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INTRODUCTION 
 

Lung cancer (LC) is a common malignant tumor and a 

major contributor to cancer-related mortality globally 

[1]. Non–small cell LC can be classified into three 

subtypes: lung adenocarcinoma (LUAD), large cell lung 

carcinoma, and lung squamous cell carcinoma [2, 3]. 
LUAD accounts for approximately 40% of all LC cases, 

which contributes to nearly 400,000 deaths annually 

worldwide [4]. Tremendous efforts have been made 

toward the prevention, diagnosis, and treatment of 

LUAD, but its prognosis continues to remain poor. An 

increasing number of studies have suggested that the 

cancer malignant phenotype is influenced by the tumor 

microenvironment (TME) [5–7]. LC, a cancer with 

immune sensitivity, involves infiltration of immune 

cells such as eosinophils, macrophages, dendritic  

cells (DCs), neutrophils, natural killer cells, mast  

cells, T-cells, and B-cells. Nonetheless, research 

comprehensively investigating the relationship of 

immune phenotypes in the TME of LC with its 

prognostic outcome is scarce.  
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ABSTRACT 
 

Mucin 16 (MUC16) mutation ranks third among all common mutations in lung adenocarcinoma (LUAD), and it has a 
certain effect on LUAD development and prognostic outcome. This research aimed to analyze the effects of MUC16 
mutation on LUAD immunophenotype regulation and determine the prognostic outcome using an immune 
prognostic model (IPM) built with immune-related genes. The MUC16 mutation status and mRNA expression 
profiles were analyzed using diverse platforms and among several LUAD patients (n = 691). An IPM was then 
constructed using differentially expressed immune-related genes (DEIRGs) in MUC16MUT LUAD cases, and the data 
were compared with those of MUC16WT LUAD cases. The IPM's performance in distinguishing high-risk cases from 
low-risk ones among 691 LUAD cases was verified. Additionally, a nomogram was built and applied in the clinical 
setting. Furthermore, a comprehensive IPM-based analysis of how MUC16 mutation affected the tumor immune 
microenvironment (TIME) of LUAD was performed. MUC16 mutation decreased the immune response in LUAD. As 
revealed by functional annotation, the DEIRGs in the IPM were most significantly enriched in the humoral immune 
response function and the immune system disease pathway. Moreover, high-risk cases were associated with 
increased proportions of immature dendritic cells, neutrophils, and B-cells; enhanced type I interferon T-cell 
response; and increased expression of PD-1, CTLA-4, TIM-3, and LAG3 when compared with low-risk cases. MUC16 
mutation shows potent association with TIME of LUAD. The as-constructed IPM displays high sensitivity to MUC16 
mutation status and can be applied to discriminate high-risk LUAD cases from low-risk ones. 
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As reported in The Cancer Genome Atlas (TCGA), mucin 

16 (MUC16), also named CA125, ranks third among 

genes with high mutation frequency and is located on 

chromosome 19p13.2. MUC16 becomes dissociated in 

the extracellular space after intracellular C-terminal 

phosphorylation, thereby inducing proteolytic cleavage as 

well as extracellular domain dissociation [8, 9]. 

Functionally, MUC16 has the potential to become a 

commonly used clinical biomarker for monitoring 

epithelial ovarian cancer [10]. MUC16 mutation is related 

to higher tumor mutational burden (TMB) and better 

overall survival (OS) in gastric adenocarcinoma cases 

[11]. Nonetheless, no study has comprehensively 

analyzed the relationship between MUC16 mutation and 

ICI response using the LUAD cohort. 

 

The present study integrated MUC16 mutation status 

and mRNA expression patterns for investigating the 

association of MUC16 mutation with the immune 

landscape of LUAD. This research was conducted with 

an aim to analyze the effects of MUC16 mutation on 

LUAD immunophenotype regulation and determine  

the prognostic outcome. For the prognostic outcome 

analysis, a personalized immune prognostic model 

(IPM) was built with immune-related genes (IRGs) 

under the impact of MUC16 mutation and verified using 

diverse platforms and among many patients. The 

findings of this study showed that the as-constructed 

IPM is a candidate prognostic nomogram for improving 

the management of LUAD patients.  

