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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a solid tumor with 

heterogeneous nature, and its incidence has been 

increasing year by year in recent years [1, 2]. As 

prevalent cancer, various factors, including viral infection 

and cirrhosis, have been shown to contribute to its 

development [3]. Currently, liver transplantation, 

immunotherapy, hepatic resection, etc., comprise the 

majority of HCC’s viable treatment choices. Despite so 

many systemic treatment options, the prognosis for 

patients with advanced disease including extrahepatic 
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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with a rising prevalence 
worldwide. Immunotherapy has been shown to improve treatment outcomes for HCC. We aimed to construct a 
T-cell exhaustion-related gene prognostic model (TEXPM) for HCC and to elucidate the immunologic 
characteristics and advantages of immunotherapy in T-cell exhaustion-Related Gene-defined HCC groups. 
Methods: Single-cell RNA sequencing data were used in conjunction with TCGA Differentially expressed genes 
(DEGs) to screen for T-cell exhaustion-Related Genes (TEXGs) for subsequent evaluation. Using univariate Cox 
regression analysis and LASSO regression analysis, five genes (FTL, GZMA, CD14, NPC2, and IER3) were 
subsequently selected for the construction of a TEXPM. Then, we evaluated the immunologic characteristics 
and advantages of immunotherapy in groups identified by TEXPM. 
Results: The TEXPM was formed with FTL, GZMA, CD14, NPC2, and IER3. The results of the training and validation 
team studies were consistent, with the low TEXPM group surviving longer than the high TEXPM group (P < 0.001). 
Multivariate Cox regression analysis demonstrated that TEXPM (HR: 2.347, 95%CI: 1.844-2.987; HR: 2.172, 95% CI: 
1.689-2.793) was an independent prognostic variable for HCC patients. The low-TEXPM group was linked to active 
immunity, less aggressive phenotypes, strong infiltration of CD8+ T cells, CD4 + T cells, and M1 macrophages, and 
a better response to ICI treatment. A high TEXPM group, on the other hand, was associated with suppressive 
immunity, more aggressive phenotypes, a significant infiltration of B cells, M0 macrophages, and M2 
macrophages, and a reduced response to ICI treatment. FTL is an independent prognostic variable in HCC patients 
and the knockdown of FTL can affect the biological behavior of hepatocellular carcinoma cells. 
Conclusions: TEXPM is a promising prognostic biomarker connected to the immune system. Differentiating 
immunological and molecular features and predicting patient outcomes may be facilitated by TEXPM grouping. 
Furthermore, the expression of FTL was found to be an independent prognostic factor for HCC. Knockdown of 
FTL significantly inhibited proliferation, migration, and invasive activity in liver cancer cells. 

mailto:appreciation@whu.edu.cn
mailto:wangwx@whu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 5752 AGING 

metastases and invasion remains poor. Combination 

immunotherapy with anti-programmed cell death ligand 

1 (PD-1) and anti-vascular endothelial growth factor 

antibodies has now replaced surgery as the first-line 

systemic therapy for advanced HCC, but its objective 

response rate is only 29.8% [4, 5]. Multiple variables, 

including the immunological microenvironment (TME), 

can impact ICI efficacy, and few biomarkers can 

accurately predict patient prognosis [6]. Individualization 

of immunotherapy for patients with HCC is possible if 

relevant prognostic indicators linked with treatment 

success can be identified [7]. However, we know very 

little about the TME of HCC, and improved prognostic 

and therapeutic indicators are required immediately. 

 

Such low objective response rates of immunotherapy 

for hepatocellular carcinoma may be associated with T-

cell exhaustion (TEX). This is because depleted CD8+ 

T cells (TEX) that induce reduced function are 

frequently associated with cancer immune escape [8]. T 

cell exhaustion refers to a broad range of antigen-

specific CD8+ T lymphocyte dysfunctional states that 

were initially characterized in the context of chronic 

viral infection and occur when these cells persist but are 

unable to eliminate a pathogenic danger [9, 10]. CD8+ 

T lymphocytes have an important role in the prognosis 

of HCC, where oxidative phosphorylated CD8+ T cell 

subsets have been shown to be a predictor of 

immunotherapy resistance in HCC patients. When 

CD8+ T lymphocytes are exhausted, they are unable to 

play a role in killing tumors [11, 12]. Therefore, we 

have to focus more on TEX, reversing TEX may be the 

key to improving the objective response rate of cancers 

receiving immunotherapy. 

