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INTRODUCTION 
 

Population aging is steadily elevating to a significant 

worldwide concern. Statistics show that those over the 

age of 65 have an 11-fold higher incidence of cancer 

than people under that age [1]. Prostate cancer (PCa), 

which is most prevalent in males 65 and older, will 

exponentially increase in prevalence by 2030, when 

almost 20 percent of the world’s population will be 65 

or older [2, 3]. In light of this, PCa remains a public 
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ABSTRACT 
 

Background: An increasing number of studies are shown how crucial a role cellular senescence plays in tumor 
development. In this study, we developed a senescence-related lncRNA prognostic index (SRLPI) to forecast 
radiosensitivity and the probability of biochemical recurrence (BCR) in patients with prostate cancer (PCa). 
Methods: PCa cohorts in TCGA and GEO databases were downloaded. Senescence-and prognosis-related 
lncRNA with differential expression in tumor and normal samples were identified and used to establish the 
SRLPI score. Mutation landscape, function pathway, tumor stemness and heterogeneity and tumor immune 
microenvironment were also analyzed. We performed the analysis using R 3.6.3 and the appropriate tools. 
Results: A SRLPI score was constructed based on SNHG1 and MIAT in the TCGA cohort. Our classification of PCa 
patients into high- and low-risk groups was based on the median SRLPI score. When compared to the low-SRLPI 
group, the high-SRLPI group was more vulnerable to BCR (HR: 3.33). In terms of BCR-free survival and 
metastasis-free survival, the GSE116918 showed similar findings. Surprisingly, the SRLPI score demonstrated a 
high level of radiosensitivity for diagnosis (AUC: 0.98). Age, Gleason score, T stage, N stage, positive lymph 
nodes, and residual tumor were all significantly greater in patients with high SRLPI scores. Furthermore, this 
score was significantly related to markers of senescence. Protein secretion and androgen response were found 
to be substantially enriched in the low-SRLPI group, whereas E2F targets were found to be strongly enriched in 
the high-SRLPI group for pathway analysis. For the tumor microenvironment assessment, B cells, CD8+ T cells, 
immune score and TIDE score were positively related to SRLPI score while endothelial level was negatively 
associated with SRLPI score with statistical significance. 
Conclusions: We developed a SRLPI score that was related to prognosis and radiosensitivity and might be 
helpful in clinical practice. 
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health concern for men, and as the world’s population 

ages, its effects will become more obvious [4]. For low- 

and intermediate-risk localized PCa patients, radical 

prostatectomy and radical radiotherapy are the two 

chosen treatments [5–8]. Despite surgery and radiation, 

about 27–53% of these patients still succumb to the 

disease due to biomedical recurrence (BCR) or 

metastasis [7, 9–12]. Additionally, roughly a third of 

patients who experience recurrence eventually develop 

castration-resistant PCa, the most common kind of 

cancer fatality with an estimated mortality rate of nearly 

28 percent for 5-year survival [6, 12]. The clinical 

variability of PCa is paralleled in the geographical and 

clonal genetic variety, making PCa a heterogeneous 

disease [4]. Therefore, it is crucial to include molecular 

biomarkers that forecast BCR in clinical therapies to 

stop further development or metastasis. 
 

Stress-induced permanent, irreversible cell cycle arrest 

known as cellular senescence causes a reduction in 

cellular processes such proliferation, migration, homing, 

and differentiation [8, 13–17]. Senescence brings about 

a number of abnormalities in the human body that have 

been demonstrated to hasten aging, cause carcinogenesis, 

and promote the spread of cancer [1]. Furthermore, 

aging is an established risk factor for many tumors 

[18, 19]. Therefore, it is crucial to investigate the 

intersections between aging and cancer and look for 

new ways to heal those intersections in order to combat 

malignancies that are linked to aging. Long non-coding 

RNAs (lncRNAs), a category of non-coding RNAs 

longer than 200 nucleotides, can regulate the expression 

of protein-coding genes and have come to light in recent 

years as having significant involvement in a number of 

biological processes related to human diseases, 

including PCa [20–25]. In our earlier researches, we 

discovered certain senescence-related biomarkers linked 

to PCa patients’ prognosis [8, 14, 15], but the potential 

effects of lncRNAs associated with senescence-related 

genes on this disease have not been reported. Thus, in 

this study, we established a senescence-related lncRNA 

prognostic index (SRLPI) to predict BCR risk and 

radiosensitivity for PCa patients. 