 

MATERIALS AND METHODS 
 

Data collection and case screening 

 

Information on mRNA expression patterns and somatic 

single-nucleotide mutation and clinical data of LUAD 

cases were obtained from TCGA and Gene Expression 

Omnibus (GEO, GSE31210 based on the platform 

GPL570) dataset. This research enrolled LUAD patients 

who had adequate clinical information. Data on some 

clinicopathological factors, including age at diagnosis, 

sex, ethnicity, MUC16 mutation status, residual tumor 

status, TNM stage, survival status, and survival time, were 

collected from the selected cases. Overall, 691 LUAD 

cases (n = 515 in TCGA; n = 176 in GSE31210) were 

selected. TCGA dataset and GEO dataset were chosen as 

the independent training set and validation set, 

respectively. Gene expression profiles and clinico-

pathological factors for LUAD can be obtained freely 

from these datasets. All analyses in the present study were 

conducted in strict accordance with relevant regulations 

and guidelines. To be specific, TCGA database was used 

to obtain information on somatic mutation status from 515 

LUAD patients (workflow type: SomaticSniper Variant 

Aggregation and Masking) as well as data on RNA 

sequencing [RNA-seq] and clinicopathological factors 

from 506 LUAD cases until September 28, 2022. R 

software “clusterProfiler” function was used to annotate 

gene symbols. Overall, 386 of the 506 LUAD cases for 

which there was sufficient information on mRNA 

expression patterns, MUC16 mutation status, and clinical 

characteristics were screened for further analyses. After 

log2-scale transformation, RNA-seq data were further 

normalized using the trimmed mean of M values (TMM) 

function in R software “edgeR” function. When one gene 

had several expression levels, the mean level was used. 

Additionally, microarray data and relevant clinical 

information of LUAD cases were collected from the GEO 

GSE31210 dataset (http://www.ncbi.nlm.nih.gov/geo/) 

using the R software “GEOquery” function. R software 

“sva” function was used to eliminate data batch effects to 

conform to normal distribution, and the R software 

“limma” function was used for external validation of 

IPM’s performance. 

 

Gene set enrichment analysis 

 

To analyze the relationship of MUC16 mutation with 

immune-related biological pathways in LUAD, gene set 

enrichment analysis (GSEA) was performed with 

TCGA data set of LUAD patients (n = 386; with 

MUC16 mutations) using GSEA software [12]. p < 0.05 

indicated statistical significance. 

 

Differentially expressed genes identified according to 

MUC16 mutation status 

 

R software “limma” function was used to identify DEGs 

in MUC16MUT LUAD cases; the DEGs were then 

compared with those in MUC16WT LUAD cases [13] 

upon the thresholds of false discovery rate (FDR) < 0.01 

and |log2fold change (FC)| > 1. The MUC16-associated 

DEGs and the aforementioned IRGs identified in GSEA 

were intersected for obtaining immune-related DEGs 

(IRDEGs) in MUC16WT; these IRDEGs were compared 

with those in MUC16MUT LUAD individuals. 

 

IPM establishment and verification 

 

Adequate data were available for 386 TCGA-derived 

LUAD cases, including information on mRNA expression 

patterns, MUC16 mutation status, survival status, and 

survival time. The IRDEGs in MUC16MUT LUAD cases 

and survival information of 386 patients were examined 

using the R software “survival” function through 

univariate Cox regression. DEGs were deemed to be 

prognostic IRGs if |hazard ratio| ≠ 1 and p < 0.05, and 

these DRGs were included in the subsequent analyses. R 

software “glmnet” function was used for LASSO Cox 

regression to analyze the significant prognostic IRDEGs. 

