. 

Bilateral ovariectomy via abdominal incisions were 

made to locate the ovaries which were excised in Ovx 

mice, and located but not removed in Sham mice. The 

abdominal muscle wall incisions were closed with 6–0 

silk sutures and 7 mm wound clips closed the skin 

incision. 

In vivo muscle contraction protocol 

 

Mice were anesthetized (1.25% isoflurane and 125 O2 

per min) and positioned on a temperature-controlled 

platform as previously described [62]. Briefly, the left 

knee was immobilized and the left foot secured to an 

aluminum “shoe” that was attached to the shaft of an 

Aurora Scientific 300B servomotor. Sterilized platinum 

needle electrodes (FE212, Grass Technologies, 

Warwick, RI, USA) were inserted to stimulate the left 

common peroneal nerve, and voltage and electrode 

placement were optimized with 3–5 twitch contractions 

(0.1 ms pulse). Following optimization, an isometric 

tetanic contraction of the anterior crural muscles (the 

TA being the primary muscle in that group) was elicited 

(1000 Hz for 1000 ms with 0.1 ms pulses), with a twitch 

contraction performed 10 s prior and two post-tetanic 

twitch contractions at 2 s and 30 s after the tetanic 

contraction [36, 59].  

 

Protein extraction, digestion, and phosphopeptide 

enrichment 

 

Frozen dissected TA muscles were prepared as 

previously described [32]. Briefly, TA muscles were 

pulverized into powder with a cryo-grinder (liquid 

nitrogen cooled mortar and pestle), lysed (10 µl lysis 

buffer per mg of tissue) in protein lysis buffer (7 M 

urea, 2 M thiourea, 0.4 M Tris pH7.5, 20% acetonitrile, 

4 mM TCEP) with 1X HALT Protease and Phosphatase 

Inhibitor Cocktail (Thermo Fisher Scientific, Rockford, 

IL, USA), and sonicated for 5 s using a probe sonicator 

(Branson Digital Sonifier, Emerson, St. Louis, MO, 

USA) set at 30% amplitude, all done on ice. After 

sonication, a 160 µl aliquot of each lysate was placed in 

the Barocycler® NEP2320 (Pressure Biosciences, South 

Easton, MA, USA) at 37ºC, with pressure cycles set at 

35,000 psi for 20 s, then 0 psi for 10 s for 60 cycles for 

further protein homogenization. Once pressure cycling 

was complete, samples were transferred to a new 1.5 ml 

Eppendorf protein LoBind tube and 200 mM 

chloroacetamide stock solution was added for a final 

concentration of 8 mM to alkylate proteins (1:24 

dilution) and incubated for 15 min at room temperature. 

Samples were spun down at 15,000 × g for 10 min at 

18°C. Aliquots of supernatant were used to determine 

protein concentration using the Bradford assay. For 

trypsin digestion, 500 µg total protein was digested with 

12.5 ug sequencing grade modified trypsin (Promega, 

Madison, WI, USA) and incubated at 37°C in a warm 

air incubator overnight (~ 16 h). Samples were acidified 

to 0.2% trifluoroacetic acid (TFA) to a final volume of 

1 ml and extracted using 1 cc Oasis HLB Solid Phase 
Extraction cartridges (Waters Corporation, Milford, 

MA, USA) for clean-up.  Briefly, 1cc HLB cartridges 

were equilibrated by passing 1 mL of 80% acetonitrile, 
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0.1% TFA over the cartridge followed by passing 1 mL 

of 0.1% TFA.  The sample was passed over the 

cartridge followed by washing the sample with 1 mL 

1% acetonitrile, 0.1% TFA over the cartridge. Peptides 

were eluted with 0.5 mL 50% acetonitrile, 0.1% 

trifluoroacetic acid and vacuum dried to remove 

acetonitrile. Lysates were stored at −80°C until 

phosphopeptide enrichment. Phosphopeptide enrich-

ment was performed with the High-Select™TiO2 

Phosphopeptide Enrichment Kit (Thermo Fisher 

Scientific, Rockford, IL, USA). Eluted peptides were 

dehydrated using a speed-vac. 