 

METHODS 
 

Data preparation 
 

We downloaded 279 genes responsible for cellular 

senescence in humans from the CellAge database 

(http://genomics.senescence.info/cells) which was based 

on gene manipulation experiments in different human 

cell types [26]. The PCa gene matrix and clinical 
characteristics from our prior work were used in The 

Cancer Genome Atlas (TCGA) database [10]. We 

examined differentially expressed lncRNAs and 

lncRNAs associated with BCR. Differential expression 

was defined as when Padj was less than 0.05 and the 

fold change absolute value was larger than 1.5. The 

senescence-related lncRNAs were calculated using a 

Pearson analysis, and the requirements were that the 

P value be less than 0.5 and the absolute value of the 

coefficient be greater than 0.4. A Pearson analysis was 

used to determine the senescence-related lncRNAs, 

and the P value and absolute value of the coefficient 

had to be less than 0.5 and more than 0.4, respectively. 

430 samples from the TCGA database were examined, 

and the log-rank test for BCR-free survival yielded a p 

value less than 0.05. We discovered the lncRNAs that 

were used to build the SRLPI score after the 

intersection of differentially expressed BCR-related, 

senescence-related, and lncRNAs. We then performed 

lasso and multivariate Cox regression analysis. The 

prognostic and clinical values of SRLPI in 430 PCa 

patients in TCGA database were analyzed, which was 

confirmed by the GSE116918 [27] and GSE70768 

[28]. Additionally, in order to determine the prognostic 

role of the SRLPI score, we graded the PCa patients in 

TCGA database or GSE116918 [27] based on the 

European Association of Urology (EAU) [29] and 

National Comprehensive Cancer Network (NCCN) 

guidelines [30] and further compared these factors 

using Cox regression analysis in terms of BCR-free 

survival. The diagnostic ability of SRLPI for 

radiosensitivity was analyzed by the GSE53902 [31]. 

Furthermore, we explored the relationship between 

SRLPI score and senescence markers, including p16, 

p21, CTSD, LMNB1 and RB1, based on the previous 

study [32]. 

 

Mutation landscape and functional analysis of SRLPI 

 

The TCGA database, which contains information on 

PCa, was used to download RNA-sequencing profiles, 

genetic mutations, and related clinical data. Using the 

maftools package in the R programming language, the 

data of mutations were downloaded and displayed. A 

comparison of the differences in mutation frequency 

between the two kinds was also done. 

 

In terms of functional analysis, gene set variation 

analysis was performed using “h.all.v7.4.symbols.gmt 

“and “h.all.v7.4.symbols.gmt “from the molecular 

signatures database [33, 34]. The minimal gene set 

was determined to be 5 and the maximum gene set to 

be 5000 based on gene expression. Each sample’s 

enrichment score was determined, and using the 

Wilcox. Test function, we analyzed the difference 

between samples with high and low SRLPI scores as 
specified by the median value. Statistical significance 

was defined as a Padj value of less than 0.01 and an 

absolute fold change value greater than 1.5. 

http://genomics.senescence.info/cells
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Tumor stemness and heterogeneity analyses 

 

Tumor stemness indexes included differentially 

methylated probes-based stemness scores (DMPss), 

DNA methylation-based stemness scores (DNAss), 

enhancer elements/DNA methylation-based stemness 

scores (ENHss), epigenetically regulated DNA 

methylation-based stemness scores (EREG-METHss), 

epigenetically regulated RNA expression-based stem-

ness scores (EREG.EXPss) and RNA expression-based 

stemness scores (RNAss) [35]. Tumor heterogeneity 

included homologous recombination deficiency (HRD), 

loss of heterozygosity (LOH), neoantigen (NEO), tumor 

ploidy, tumor purity, mutant-allele tumor heterogeneity 

(MATH), tumor mutation burden (TMB) and 

microsatellite instability (MSI) [36, 37]. The results  

of above indicators were obtained from our previous 

study [7]. We compared the differences of high-  

and low- SRLPI groups using the Wilcoxon rank sum 

test. 