Additionally, the penalization coefficient was calculated 

http://www.ncbi.nlm.nih.gov/geo/
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to assess the model parameters’ weights. Each 

insignificant indicator was shrunk to zero, whereas the 

remaining DEGs were used to construct the prognostic 

risk score model. The IPM was then established by 

applying relevant prognostic DEGs’ coefficients: risk 

score = βmRNA1 * ExprmRNA1 + βmRNA2 * 

ExprmRNA2 + … + βmRNAn * ExprmRNAn, where 

Expr represents DEG expression and β indicates LASSO 

Cox regression coefficient. The TCGA-derived LUAD 

patients were categorized as low- and high-risk groups on 

the basis of risk score. To determine whether the 

constructed IPM could distinguish patient prognosis, the 

difference in OS between the low- and high-risk groups 

was calculated and compared by constructing Kaplan–

Meier (KM) curves using the R software “survival” 

function through log-rank test. To evaluate the 

constructed IPM’s predictability, time-dependent receiver 

operating characteristic (t-ROC) curves were plotted, and 

values of area under the curve (AUC) were determined 

using R software “survival ROC” function [14]. The same 

risk score median value and formula were adopted for the 

TCGA-derived LUAD cohort in the GEO dataset to verify 

the robustness of the constructed IPM.  

 

Prediction of immune cell proportion  

 

CIBERSORT, a deconvolution algorithm, was first put 

forward by Alizadeh et al., and it can be used for 

quantifying cell proportions based on gene expression 

data [15]. To detect the proportion or abundance of 22 

tumor-infiltrating immune cells (TIICs) in LUAD cases, 

the CIBERSORT algorithm (http://cibersort.stanford. 

edu/) was adopted together with LM22, a leukocyte 

gene signature matrix involving 547 genes for the 

accurate differentiation of 22 TIICs including B-cells, 

NK cells, T-cells, DCs, macrophages, and myeloid 

subsets. CIBERSORT produces a p-value for sample 

deconvolution by Monte Carlo sampling and measures 

the confidence of the result. p<0.05 indicated 

receivable results of TIIC proportions obtained from 

CIBERSORT. CIBERSORT was therefore used in 

combination with LM22 to quantify TIIC proportions in 

MUC16WT and MUC16MUT TCGA-derived LUAD 

cases, and a comparison was made between the groups. 

Cases with p < 0.05 in CIBERSORT were selected for 

subsequent analyses. 

 

Independence of the constructed IPM from 

traditional clinicopathological variables 

 

A total of 386 LUAD patients who had available data 

on clinicopathological factors such as age at diagnosis, 

sex, ethnicity, TP53 mutation status, TNM stage, 
residual tumor status, and survival time were selected 

for subsequent analyses. Univariate and multivariate 

Cox regression analyses were performed to explore the 

independence of the constructed IPM from traditional 

clinicopathological factors in prognosis prediction.  

 

Nomogram construction and verification 

 

Significant clinicopathological factors identified in the 

multivariate regression analysis were used to construct 

the visualized nomogram by applying R software “rms” 

and “survival” functions to predict patient OS at 1, 3, and 

5 years. The predictability of the nomogram was 

evaluated by a measurement model. The bootstrap 

method with 1000 iterations was performed for 

discrimination and calibration to analyze the 

predictability of the constructed nomogram. To be 

specific, the concordance index (C-index) was calculated 

to evaluate discrimination, with a C-index closer to 1 

indicating higher accuracy in nomogram prediction. 

Moreover, calibration curves were constructed to assess 

whether the survival predictability of the nomogram was 

consistent with that in real measurement; 45° C reference 

lines indicated the best predictability.  

 

RNA isolation and qRT-PCR assay 

 

For RNA isolation, TRIzol reagent (HaiGene, Haerbin, 

China) was used for extracting total lung tissue RNA. 

cDNA synthesis kit (Takara, Beijing, China) was then 

used to prepare cDNA. With the prepared mRNA and 

primers (Tsingke, Xi’an, China), qRT-PCR assay was 

performed using SYBR Green PCR Kit (Takara, 

Beijing, China; Table 1). The 2−ΔΔCt approach was 

adopted for determining gene expression, with GAPDH 

being the endogenous reference for mRNA [16]. 