 

The goal of this study is to identify prognostic markers 

for HCC that can be used to predict the effectiveness of 

conventional therapies and to suggest the potential of 

immunotherapies. We investigated the single-cell RNA 

sequencing (ScRNA-seq) dataset utilizing the Tumor 

Immune Single-Cell Hub (TISCH) to determine the 

genes about TEX in HCC [13]. We created the TEX 

prognostic model in this instance (TEXPM). In addition, 

we discussed the immunological traits of the TEXPM-

defined groups. Finally, we discovered that TEXPM may 

be able to predict the outcome and success of 

immunotherapy in patients with HCC. Our analysis 

shows that TEXPM is a promising prognostic model. 

 

MATERIALS AND METHODS 
 

Data source and clinical information 

 
Gene expression and clinical data were retrieved  

from TCGA (https://portal.gdc.cancer.gov/), the ICGC 

and the GTEx database (https://xenabrowser.net/ 

datapages/). The raw count data were firstly normalized 

with transcripts per million (TPM) method and 

underwent a log2 transformation. Two independent 

cohorts were employed in our research, with the TCGA-

LIHC cohort (tumor: 377) used as a training dataset and 

the ICGC cohorts (tumor:260) used as a validation 

dataset. The TEX-related gene were obtained from two 

scRNA-seq datasets (GSE125449 and GSE140288) in 

the TISCH (http://tisch.comp-genomics.org/) [13].  

P < 0.05 and |log2 FC| ≥ 1 were used as the thresholds 

for filtering TEX-related DEGs. Meanwhile, the clinical 

characteristics of TCGA and ICGC cohorts and TEX-

related DEGs are presented in Supplementary Table 1. 

 

KEGG and GO research reveal potential roles and 

pathways of hub genes [14, 15]. Enrichment analyses 

were performed using the cluster profile package [16]. 

The visualization module of the cluster profile was used 

for displaying analysis results. P < 0.05 was selected as 

the cut-off criterion. 

 

Construction of risk prognostic model 

 

Univariate Cox analysis of overall survival (OS) was 

performed to screen TEX-related DEGs with prognostic 

values. The R package glmnet was used to run LASSO 

regression analysis to reduce the risk of overfitting and 

find the appropriate number of TEX-related DEGs 

involved in model development (TEXPM). The samples 

were separated into training and test groups to validate 

the model’s correctness. A risk prognosis model was 

developed for the training group and the test group. 

 

( )
1

RiskScore TEXPM exp coef
=

= 
n

i
i i  

 
where n is the number of OS prognosis TEX-related 

DEGs, I is the ith TEX-related DEG, and coef is the 

regression coefficient; the expression of OS prognosis 

TEX-related DEGs is multiplied by the corresponding 

regression coefficient and summed to generate the 

sample risk score [17]. According to the median risk 

score, samples from the entire sample, training, and test 

groups were separated into high- and low-risk groups. 

 

Validation of risk prognostic model 

 

Risk curve analysis, survival analysis, etc. were all used 

in the risk prognostic models for the training and test 

groups. The risk prognosis model’s survival status map 

and risk heatmap were created using R, and the OS 

prognosis TEXPM and patient survival times were 

compared between high- and low-risk groups. The R 
package associated with it is used to plot ROC curves, 

while the survival and survminer programs are used to 

build survival curves. Using univariate and multivariate 
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COX regression models, independent prognostic testing 

was carried out using the survival package in R to see 

whether the risk score can be used as an independent 

prognostic factor. 
 

Estimating of immune cell infiltration (ICI) 
 

In order to estimate the immune score, stromal score, 

and 22 different types of ICI, the R packages 

“ESTIMATE” [18] and “CIBERSORT” [19] were used. 

Analysis was done on the relationship between the ICI 

components. The R package “ConsensusClusterPlus” 

[20] then performed a hierarchical agglomerative  

cluster according to the ICI pattern. The algorithm  

used by “ConsensusClusterPlus” establishes the  

cluster count and membership based on stability data 

from the unsupervised analysis. To guarantee the 

stability of clustering, this algorithm was run 1000 

times. 
 

Cell culture and siRNA treatment 

 

The American Type Culture Collection (ATCC) 

provided human HCC cell lines (including HUH7 and 

HLF). Cells were cultured with DMEM containing 

10% fetal bovine serum (FBS). 2 mM L-glutamine, 

and 100 U/ml penicillin-streptomycin solution. 

GeneChem (Shanghai, China) produced FTL siRNAs, 

which were then transfected into cells using 

Lipofectamine 2000 (Invitrogen, CA, USA) per the 

manufacturer’s instructions. The sequence of Si-FTL 

is: sense 5´- GGCGAGUAUCUCUUCGAAA-dTdT-

3´ and antisense 5´- UUUCGAAGAGAUA 

CUCGCC TdTd-3´. The cells were grown in DMEM 

medium with FBS and penicillin-streptomycin for 6-8 

hours before the media was changed. 
 