 

Tumor microenvironment assessment 

 

EPIC and ESTIMATE algorithms were used to assess 

the entire tumor microenvironment and immunological 

components [38–40]. The tumor immune dysfunction 

and exclusion (TIDE) algorithm was used to predict the 

potential response to immune checkpoint blockade 

(ICB) therapy [41]. A high TIDE score indicates low 

ICB efficacy. The Wilcoxon rank sum test was used to 

examine the differences in 54 immune checkpoints and 

tumor microenvironment scores between groups with 

high and low SRLPI scores. The study’s flowchart is 

shown in Figure 1. 

 

 
 

Figure 1. The flowchart of this study. Abbreviations: PCa: prostate cancer; lncRNA: long non-coding RNA; BCR: biochemical recurrence; 

GSVA: gene set variation analysis; SRLPI: senescence-related lncRNA prognostic index. 
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Statistical analysis 

 

We performed the analysis using R 3.6.3 and the 

appropriate tools. The t-test was used to compare two 

groups where the variable was of the numerical type, 

and one-way ANOVA was used to compare three 

groups when the data passed the tests for normal 

distribution and homogeneity of variance. Welch t’ test 

and Welch one-way ANOVA were employed for two-

group comparisons and three-group comparisons, 

respectively, where the data satisfied the criteria for 

normal distribution but failed the homogeneity of 

variance test. Because the normal distribution was not 

satisfied, Wilcoxon was used for comparisons between 

two groups, and Kruskal-Wallis was used for 

comparisons between three groups. When the data 

matched the criteria of theoretical frequency >5 and 

total sample number ≥40 and the variable was 

categorized, the chi-square test was employed to 

compare the groups. The continuous adjustment chi-

square test (Yates’ correction) was employed to 

compare groups when the data matched the criteria of 

5> theoretical frequency ≥1 and total sample number 

≥40. Fisher’s exact test was employed to compare 

groups where the theoretical frequency was less than 1 

or the total sample size was under 40. A Kaplan-Meier 

curve representing the results of the log-rank test was 

used for the survival analysis. The threshold for 

statistical significance was two-sided p 0.05. Significant 

marks were as follows: not significance (ns), p ≥ 0.05; 
*p < 0.05; **p < 0.01; ***p < 0.001. 

 

Availability of supporting data 
 

The datasets presented in this study can be found in 

online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article/supplementary material. 

 

RESULTS 
 

SRLPI identification and its clinical applications 
 

In the TCGA cohort, 47 lncRNAs were differently 

expressed between 498 tumor and 52 normal PCa 

samples (Figure 2A). 73 senescence-related lncRNAs 

and 38 BCR-related lncRNAs were found 

(Supplementary Figure 1). After intersection, we 

discovered 16 lncRNAs with differential expression 

linked to BCR and senescence (Figure 2B). Following 

multivariate Cox regression analysis, we utilized Lasso 

regression analysis to further screen lncRNAs, and 

when lambda equaled 0.02 (Figure 2C), we obtained 
three lncRNAs for the best model (Figure 2D), with 

small nucleolar RNA host gene 1 (SNHG1) and 

myocardial infarction associated transcript (MIAT) 

serving as the final independent risk lncRNAs (Figure 

2E). Thus, we established a SRLPI score using the 

following formula: SRLPI = 0.700336146 × SNHG1 + 

0.315877609 × MIAT. The correlation of outcomes and 

SRLPI score was presented in Figure 2F, and the 

diagnostic accuracy of SRLPI score for BCR was not 

good (Figure 2G). Notably, we found that SRLPI score 

was significantly associated with senescence markers 

(Figure 2H). 

 

We divided the PCa patients into high- and low- risk 

groups according to the median value of SRLPI score. 

We found that high-SRLPI group was more susceptible 

to BCR than low-SRLPI group (HR: 3.33, p < 0.001; 

Figure 2I). Similar results were found in the 

GSE116918 [27] in terms of BCR-free survival (Figure 

2J) and metastasis-free survival (Figure 2K). 