 

Statistical analysis 
 

R software version 3.6.3 was used for statistical 

analysis. Wilcoxon test was used to compare data 

between diverse groups. Pearson’s chi-square test was 

applied to determine the statistical significance level of 

the relationship among different variables. p < 0.05 

(two-tailed) suggested statistical significance.  

 

Data availability statement  
 

All data utilized in the present work can be obtained 

from TCGA (https://cancergenome.nih.gov/) and GEO 

(https://www.ncbi.nlm.nih.gov/geo/), with reference 

numbers of GSE31210. 

 

RESULTS 
 

Mutations in LUAD 
 

Traditional decision-making in LC treatment is based on 

histological considerations. Over the past several years, 

http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1. Sequences of primers. 

FKBR4 
GAAGGCGTGCTGAAGGTCAT 

TGCCATCTAATAGCCAGCCAG 

TK1 
GGGCAGATCCAGGTGATTCTC 

TGTAGCGAGTGTCTTTGGCATA 

HERPUD1 
ATGGAGTCCGAGACCGAAC 

TTGGTGATCCAACAACAGCTT 

CLEC3B 
CCCAGACGAAGACCTTCCAC 

CGCAGGTACTCATACAGGGC 

GAPDH 
GGAGCGAGATCCCTCCAAAAT 

GGCTGTTGTCATACTTCTCATGG 

 

treatment selection has greatly changed owing to a better 

understanding of tumor biology and the identification of 

further genetic alterations. The present research focused 

on identifying somatic mutations in LUAD cases. Based 

on TCGA data, the MUC16 mutation ranks third among 

all commonly occurring mutations in LUAD in terms of 

its occurrence frequency (Figure 1).  

 

DEG detection in LUAD cases with/without MUC16 

mutation 

 

MUC16 mutation had a high-frequency occurrence, 

indicating the tight relationship between MUC16 

mutation status and LUAD development. MUC16 

mutation status has been well recognized as a 

molecular marker for LC. Therefore, LUAD cases 

were classified as MUC16 mutant and wild-type (WT) 

groups, and the DEGs were analyzed. The results 

showed 794 genes with upregulated expression and 

351 genes with downregulated expression (Figure 2A, 

2B). For a better understanding of the functions of 

DEGs, gene ontology (GO) functional annotation was 

applied on the basis of GSEA (Figure 2C). Our results 

showed that genes related to MUC16 mutation status 

were significantly enriched in immune functions such 

as memory and naive B-cell, memory and klrg1 high 

effect CD8+ T-cell double negative, CD8+ T-cell, and 

Treg double negative, and post immunization CD8+  

T-cell double negative, which indicated that genes 

related to MUC16 mutation status possibly exerted 

critical effects on immune- related processes in 

LUAD. 

 

DEG-based IPM establishment in line with MUC16 

mutation status 

 

Conforming to the four-gene nomogram’s prognosis 

predictability, MUC16 mutation status showed a close 

 

 
 

Figure 1. Somatic mutation landscape of lung adenocarcinoma (LUAD) patients in The Cancer Genome Atlas (TCGA) 
database, which was obtained from the Fire Browse platform (http://firebrowse.org). 

http://firebrowse.org/
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relationship with the prognostic outcome in LUAD 

cases harboring mutation (Figure 3A). To investigate 

whether this four-gene signature, which includes 

thymidine kinase 1 (TK1), FK506-binding protein 4 

(FKBP4), C-type lectin domain family 3, member B 

(CLEC3B) and homocysteine-inducible, endoplasmic 

reticulum stress-inducible, ubiquitin-like domain 

member 1 (HERPUD1), exhibited independence from 

MUC16 mutation status, LUAD cases were classified as 

low- and high-risk groups according to MUC16 

mutation status. The KM OS curves for both groups, 

according to the constructed four-gene signature 

showed a significant difference between the MUC16WT 

and MUC16MUT LUAD data sets (Figure 3B, 3C). Gene 

expression data and risk score distribution are shown in 

Figure 3D, 3E shows the predictability of the as-

constructed IPM based on t-ROC curves. The AUC 

values for the OS of our constructed model were 0.7, 

0.71, and 0.75 for 1-, 3-, and 5-year survival, 

respectively. 