CCK8 and transwell assay 
 

HUH7 and HLF cells were grown in 96-well plates 

(3000 cells/plate in 200 ml DMEM) after transfection 

with FTL siRNA for 48 hours. At 0, 24, 48, and 72 

hours, the proliferative ability of the treated cells was 

discovered. According to the kit’s instructions, Cell 

Counting Kit-8 (CCK8) reagent (Yeasen, Shanghai, 

China) was applied to each plate. A microplate 

spectrophotometer then measured the OD450 value 

(Thermo Fisher Scientific, MA, USA). To assess the 

ability of the cells to migrate, HUH7 and HLF cells 

were transfected with FTL siRNA for 48 hours and 

grown in 24-well culture plates with membrane inserts 

having 8 mm pores. The bottom chamber received 

DMEM (Gibco, NY, USA) supplemented with 10% 
fetal bovine serum, whereas the top chamber received 

serum-free DMEM. With a light microscope, 

numbered. Three times each experiment was carried 

out. 

Immunohistochemistry  

 

20 pairs of hepatocellular carcinoma tissue and 

paraneoplastic tissue from a patient undergoing  

surgery at the Department of Hepatobiliary Surgery, 

Wuhan University People’s Hospital (Wuhan, China). 

The expression of FTL was evaluated using 

immunohistochemistry (IHC). To enhance antigen 

retrieval, paraffin-embedded tissue sections (5 m 

thick) were briefly deparaffinized, rehydrated, and 

treated for 15 min at 100° C with a 10 mM citric acid 

buffer. Following overnight incubation at 4° C with 

primary antibodies against FTL (Abclonal, A11241), 

the sections were then rinsed with PBS and incubated 

for 30 minutes at 37° C with a corresponding 

secondary antibody. Sections were stained with 

hematoxylin and counterstained with DAB following a 

second PBS wash. 

 

Mutation and drug-sensitivity analysis 

 

The mutation annotation format (MAF) from the 

TCGA-LIHC was generated using the “maftools” R 

package to identify the difference in somatic mutations 

of HCC patients between high- and low-TEXPM groups 

[21, 22]. To study the differences in the sensitivity of 

chemotherapeutic agents commonly used to treat HCC 

between the two groups, we employed the 

“pRRophetic” package to calculate the semi-inhibitory 

146 concentration (IC50) values. 

 

Statistical analysis 

 

All statistical analyses and visualizations were carried 

out utilizing R software version 3.6.3 (https://www.r-

project.org/). In the analysis of gene expression between 

tumor tissues and adjacent nontumorous tissues, a 

Student’s t-test was employed. The Chi-squared test 

was utilized to assess differences in proportions. To 

compare the ssGSEA scores of immune cells or 

pathways between the high-risk and low-risk groups, 

the Mann-Whitney test was performed, with P values 

adjusted using the Benjamini-Hochberg (BH) method. 

The comparison of OS between different groups was 

conducted using Kaplan-Meier analysis with the log-

rank test. Independent predictors of OS were identified 

through univariate and multivariate Cox regression 

analyses. Unless otherwise specified, a P value less than 

0.05 was considered statistically significant, and all P 

values were two-tailed. 

 

Availability of data and materials 
 

The data that support the findings of this study are 

available from the corresponding author upon reasonable 

request. 

https://www.r-project.org/
https://www.r-project.org/
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RESULTS 
 

Identification of DEGs associated with TEX in 

hepatocellular carcinoma 

 

The general study workflow is depicted in Figure 1. As 

a tumor microenvironment (TME)-focused scRNA-seq 

database, TISCH provides valuable resources for TME 

research. In this study, we utilized TISCH to extract 

approximately 26 and 273 genes associated with TEX 

from two single-cell datasets (GSE125449 and 

GSE140288) (Figure 2A, 2B). Subsequently, we 

combined these findings with data from the TCGA and 

GTEx databases, resulting in the identification of 23 

TEX-related DEGs (LYZ, FCGRT, STAT1, GRN, 

PSAP, DNAJB1, CD3D, FTL, GPX1, GZMA, CTSB, 

SAT1, TRBC2, TRAC, CD14, NPC2, FTH1, IER3, 

CD2, IFITM3, ITM2A, CST3, TIMP1; Figure 2C). The 

 

 
 

Figure 1. The flow diagram of our study. DEGs, differently expressed genes; LASSO, least absolute shrinkage, and selection operator; 

ROC, receiver operating characteristic; OS, overall survival. 
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Figure 2. Recognition of TEX-related DEGs (A) The UMAP plot in GSE125449 (B) The UMAP plot in GSE140228 (C) Venn plot of overlap TEX-
related DEGs in the three datasets (D) Expression heat map of malignant and non-malignant cell markers in TCGA and GTEx databases.  
(E) The bar plot showing TEX-related DEGs by KEGG biological process. (F) The bar plot showing TEX-related DEGs by GO biological process. 
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expression level of TEX-related DEGs was shown by 

heatmap (Figure 2D). Biological functional analyses 

revealed that these genes were abundant in the 

“Ferroptosis,” “PD-L1 expression and PD-1 

checkpoint pathway in cancer,” “Th1 and Th2 cell 

differentiation,” etc., pathways (Figure 2E, 2F), 

demonstrating the plausibility of our gene set. This 

established the basis for modeling. 