Surprisingly, SRLPI score showed highly diagnostic 

ability of radiosensitivity (AUC: 0.988; Figure 2L) 

using the GSE53902 [31]. In the multivariate Cox 

regression including clinical features, EAU and NCCN 

risk classifications and SRLPI score, this score was  

an independent risk factor in TCGA database 

(Supplementary Table 1) and GSE116918 [33] 

(Supplementary Table 2). In TCGA database, patients 

in high-SRLPI score had significantly higher age, 

Gleason score, T stage, N stage, positive lymphnodes 

and residual tumor (Table 1). Similar findings were 

observed in the GSE116918 [42] (Table 2). 

Furthermore, a substantial correlation between a higher 

SRPLPI score and older age was found in the 

GSE70768 [28] (Supplementary Figure 2). 

 

Mutation genes, functional enrichment, tumor 

heterogeneity and stemness 

 

The top gene between high- and low- SRLPI groups 

was tumor protein P53 (TP53) with statistical 

significance (Figure 3A). For tumor heterogeneity and 

stemness, SRLPI score was positively related to MSI, 

HRD, LOH, TMB, tumor purity, tumor ploidy, 

DMPss, ENHss and DNAss, but was negatively 

associated with EREG.EXPss with statistical 

significance (Figure 3B). Protein secretion and 

androgen response were found to be substantially 

enriched for the signature gene set enrichment in the 

low-SRLPI group, whereas E2F targets were found to 

be strongly enriched in the high-SRLPI group (Figure 

3C). For pathway analysis, the fatty acid cycling 

model, mitochondrial uncoupling, disorders of base 

excision repair, and tRNA modification in the 

mitochondrion were substantially enriched in the high-

SRLPI group, whereas attachment of glucose-6-
phosphate isomerase anchor to urokinase plasminogen 

activator surface receptor was strongly enriched in the 

low-SRLPI group (Figure 3D). 
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Figure 2. SRLPI identification and its clinical applications. (A) heatmap showing differentially expressed lncRNAs between tumor and 
normal samples in TCGA database; (B) Venn plot showing the intersection of senescence-related, differentially expressed and BCR-related 
lncRNAs; (C) lasso regression analysis showing the optimal lambda for the model; (D) lasso regression analysis showing the lncRNAs in the 
optimal model; (E) multivariate Cox regression analysis showing the prognostic lncRNAs used to construct the SRLPI score in terms of 
biochemical recurrence-free survival; (F) risk factor plot showing the distribution of outcomes and final lncRNAs in the SRLPI score; 
(G) time-dependent ROC curve showing the diagnostic ability of SRLPI score for BCR identification of PCa patients; (H) heatmap showing 
relationship of SRLPI score with common senescence markers; (I) Kaplan-Meier curve showing the survival difference of high- and low- 
SRLPI groups for PCa patients in TCGA database; (J) Kaplan-Meier curve showing the BCR-free survival difference of high- and low- SRLPI 
groups for PCa patients in GSE116918; (K) Kaplan-Meier curve showing the metastasis-free survival difference of high- and low- SRLPI 
groups for PCa patients in GSE116918; (L) ROC curve showing the diagnostic accuracy of SRLPI score for radiotherapy sensitivity in PCa 
patients. Abbreviations: SRLPI: senescence-related lncRNA prognostic index; BCR: biochemical recurrence; ROC: receiver operating 
characteristic curve; lncRNA: long non-coding RNA; PCa: prostate cancer. Note: prostate cancer patients were divided into high- and low- 
risk groups according to the median value of SRLPI score. 
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Table 1. The clinical differences of the two risk groups in prostate cancer patients in TCGA database. 

Features Low SRLPI score High SRLPI score P value 

Sample 215 215  

Age, median (IQR) 61 (55, 65) 62 (57, 66.5) 0.016 

Gleason score, n (%)   <0.001 

6 19 (4.4%) 20 (4.7%)  

7 135 (31.4%) 71 (16.5%)  

8 20 (4.7%) 39 (9.1%)  

9 41 (9.5%) 85 (19.8%)  

T stage, n (%)   0.006 

T2 93 (21.9%) 62 (14.6%)  

T3 116 (27.4%) 145 (34.2%)  

T4 3 (0.7%) 5 (1.2%)  

Race, n (%)   0.606 

Asian 6 (1.4%) 5 (1.2%)  

Black or African American 22 (5.3%) 28 (6.7%)  

White 182 (43.8%) 173 (41.6%)  

N stage, n (%)   <0.001 

N0 165 (44%) 141 (37.6%)  

N1 19 (5.1%) 50 (13.3%)  

Positive lymphnodes, n (%)   <0.001 

No 160 (44.7%) 128 (35.8%)  

Yes 19 (5.3%) 51 (14.2%)  

Residual tumor, n (%)   <0.001 

No 156 (37.2%) 117 (27.9%)  

Yes 52 (12.4%) 94 (22.4%)  

Abbreviations: IQR: interquartile range; SRLPI: senescence-related lncRNA prognostic index. Note: prostate cancer patients 
were divided into high- and low- risk groups according to the median value of SRLPI score. 