 

Nanoflow LC-MS/MS  

 

Approximately 600 ng of peptide mixture, contained in 

a 1 µl aliquot of 98:2, water:acetonitrile, 0.1% formic 

acid, were analyzed in data dependent acquisition mode 

by liquid chromatography (LC)-nano ESI-mass 

spectrometry (MS) with an Ultimate 3000 Dionex 

RSLC nano LC system online with an Orbitrap Fusion 

Tribrid mass spectrometer (Thermo Fisher Scientific, 

Rockford, IL, USA). Peptides were separated during a 

linear gradient with the following profile: 5–22% 

solvent B in 70 min, 22–35% solvent B over 35 min, 

and 90% solvent B held for 10 min. Solvent A was 

water with 0.1% formic acid and solvent B was 80% 

acetonitrile with 0.1% formic acid. The 50 cm column 

was packed in house using ReproSil-Pur 120 C18-AQ 

1.9 µm (Dr. Maisch, Ammerbuch-Entringen, Germany) 

in a PicoTip 75 µm inner diameter (New Objective, 

Littleton, MA, USA). Data acquisition was acquired 

with the following MS parameters: ESI voltage 2.1 kV, 

ion transfer tube 275°C; Easy-IC internal calibration; 

Orbitrap MS1 scan 120k resolution in profile mode 

from 380–1580 m/z with 100 msec injection time; 100% 

(4 × 10E5) automatic gain control (AGC); MS2 was 

triggered on precursors with 2–6 charges above 5 × 

10E4 counts; MIPS (monoisotopic peak determination) 

was set to peptide; MS2 settings were: 1.6 Da 

quadrupole isolation window, higher energy collisional 

dissociation activation at 35% collision energy, Orbitrap 

detection with 60K resolution at 200 m/z, first mass 

fixed at 110 m/z, 150 msec max injection time, 100% 

(5 × 10E4) AGC and 40 sec dynamic exclusion duration 

with +/− 10 ppm mass tolerance.  

 

Phosphoproteomics database search, phosphoprotein 

and phosphopeptide quantification 

 

The raw MS files were processed by Proteome 

Discoverer v2.4 (Thermo Fisher Scientific, Rockford, 

IL, USA). MS/MS spectra were searched against the 
UniProtKB/Swiss-Prot mus musculus database (55,474 

entries, UniProt UP000000589, downloaded November 

2019) with the Sequest HT search engine embedded in 

Proteome Discoverer v2.4. Parameters were set as 

follows: MS1 tolerance of 15 ppm, MS/MS mass 

tolerance of 0.05 Da, trypsin (full) digestion with a 

maximum of two missed cleavages, minimum peptide 

length of 6 and maximum of 144 amino acids. Cysteine 

carbamidomethylation (57.02 Da) was set as a fixed 

modification, and methionine oxidation (15.99 Da), 

asparagine and glutamine deamidation (0.98 Da), 

acetylation of the N-terminus (42.01 Da), and 

phosphorylation of tyrosine, serine, and threonine 

(79.97 Da) were set as dynamic modifications. A false 

discovery rate (FDR) of 1% was set for peptide-to-

spectrum matches using the Percolator algorithm 

(v3.02.1) and for protein assignment. Phospho-

localization scoring was performed with the IMP-

ptmRS v2.0 node and only phosphopeptides with a 

localization score >0.8 were used for quantification. 

Unique and razor peptides were used for quantification. 

Precursor abundance quantification was based on area 

and normalized by total peptide amount. All peptides 

were used for normalization for protein quantification; 

however, only phosphorylated peptides were used for 

pairwise ratios and protein roll-up.   