Construction and validation of TEXPM  

 

To enhance the precision of the prognostic model, we 

include the TCGA and GTEx cohorts in the training 

team and the ICGC Cohort in the test team. The 

univariate COX analysis found nine important TEX-

related genes, and nine genes in total were identified as 

independent HCC prognostic indicators (Figure 3A). 

 

 
 

Figure 3. Construction of a TEX-related DEGs signature for prognosis. (A) 9 TEX-related DEGs show remarkable relevance to OS 
according to univariate Cox regression analysis. (B, C) The LASSO coefficient profiles were constructed from 9 prognostic TEX-related DEGs, 
and the tuning parameter (λ) was calculated based on the minimum criteria for OS with ten-fold cross-validation. five genes were selected 
according to the best fit profile. (D) Kaplan-Meier survival analysis of high- and low-TEXPM groups in the TCGA cohort. (E) ROC analysis for OS 
prediction including 1, 2, and 4 years of HCC patients in the TCGA cohort. (F) ROC curve analysis compares the predictive power of the MRS 
signature and other clinicopathological indicators in the TCGA cohort. (G) Kaplan-Meier survival analysis of high- and low-TEXPM groups in 
the ICGC cohort. (H) ROC analysis for OS prediction including 1, 2, and 4 years of HCC patients in the ICGC cohort. (I) OC curve analysis 
compares the predictive power of the MRS signature and other clinicopathological indicators in the ICGC cohort. 
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Additional research, multivariate Cox regression 

analysis, and LASSO regression revealed that five 

genes (FTL, GZMA, CD14, NPC2, and IER3) were 

prognostic markers that were used to construct a 

TEXPM (Figure 3B, 3C). 

 

On the training and test team, the prognostic 

performance of the TEXPM was validated using the 

KM survival curve and log-rank test. On the basis of the 

median risk score, each case was classified as either 

high- or low-group. Based on KM analysis, the presence 

of the high-TEXPM group was associated with a lower 

likelihood of survival in the TCGA and GTEx cohorts 

(P < 0.001, Figure 3D). For1, 2 and 4- year survival 

rates, the AUC predictive value of the TEXPM was 

0.720, 0.722 and 0.753 (Figure 3E). Furthermore, the 

AUC value for TEXPM was substantially greater than 

those for age, sex, tumor stage, and pathological stage 

(Figure 3F). Similar to the TCGA findings, the majority 

of new TEXPM identified in this analysis were 

negatively associated with the risk model in the test 

group. (P = 0.0039; Figure 3G) The existence of a high- 

TEXPM group was related to a decreased likelihood of 

survival. The AUC predictive value of the TEXPM for 

1, 2 and 4- year survival rates was 0.718, 0.661 and 

0.669 (Figure 3H). 

 

After we determined the optimal risk score cutoff point, 

TCGA and ICGC patients were divided into high and low 

TEXPM groups. Using a prognosis curve and a scatter 

plot, the risk score and survival status of each HCC 

patient were determined (Supplementary Figure 1). In 

addition, the majority of deaths were concentrated in the 

high-TEXPM group (Supplementary Figure 1). In 

addition, the heat map of candidate DEGs’ expression 

patterns revealed that FTL, NPC2, and IER3 were 

strongly expressed in the high-TEXPM group, whereas 

GZMA and CD14 were substantially expressed in the 

low-TEXPM group (Supplementary Figure 1). 

Collectively, these data identified five TEX-related DEGs 

as the characteristic prognostic marker for HCC patients. 

 

Independent prognostic analysis of TEXPM 

 

Next, univariate Cox analysis demonstrated that 

TEXPM (HR: 2.347, 95% CI: 1.844-2.987) and stage 

(HR: 1.679, 95% CI: 1.368-2.061) were independent 

prognostic variables for HCC patients (Figure 4A). Both 

the TEXPM (HR: 2.172, 95% CI: 1.689-2.793) and the 

stage (HR: 1.557, 95% CI: 1.258-1.927) were 

independent prognostic risk factors for HCC patients, 

according to the multivariate Cox analysis (Figure 4B). 