 

Table 2. The clinical differences of the two risk groups in prostate cancer patients in the GSE116918. 

Features Low SRLPI score High SRLPI score P value 

Sample 124 124  

Age, median (IQR) 67 (64, 71.25) 69 (62, 73) 0.336 

T stage, n (%)   0.002 

T1 37 (16.6%) 14 (6.3%)  

T2 36 (16.1%) 40 (17.9%)  

T3 39 (17.5%) 53 (23.8%)  

T4 1 (0.4%) 3 (1.3%)  

Gleason score, n (%)   0.002 

6 28 (11.3%) 14 (5.6%)  

7 52 (21%) 47 (19%)  

8 28 (11.3%) 24 (9.7%)  

9 16 (6.5%) 39 (15.7%)  

Abbreviations: IQR: interquartile range; SRLPI: senescence-related lncRNA prognostic index. Note: prostate cancer patients 
were divided into high- and low- risk groups according to the median value of SRLPI score. 
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Figure 3. Mutation genes, functional enrichment, tumor heterogeneity and stemness and TME. (A) waterfall plot showing top 

10 differentially mutation genes between high- and low- SRLPI groups for prostate cancer patients in TCGA database; (B) lollipop plot 
showing the relationship between tumor stemness and heterogeneity indicators and SRLPI score in TCGA database; (C) heatmap showing 
differences of enriched hallmarks between high- and low- SRLPI groups in TCGA database; (D) heatmap showing differences of enriched 
pathways between high- and low- SRLPI groups in TCGA database; (E) lollipop plot showing the relationship between significant immune 
checkpoints and SRLPI score with correlation coefficient ≥0.3 in TCGA database; (F) lollipop plot showing the relationship between TME 
scores and SRLPI score in TCGA database. Abbreviations: SRLPI: senescence-related lncRNA prognostic index; TME: tumor immune 
microenvironment; TIDE: tumor immune dysfunction and exclusion; CAFs: cancer-associated fibroblasts; NK: nature killer. Note: prostate 
cancer patients were divided into high- and low- risk groups according to the median value of SRLPI score. 
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Tumor immune microenvironment (TME) and 

immune checkpoints 

 

Immune checkpoints showed a substantial association 

between SRLPI score and indoleamine 2,3-Dioxygenase 

2 (IDO2) and tumor necrosis factor receptor 

superfamily member 25 (TNFRSF25) levels with a 

value greater than 0.4 (Figure 3E). In the TME 

assessment, endothelium level had a statistically 

significant negative correlation with SRLPI score while 

B cells, CD8+ T cells, immune score, and TIDE score 

had a positive correlation (Figure 3F).  

 

DISCUSSION 
 

The prevalence of malignant tumors in the elderly 

population has recently increased. PCa, a complex and 

heterogeneous population of molecular changes caused 

by heritable variants and epigenetic alterations, is 

difficult to diagnose and treat, despite the fact that the 

majority of patients are organ-confined [43, 44]. 

Fortunately, over the past ten years, research has 

advanced significantly. Several mutations with a 

significant PCa risk, such as breast cancer type 2 

susceptibility protein (BRCA2) and homeobox B13 

(HOXB13), were found [45, 46]. Additionally, it has 

been demonstrated that the expression of certain 

proteins is related to the response of androgen 

deprivation therapy (ADT) treatment in some cancer 

tissues, including androgen receptor (AR)-V7 [47]. One 

of the most often utilized therapies for PCa is radiation 

therapy; however, the tumor cells’ innate radioresistance 

limits local control and ultimately results in poor patient 

outcomes like recurrence, metastasis, and death. It is 

known that miRNAs may play a role in radioresistance, 

despite the fact that the underlying mechanisms are still 

not completely understood [48–50]. In contrast to 

miRNAs, lncRNAs can fold into secondary and tertiary 

structures and act as intended in a number of 

malignancies, including PCa [51, 52].  