 

Label-free quantitation (LFQ) of phosphopeptides were 

performed with normalized abundances using the 

Proteome Discoverer LFQ algorithms. The protein ratio 

was calculated as the geometric median of the 

phosphopeptide group ratios, and the phosphopeptide 

group ratios were calculated as the geometric median of 

all combinations of phosphopeptide ratios from all the 

biological replicates in the study. Phosphopeptides that 

had a high 1% FDR confidence were used for further 

analysis. We applied a maximum p-value filter of 0.05 

and a minimum relative fold change of phosphoprotein 

and phosphopeptide expression at 1.4 to the Proteome 

Discoverer quantification results. Phosphoproteins and 

phosphopeptides were considered significant and 

differentially regulated if they had an adjusted p-value < 

0.05 and were defined as downregulated if they had a 

fold change ≤ −1.4 or upregulated if they had a fold 

change ≥ 1.4.  

 

Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Reactome, and Gene Ontology (GO) 

enrichment analysis 

 

Significant and differentially regulated phosphopeptides 

were mapped back to their precursor protein and the list 

of proteins was used for overrepresentation analysis 

using the clusterprofiler and ReactomePA packages in 

R v4.1.1 [63–65].  Comparative enrichment analysis of 

the Ovx/Sham and OA/YA datasets were performed for 
GO terms in all three domains: cellular component, 

molecular function, and biological process. KEGG and 

Reactome pathway analyses were performed to identify 
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overrepresented pathways. Cluster analysis using the 

K-means algorithm was performed on the top 10 KEGG 

and Reactome pathways. Overrepresented pathways and 

GO annotation terms were considered significant if they 

had a Benjamini – Hochberg adjusted p-value < 0.05.  

 

Ingenuity pathway analysis (IPA) 

 

IPA (Qiagen, Redwood City, CA, USA) was used to 

perform core analyses on the on the phosphopeptides 

from Ovx/Sham and OA/YA datasets. A comparative 

analysis across both core analyses was performed in 

IPA using the activation Z-score algorithm to predict 

the activation states of pathways, functions, and 

upstream regulators from both datasets. The Z-score 

measures how closely the observed expression pattern 

of the molecules from the datasets compare to the 

expected expression pattern based on the literature for a 

particular annotation. Molecules from the dataset that 

met the cutoffs, |FC| ≥ 1.4 and adjusted p-value < 0.05 

were considered for analysis.  

 

Statistical analyses 

 

Relative phosphoprotein quantification was analyzed in 

Proteome Discoverer v2.4 (Thermo Fisher Scientific, 

Rockford, IL, USA) using a background t-test. Fisher’s 

exact test was used in IPA to calculate p-values for the 

association or overlap between the identified molecules 

in the dataset and a given pathway/process/function. 

Benjamini – Hochberg post-hoc analysis was used to 

correct for multiple comparisons. The predicted 

activation state in the pathways/functions/upstream 

regulators in IPA were measured as a Z-score. 

Significant activation or inhibition was accepted at |Z| 

≥ 2. Significance was accepted at α < 0.05 level. 

 

Supporting information 

 

Supplementary Materials and Methods and Figures can 

be found online.  

 

The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via 

PRIDE [66] partner repository with the dataset 

identifier PXD035171 (http://www.ebi.ac.uk/pride/ 

archive/projects/PXD035107). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. TA muscle mass and torque of adult Sham and Ovx mice and Young adult (YA) and Older adult 
(OA) mice. (A) Left TA muscles were immediately dissected after the terminal contraction experiment and weighed. (B) TA mass was 
normalized to mouse body mass. Absolute torque measurements were measured in each mouse (C–E) and torque measurements were 
normalized to body mass (F–H). (C, F) pre-tetanic twitch torque, (D, G) maximal isometric tetanic torque, and (E, F) post-tetanic twitch 
torque measurements. All data A-H were analyzed by a one-way ANOVA with Tukey’s multiple comparison test: significant differences were 
found in TA mass (p = 0.001), normalized TA mass to body mass (p = 0.003), and normalized torque (p ≤ 0.044), but no significant 
differences were found across groups for absolute torque measurements (p ≥ 0.158); n = 3–4/group). Values represents mean ± SD. 
& significantly different from OA, # significantly different from YA. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Estrogen deficiency-associated phosphoproteins identified in both Ovx/Sham and OA/YA 
datasets. 

 