To make the TEXPM more useful in the clinic, a 
nomogram was developed to investigate the TEXPM’s 

capacity to predict 1-, 2-, and 4-year survival in the 

TCGA and GTEx cohorts. As depicted in Figure 4C, the 

nomogram’s predictive criteria included the innovative 

risk score model and additional clinicopathological 

characteristics. Similar to the results of the multi-

variable Cox regression analysis, it was determined that 

the risk score model had the most weight in this 

combined nomogram among all these clinically 

important factors. Collectively, these investigations 

have shown that TEXPM might dependably serveas an 

independent predictive indicator for HCC patients. 

 

Molecular features in high- and low-TEXPM groups 

 

GSEA was used to identify enriched GO gene sets in 

the two TEXPM groups, detailed GSEA results are in 

Supplementary Table 2. The GSEA plot only showed 

the top five routes. The gene sets of the low-TEXPM 

group were enriched in immune-related self-limiting 

disease pathways, whereas the high-TEXPM group was 

enriched in cell cycle and cancer-related pathways 

(Figure 5A, 5B). When the high- and low-TEXPM 

groups were analyzed for gene mutations, we found that 

TP53 accounted for the largest proportion and that TP53 

was more frequent in the high-TEXPM group than in 

the low-EXPM group (Figure 5C, 5D). As shown in 

Supplementary Figure 2. we analyzed the correlation 

between the TEXPM score and TMB. Although not 

statistically significant (r = 0.077, P = 0.15), Kaplan-

Meier analysis showed that the presence of high-risk 

TEXPM and high TMB groups was associated with a 

reduced likelihood of survival (P < 0.001).  

 

Immune characteristics of high- and low-TEXPM 

groups 

 

We utilized the Wilcoxon test to evaluate the distribution 

of immune cells in different TEXPM groups in order to 

analyze the composition of immune cells in different 

TEXPM groups. In the low-TEXPM group, there were 

more activated memory CD4+ T cells, M1 macrophages 

(anti-tumor phenotype), and CD8+ T cells, while the 

high-TEXPM group had more M2 macrophages (pro-

tumor phenotype) (Figure 6A, 6B). Then, using specific 

gene signatures, we distinguished the immunological and 

molecular functions between the two groups. As a result, 

the low-TEXPM group’s immunological and molecular 

functions were more active (Figure 6C). As shown in 

Supplementary Figure 3, The TEXPM was negatively 

correlated with most checkpoints such as TIGIT and 

LAG3. The several TEXPM genes, including GZMA and 

NPC2, showed positive correlations with almost all 

checkpoints.  

 

Figure 7A shows the clinical features in high- and low-
TEXPM groups. In Figure 7B, the high TEXPM group 

was more predominant at the level of immune subtype 

C1 and immune subtype C4, while the low TEXPM group 
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was more predominant at the level of immune subtype C2 

and immune subtype C3 (P = 0.001). In Figure 7C, 

Specifically, In Stage I, the low-TEXPM group accounted 

for 58% of the total low-TEXPM group, while in Stages 

II, III, and IV, high-TEXPM groups totaled 59% of the 

total high-TEXPM group (P = 0.005). 

 

Correlation between TEXPM and immuno-

phenoscore (IPS) analysis and drug sensitivity 

 

The IPS file received from TCIA was utilized to see if 

TEXPM expression may predict the immunotherapy 

response of HCC patients [23]. The IPS was obviously 

greater in the low-TEXPM group, indicating that 

immunotherapy would be more effective in patients 

with the low-TEXPM group (Figure 8A–8D). Next, we 

selected chemotherapeutic agents, reviewing the drugs 

currently used to treat LIHC to assess the sensitivity of 

these drugs in both groups of patients. We found that 

IC50 values for Imatinib, Bortezomib, and Tipifarnib 

were lower in patients with low TEXPM, while IC50 

values for Axitinib were significantly lower in patients 

with high TEXPM (Figure 8E–8H). 

 

Validation of the role of FTL in HCC cells 

 

Using the TCGA and GTEx data, we could learn the 

expression of five genes of the TEXPM construct, FTL, 

 

 
 

Figure 4. Establishment and assessment of the nomogram for survival prediction. (A, B) Univariate and multivariate Cox regression 

analyses showed that risk score based on TEXPM is an independent prognostic factor affecting the prognosis of HCC patients. (C) The 
nomogram combining risk score based on TEXPM was developed to predict 1-, 2-, and 4-year survival. (D) Calibration curves show the 
predictions of the nomogram that we established for 1-, 2-, and 4-year overall survival. 
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GZMA, CD14, and NPC2 were highly expressed in 

tumor tissues, and IER3 was highly expressed in 

paracancerous tissues (Supplementary Figure 4). To 

investigate further the role of FTL in HCC cell 

proliferation and migration. Immunohistochemistry 

revealed that FTL is abundantly expressed in hepato-

cellular cancer tissues (Figure 9A). We decreased the 

amount of FTL in HCC cell lines (including HUH7 and 

HLF cells). Western blotting showed that treatment with 

FTL siRNA substantially inhibited FTL expression in 

HUH7 and HLF cells (Figure 9C). The CCK test 

revealed that FTL inhibition greatly suppressed HCC 

cell growth (Figure 9D). In addition, Edu assays were 

able to confirm the effect of FTL on proliferation in 

 