 

An increasing number of studies showing links between 

PCa and aging [1, 8, 14, 15, 32, 53]. Senescent cells can 

also inhibit carcinogenesis, promote tumor growth, 

recurrence, and PCa metastasis in advanced stages [54, 

55]. Senescent tumor cells, on the other hand, can 

actually re-enter the cell cycle and acquire stem-like 

characteristics, which may indicate the possibility of 

recurrence [56–58]. In this study, from the perspective 

of cellular senescence, we preliminarily identified two 

senescence-related lncRNAs (SNGH1 and MIAT) and 

established a SRLPI score, both of which were 

significantly associated with BCR risk of PCa patients. 

SNHG1 is one of the most important regulatory RNAs 

in human cancer, acting as a competing endogenous 

RNA [59]. It was found to have enhanced expression in 

PCa and was associated with the proliferation, invasion, 

apoptosis and epithelial-mesenchymal transition (EMT) 

abilities of PC cell lines [60]. Meanwhile, MIAT has 

recently been found to be associated with the 

malignancy of PCa [61]. In this study, we again 

demonstrated their important role in PCa. Besides, 

SRLPI score was an independent risk factor of PCa 

patients, showing better advantages over EAU and 

NCCN risk classifications. We also suggested that 

further research is needed to determine whether these 

two lncRNAs contribute to the progression of PCa via 

senescence-related pathways. Interestingly, SRLPI 

score was positively related age in TCGA cohort and 

GSE70768 [28] rather than GSE116918 [27] and this 

score was significantly associated with senescence 

markers [62, 63]. These findings confirmed the concept 

that aging is not exactly the same as cellular senescence. 

With the advent of next-generation sequencing, TCGA 

project reported comprehensive molecular alterations of 

cancer patients and found that numerous genomic 

aberrations [64]. In this study, targeting mutations like 

TP53, COL11A1, APC and IGSF in high-SRLPI group 

might improve prognosis of such patients. Furthermore, 

we discovered that the SRLPI score showed excellent 

diagnostic capability of separating BCR for PCa 

patients. 

 

Approximately 10–45% of PCa are radiation resistant, 

despite the fact that radiotherapy has a significant deal 

of effectiveness in treating advanced PCa [65]. The 

mechanism of how PCa resists radiation is not fully 

understood. In vitro experiments suggest that radiation-

exposed PCa cell lines continued to produce adherent 

senescent-like cells that expressed common senescence-

associated markers and non-adherent anoikis-resistant 

stem cell-like cells [66]. These surviving cells also 

displayed improved migration, increased androgen and 

epidermal growth factor receptor levels, and activation 

of their downstream Ras-MAPK, PI3K-Akt, and Jak-

STAT pathways [67]. After radiation therapy, 

therapeutic failure for PCa is linked to testosterone 

production, cell proliferation, and apoptosis [68]. Base 

excision repair (BER) is the first-line DNA repair 

system in charge of maintaining genomic integrity to 

fend off illness, including cancer, and has the potential 

to influence tumor chemo- and radioresistance [69]. The 

pathway analysis revealed that BER-related diseases 

were more prevalent in the high-risk group. We 

hypothesize that targeting some DNA repair 

mechanisms, particularly BER, may be responsible for 

the rise in radiation-sensitive strategies in PCa.  

BER may be a significant driving force for PCa 

radioresistance [70]. In the high-SRLPI group, however, 
mitochondrial uncoupling is greatly enriched. We 

hypothesize that one of the causes of radioresistance in 

the high-risk group may be due to mild mitochondrial 
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uncoupling, which mitigates oxidative stress and 

mitochondrial damage and protects cells from radiation-

induced death [71]. 