 
 

Figure 5. GSEA and mutation in high- and low-TEXPM groups. (A) GO gene sets enriched in the high-TEXPM group. (B) GO gene sets 
enriched in the low-TEXPM group. (C, D) Significantly mutated genes in the mutated HCC samples of different TEXPM groups. Mutated genes 
(rows, top 10) are ordered by mutation rate; samples (columns) are arranged to emphasize mutual exclusivity among mutations. The right 
shows the mutation percentage, and the top shows the overall number of mutations. The color coding indicates the mutation type. 
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HCC cells (Figure 9E). Moreover, transwell study 

results demonstrated that FTL reduced the migration 

and invasion of HUH7 and HLF cells (Figure 10A). 

Cell colony formation experiments showed that FTL 

knockdown greatly reduced the number of colonies in 

HUH7 and HLF cells (Figure 10B). In conclusion, FTL 

could promote the proliferation, migration and invasion 

of HCC cells. 

 

DISCUSSION 
 

Immunotherapy has been acknowledged as the primary 

treatment for HCC patients by guidelines [4, 24, 25]. 

Since the objective remission rate of immunotherapy for 

liver cancer remains low, we currently need to find 

exactly the patients who benefit. After years of testing 

many prognostic markers in HCC, there is currently no 

confirmed biomarker for predicting immunotherapy 

response and OS. This emphasizes the necessity to 

establish a biomarker for immunotherapy prognosis in 

HCC. 

 

As the main anti-tumor cell, T cells have the ability to 

actively attack tumor tissue [26]. From Tisch, we 

selected genes related to TEX by analyzing two scRNA-

seq datasets (GSE125449 and GSE140288). 

 

 
 

Figure 6. Immune characteristics in high- and low-TEXPM groups. (A, B) The proportions of TME cells in high- and low-TEXPM groups. 

(C) The molecular and immune-related function in high- and low-TEXPM groups. (**p < 0.01, ***p < 0.001).  
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Figure 7. Relationship between TEXPM and clinical subtypes. (A) The TEXPM groups and clinical subtypes for HCC patients in the 

TCGA cohort. Age, gender, tumor grade, and TNM stage are shown as patient annotations. (B) Heat map showing the distribution of immune 
grade (C1-4) between high- and low-CDIGPM groups. (C) Heat map showing the distribution of HCC TNM stages (stage 0-IV) between high- 
and low- TEXPM groups. (***p < 0.001).  

 

 
 

Figure 8. Relationship between TEXPM and (IPS) analysis and drug sensitivity (A–D) low-TEXPM and high-TEXPM response to IPS. (E–H) 
Treatment of different small molecule drugs by high and low-TEXPM groups. 



www.aging-us.com 5762 AGING 

 
 

Figure 9. FTL promoted proliferation in HCC. (A) TCGA database analysis indicated that FTL mRNA expression is increased in HCC.  

(B) Immunohistochemical results suggest that FTL is highly expressed in tumor tissues. (C) Western blot analysis confirmed that the 
expression of FTL was inhibited by SIRNA. (D) CCK8 assay indicated that FTL inhibition significantly suppressed the proliferation in HCC cells. 
(E) EdU assays indicated that FTL inhibition significantly suppressed the proliferation in HCC cells. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 10. FTL promoted EMT in HCC (A) Transwell assays confirmed that FTL inhibition inhibited the migration and invasion of HCC cells. (B) 

Knockdown of FTL reduced colony numbers in HCC cells. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Subsequently, we merged the TEX-related genes with 

the differentially expressed genes obtained from the 

TCGA dataset, resulting in the identification of 23 

TEX-related DEGs. Next, we performed univariate 

COX regression analysis with the 23 genes and obtained 

9 differential genes associated with prognosis. After 

that, we performed LASSO Cox regression analysis to 

reduce the number of TEX-related DEGs in the risk 

model and finally obtained TEXPM consisting of five 

genes. Using TCGA and ICGC arrays, in addition to 

being more accurate in predicting outcomes than other 

clinical risk indicators (grade, stage, and age), TEXPM 

is also able to differentiate HCC patients into two 

groups based on OS. 

 

Then, to gain more insight into the immunological 

properties of TEXPM, we examined the genetic 

mutations in various TEXPM populations. As 

previously reported, missense variants were the most 

prevalent, followed by nonsense and frameshift 

deletions [27]. TP53 mutations, which were more 

prevalent in the high-TEXPM group than the low-

TEXPM group (34% vs. 18%), exhibited the highest 

variation in mutation frequency between groups. Not 

only are TP53 mutations prevalently inherited in cancer, 

but they also result in aggressive malignancies and a 

worse prognosis for patients [28, 29]. Through the 

p53/TGF-b signaling pathway, TP53 can affect the 

cancer cell cycle. Additionally, the TEXPM-high group 

had a greater rate of PIK3CA mutation than the 

TEXPM-low group, which may indicate that TEXPM-

high HCC promotes proliferation via the PI3K-AKT 

signaling pathway [30]. Accordingly, our survival data 

are consistent with the fact that patients with high 

TEXPM levels who also have high TP53 and PIK3CA 

mutations will fare worse than those with low TEXPM 

levels who also have low TP53 and PIK3CA mutations. 

 

Finally, a better understanding of TME may help to 

develop new treatments for HCC or repair of TME to 

improve the effectiveness of immunotherapy. Some 

immune cells were composed differently between the 

two TEXPM groups. B cells and M0 and M2 

macrophages were more prevalent in the high-TEXPM 

group, whereas cytotoxic CD8 T cells, CD4 T cells, and 

M1 macrophages were more abundant in the low-

TEXPM group. Numerous studies have shown that a 

dense infiltration of T cells, particularly cytotoxic CD8 

T cells, is a sign of good prognosis [31–33]. M2 

macrophages, a subtype of macrophages, are linked 

with chronic inflammation and have a role in 

stimulating tumor development in the majority of the 

tumors we discovered. Moreover, these cells have been 
linked to a poor prognosis in malignancies such as 

breast, bladder, and ovarian [32, 34, 35]. In contrast, the 

high infiltration of M1 macrophages may be associated 

with acute inflammation, which has been reported to 

suggest a positive prognosis for HCC patients [35]. Our 

study’s findings support these conclusions. Moreover, 

based on the results of pathway enrichment, we 

discovered that the low-TEXPM group had a greater 

capacity for damage repair, whereas the high-TEXPM 

group contained more immunosuppressive cells and 

signals, as well as tumor- and metastasis-related signals, 

indicating that the high- TEXPM group exhibited 

immunosuppression and active tumor progression. 

 

To define intratumoral immune states, Vesteinn et al. 

scored 160 immune expression signatures and utilized 

cluster analysis to identify immune signature modules  

[36, 37]. Notably, in our research, immunological 

subtypes C1 and C4 were mostly found in the high-

TEXPM group, while immune subtypes C2 and C3 were 

primarily found in the low-TEXPM group. C1 represents 

the Wound Healing immune subtype, which is 

characterized by a high expression of angiogenic genes 

and a Th2 cell bias. C2 is the immunological subtype with 

the largest M1 macrophage polarization, CD8 T cell 

infiltration, and T cell receptor (TCR) diversity. Now we 

understand that M1 macrophages play a significant role in 

pro-inflammatory responses, whereas M2 macrophages 

play the opposite role. C4, a lymphocyte-deficient 

phenotype, displayed a more prominent macrophage 

signature, with Th1 suppressed and high M2 response. 

Strong evidence suggests a connection between increased 

adaptive immune and CD8 T cell infiltration in 

malignancies. TCR diversity was also found to have a 

favorable correlation with overall survival in breast cancer 

patients [36]. Maybe all these features contribute to the 

relatively decreasing risk of the low-TEXPM group.  

 

It has been demonstrated in HCC patients that IPS data 

downloaded from the TCIA provides a prediction score 

for assessing a patient’s immune therapy response  

[38–40]. IPS was greater in the group with low- 

TEXPM, suggesting that persons with low -TEXPM 

may have a more favorable response to ICI therapy. 