 

AR is a ligand-activated transcription factor essential 

for both normal prostate development and tumori-

genesis [72]. The formation and progression of 

localized and advanced metastatic PCa are caused by 

AR and its downstream signaling, which is the main 

oncogenic pathway in PCa [73]. It is well established 

that lncRNAs control androgen signaling through a 

variety of ways, including transactivating AR by 

interacting with their enhancer regions [74]. SNHG1 

was directly found to be an androgen-responsive 

lncRNA with AR elements [75]. According to this 

study, the low SRLPI group was less responsive to BCR 

than the high SRLPI group. In earlier research, it was 

also found that high levels of SNHG1 were associated 

with a much-reduced rate of BCR and a shorter BCR-

free survival [75]. Our previous study suggested that 

immune evasion may be a potential mechanism of BCR 

in PCa patients with similar results of immune 

checkpoints [10, 76]. It has been speculated that 

SNHG1 expression may be inhibited by AR activity in 

“androgen-dependent” tumors [75]. In terms of MIAT, 

Crea et al. identify it as a neuroendocrine PCa-specific 

lncRNA that is insensitive to all forms of hormone 

therapy [77]. We found that androgen responsiveness 

was highly enriched in the low SRLPI group, further 

suggesting that lncRNAs are part of the transition of 

PCa from hormone sensitive to castration resistant PCa. 

Additionally, we discovered that the high SRLPI group 

had a significant enrichment of E2F targets. It was 

discovered that the E2F transcription factor and AR 

interacted without the need for a ligand, and that 

androgen treatment changed the way that E2F1 bound 

to the Cdc6 promoter in PCa cells [78]. E2F1 

expression in LNCaP prostate cancer cells deregulates 

androgen-dependent proliferation, reduces differentiation, 

and boosts death, according to in vitro tests by Libertini 

et al. [78]. In LNCaP cells, testosterone reciprocally 

regulates E2F activity in a biphasic manner [79]. We 

hypothesize that in BCR and PCa patients, the SRLPI 

score may control androgen translation through the E2F 

target, and that the E2F target is in turn controlled by 

androgen. 
 

TMB and MSI were shown to be associated with the 

response to PD-1 treatments in solid tumors, such as 

bladder cancer and metastatic colorectal cancer [80, 81]. 

In this study, we found that patients with high SLRPI 

had higher TMB/MIS, and those with greater TMB/MSI 

had a higher propensity for BCR than their less-serious 

counterparts. We predicted that higher TMB/MSI 

patients could have worse ICB efficacy for PCa patients 

when combined with the correlation with TIDE score 

and results of TME assessment. In the immune 

microenvironment, we found that B cells, CD8+ T cells 

and immune scores were positively correlated with 

SRLPI scores, predicting poor immunotherapy efficacy 

in the high-risk group. These CD8+ T cells may be 

induced by genetic alterations associated with cancer 

[82]. Petitprez et al. also confirmed that clinical 

progression in PCa patients with positive lymph node 

nodules is correlated with CD8 + T cell infiltration. 

[83]. In addition, Guan et al. found that by boosting IFN 

expression, reduction of AR activity in CD8+ T cells 

reduced T cell fatigue and enhanced response to PD-1-

targeted treatment. Targeting CD8+ T cells and lncRNA 

may help to overcome PCa immune resistance and poor 

prognosis given that increased CD8+ T cells were 

discovered to be associated with poor prognosis in this 

study [84]. Higher amounts of B cells were discovered 

in the high-risk group because recruitment of the 

chemokine CXCL13 to B cells in PCa promotes the 

development of castration-resistant prostate cancer by 

generating lymphotoxin [82]. Samples from PCa high-

risk individuals and those with recurrence or 

progression of the disease displayed higher and more 

intratumoral CD20+ B-cell positivity [85]. 

 

The importance of lncRNAs in PCa prognosis 

prediction and treatment choice is being increasingly 

supported by research. The findings of the investigation 

demonstrate that the SRLPI score made up of lncRNA 

indicates a subset of high immune cells, but it is not 

good for the impact of immunotherapy and 

radiotherapy. BER and mitochondrial uncoupling are 

linked to this resistance. The control of androgen 

signaling, which may be partially mediated by E2F 

targets, is a key component of promising treatment 

approaches for lncRNAs. To the best of the author’s 

knowledge, our study is the first to use the TCGA 

database and GEO datasets to screen and validate the 

senescence-related BCR-determining lncRNA. In 

addition to being connected with BCR, the SRLPI score 

we created was also correlated with the primary PCa 

treatment modalities, including radiation, ADT, and 

immunotherapy, suggesting that lncRNAs are viable 

therapeutic targets. 