This study reveals that TEXPM, which has not been 

previously examined in HCC, may have a strong 

correlation with the immune infiltration of HCC, 

indicating the potential relevance of TEXPM in 

assessing immunotherapy response. In early-stage HCC 

patients, surgical treatment, ablation, or liver 

transplantation are all effective treatment modalities that 

can significantly improve the survival time of patients 

[4]. For patients with advanced HCC, systemic 

treatment is the only option to improve survival. In 

addition to the use of immunotherapy-related drugs, we 

tend to use some chemotherapy drugs as well, and in the 
vast majority of them, the low-TEXPM group will have 

a better treatment effect than high-TEXPM, thus 

improving the survival time of HCC patients. 
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Based on the above findings, we otherwise conclude 

that TEXPM is a good model to predict survival time in 

HCC patients and is also closely related to the immune 

microenvironment. An in-depth study of TEXPM would 

be beneficial to reverse T cell depletion and thus 

improve the efficacy of immunotherapy. Next, five 

genomes make up TEXPM: FTL, GZMA, CD14, 

NPC2, and IER3. Ferritin Light Chain (FTL) is one of 

the iron metabolism regulators, and FTL has been 

identified for a very long time as one of the iron 

metabolism regulators. In recent years, an increasing 

number of investigations have demonstrated the tight 

association between FTL and malignant tumors  

[41–43]. GZMA from cytotoxic lymphocytes cleaves 

and activates GSDMB in order to cause pyroptosis in 

target cells [44]. Gao et al. showed that a combined 

therapy involving the modification of GZMA-F2R 

communication and the use of an anti-PD-1 antibody 

would be significantly more effective in treating HCC 

patients [45]. CD14 is a pattern recognition receptor 

(PRR) that facilitates innate immune responses. CD14 

was initially identified as a monocyte marker that 

signals intracellular reactions in response to bacterial 

interactions [46]. The protein-coding gene NPC2 (NPC 

Intracellular Cholesterol Transporter 2) has a lipid 

recognition domain and has been connected to the 

innate immune system and lipoprotein metabolism 

pathways [47]. The expression of the early response 

gene immediate early response 3 (IER3) is stimulated 

by numerous stimuli, including growth hormones, 

cytokines, ionizing radiation, viral infection, and other 

forms of cellular stress. IER3 exhibits a paradoxical and 

complex involvement in cell cycle regulation and 

apoptosis [48].  

 

Four genes, CD14, NPC2, IER3, and GZMA, have been 

extensively investigated in hepatocellular carcinoma 

[45, 49–51]. On the other hand, FTL and hepatocellular 

carcinoma have been less studied. And FTL is able to 

regulate intracellular ferritin production, a process that 

may be able to lead to Ferroptosis [52, 53]. Ferroptosis 

has been investigated as a new form of necrosis in a 

variety of cancers. The search for its biological targets 

may be the next generation of cancer treatment. 

Therefore, we chose FTL for the next step of our study, 

and immunohistochemistry and the TCGA database 

verified that FTL is substantially expressed in 

hepatocellular carcinoma tissues. We discovered that 

SiRNA knockdown of FTL can reduce the activity of 

HUH7 and HLF cells, as well as their migration and 

invasion. All of these experimental data demonstrate 

that we can impact the course of HCC by interfering in 

FTL. In addition, we have previously identified FTL as 
an independent prognostic factor in HCC patients, and 

in combination with its effect on cell biological 

behavior, we believe that FTL has the potential to be an 

emerging therapeutic target for HCC patients. 

 However, our research has several drawbacks. Our 

Research is primarily based on integrative 

bioinformatics, and there is yet no experimental 

validation for these findings. In addition, the accuracy 

of TEXPM for the prognosis and immune modulation of 

HCC patients will continue to be a major clinical 

concern. Specifically, the clinical application guidelines 

for this predictive risk score model must be clarified. 
 

In conclusion, TEXPM is a promising prognostic 

biomarker connected to the immune system. 

Differentiating immunological and molecular features 

and predicting patient outcomes may be facilitated by 

TEXPM grouping, TEXPM may be a possible 

prognostic predictor of immunotherapy. Furthermore, it 

was observed that the expression of FTL independently 

served as a prognostic factor for HCC. Notably, the 

downregulation of FTL resulted in a significant 

suppression of proliferation, migration, and invasive 

capabilities in liver cancer cells. we need more studies 

to confirm the reliability of this model. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Training group and test group. (A, B) Risk heatmap in the Training group and Test group. (C, D) Risk score in 

the Training group and Test group. (E, F) Survival status map in Training group and Test group. 
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Supplementary Figure 2. The correlation between the TEXPM and TMB. (A) The TMB is higher in the high-TEXPM group compared 

with the low-TEXPM group. (B) The correlation between the risk score of TEXPM and TMB. (C) OS of the low-TMB group is better than that of 
the high-TMB group. (D) OS of the low-TMB+ low-risk group is better than that of the high-TMB+ high-risk group. 
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Supplementary Figure 3. Correlation of TEXPM with checkpoints. 
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Supplementary Figure 4. Expression of five genes in TEXPM in TCGA. (A) The differential expression of 4 genes. (B) Survival analysis 
of 5 genes. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. The clinical characteristics of TCGA and ICGC cohorts and TEX-related DEGs included. 

 

Supplementary Table 2. All GSEA results related to high- and low-TEXPM groups. 

 