 

CONCLUSIONS 
 

In this study, we identified and confirmed a prognosis- 

and radiosensitivity-related SRLPI score which might 

be useful in the clinical practice. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The prognosis analysis of lncRNAs in TCGA database. 
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Supplementary Figure 2. The relationship of SRLPI score with age in the GSE70768. 
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Supplementary Tables 
 

Supplementary Table 1. Cox regression analysis results enrolling SRLPI score and clinical features in TCGA 
database. 

Characteristics 
Total  
(N) 

Univariate analysis Multivariate analysis 

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

Risk group 430     

Low risk 215 Reference    

High risk 215 3.895 (2.125–7.136) <0.001 3.479 (1.658–7.300) <0.001 

Age 430 1.016 (0.978–1.055) 0.426   

Gleason score 430     

GS6 39 Reference    

GS9 126 4.833 (1.157–20.194) 0.031 25546414.032 (0.000–Inf) 0.996 

GS8 59 3.763 (0.832–17.011) 0.085 29899662.291 (0.000–Inf) 0.996 

GS7 206 1.072 (0.242–4.756) 0.927 13611512.897 (0.000–Inf) 0.996 

T stage 424     

T2 155 Reference    

T3 261 5.208 (2.230–12.163) <0.001 3.494 (1.188–10.274) 0.023 

T4 8 6.140 (1.235–30.532) 0.027 2.623 (0.266–25.817) 0.409 

Race 416     

White 355 Reference    

Asian 11 0.673 (0.147–3.079) 0.610   

Black or African American 50 0.648 (0.288–1.460) 0.296   

N stage 375     

N0 306 Reference    

N1 69 1.822 (1.001–3.313) 0.049 84683287.020 (0.000–Inf) 0.999 

Positive lymphnodes 358     

No 288 Reference    

Yes 70 1.937 (1.051–3.567) 0.034 0.000 (0.000–Inf) 0.999 

Residual tumor 419     

No 273 Reference    

Yes 146 1.781 (1.050–3.019) 0.032 1.005 (0.542–1.865) 0.987 

NCCN risk stratifications 427     

Low risk 27 Reference    

Intermediate risk 103 0.257 (0.036–1.827) 0.174 0.215 (0.000–Inf) 1.000 

High risk 297 2.599 (0.633–10.678) 0.185 0.323 (0.000–Inf) 1.000 

EAU risk stratifications 430     

Intermediate risk 133 Reference  Reference  

High risk 297 6.527 (2.362–18.036) <0.001 1.497 (0.180–12.474) 0.709 
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Supplementary Table 2. Cox regression analysis results enrolling SRLPI score and clinical features in the 
GSE116918. 

Characteristics 
Total  
(N) 

Univariate analysis Multivariate analysis 

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

Risk group 248     

Low risk 124 Reference    

High risk 124 1.832 (1.066–3.148) 0.028 1.957 (1.075–3.562) 0.028 

Age 248 0.976 (0.937–1.017) 0.252   

T stage 223     

T2 76 Reference    

T3 92 1.728 (0.909–3.283) 0.095 1.747 (0.919–3.320) 0.089 

T1 51 0.665 (0.255–1.732) 0.404 0.795 (0.301–2.098) 0.643 

T4 4 7.971 (2.256–28.168) 0.001 6.475 (1.818–23.062) 0.004 

Gleason score 248     

GS7 99 Reference    

GS8 52 1.083 (0.545–2.150) 0.821   

GS6 42 0.533 (0.216–1.316) 0.173   

GS9 55 1.310 (0.679–2.528) 0.421   

EAU risk stratifications 248     

Low risk 7 Reference  Reference  

Intermediate risk 68 0.380 (0.081–1.791) 0.221 0.343 (0.069–1.704) 0.191 

High risk 173 0.971 (0.235–4.007) 0.968 0.797 (0.177–3.588) 0.767 

NCCN risk stratifications 248     

Low risk 7 Reference  Reference  

Intermediate risk 68 0.380 (0.081–1.791) 0.221 0.343 (0.069–1.704) 0.191 

High risk 173 0.971 (0.235–4.007) 0.968 0.797 (0.177–3.588) 0.767 

 