Validation of the IPM in a GEO dataset 
 

To determine the robustness of IPM, the GEO-LUAD 

dataset (n = 226 LUAD cases) was analyzed to 

determine the constructed IPM’s performance in 

TCGA-derived LUAD cases. By using the same 

formula and threshold as those in the TCGA-derived 

LUAD dataset, GEO-derived LUAD cases were 

classified as low- and high-risk groups. Conforming to 

results from the TCGA-derived LUAD dataset, high-

risk cases were associated with markedly poor OS when 

compared with the low-risk counterparts (Figure 3F). 

Figure 3G shows gene expression profiles and risk score 

distribution. The AUC values of our constructed IPM 

were 0.74, 0.76, and 0.76 for 1-, 3-, and 5-year survival, 

respectively, which were higher than those reported 

previously in the TCGA- and GEO-derived LUAD 

datasets, indicating the higher performance of our 

constructed IPM in short- and long-term prognosis 

prediction.  

 

 
 

Figure 2. Identification of differentially expressed genes (DEGs) in patients with lung adenocarcinoma (LUAD) with and 
without mucin 16 (MUC16) mutation. (A) Volcano plot and (B) heatmap of the identified DEGs. (C) Gene set enrichment analysis (GSEA) 

of samples with and without MUC16 mutation. 
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TIIC landscapes between low- and high-risk LUAD 

cases 

 

Different TIIC levels were analyzed in low- and high-

risk LUAD cases. As shown in Figure 4A, the 

abundance of 29 TIICs showed significant differences 

in low- and high-risk LUAD cases. Additionally, 

changes in TIIC abundances possibly represented the 

inherent characteristic featuring individual hetero-

geneities. The abundance of diverse TIICs showed 

weak-to-moderate correlation (Figure 4B). High-risk 

LUAD cases showed an increased abundance of 

neutrophils, B-cells, immature DCs (iDCs), and type I 

interferon (IFN) T-cell response (Figure 4C). Different 

TIIC abundances seen in LUAD can serve as 

prognostic, predictive factors and immunotherapeutic 

targets, which are of great clinical significance.  

 

Responses to immunotherapy and chemotherapy in 

low- and high-risk LUAD cases 

 

Immunotherapy-based immune checkpoint blockade 

targeting PD-1 and CTLA-4 is gradually becoming the 

candidate treatment for different cancers. Therefore, the 

relationship between risk scores and key immune 

checkpoints (PD-1, PD-L1, CTLA-4, CD27, TIM-3, 

TIGIT, and LAG-3). Risk score results showed an 

evident relationship with PD-1, CTLA-4, TIM-3, and 

LAG3 levels (Bonferroni-corrected p < 0.001; Figure 

5A). Furthermore, PD-1, CTLA-4, TIM-3, and LAG3 

levels were analyzed in high-risk cases, and the data 

were compared with those of low-risk LUAD cases. 

High-risk LUAD cases showed markedly increased 

levels of PD-1, CTLA-4, TIM-3, and LAG3 when 

compared with low-risk LUAD cases (p < 0.05), 

suggesting that the dismal prognostic outcome in high-

risk LUAD cases may be partially associated with the 

immunosuppressive microenvironment (Figure 5B). 

 

Changed pathways between the two risk groups 

 

GO functional annotation was applied to provide more 

insights into IPM’s biological function. DEIRGs were 

identified in high- and low-risk LUAD patients  

(p < 0.05), and gene levels were related to risk scores. 

Seventeen IRGs were identified upon the thresholds of 

 

 
 

Figure 3. Prognostic analysis of the immune prognostic model (IPM). Kaplan-Meier curves of the difference in overall survival (OS) 

between high- and low-risk cases in (A–F) the whole The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts,  
(B) mucin 16 wild-type (MUC16WT) subgroup, and (C) mucin 16 mutation (MUC16MUT) subgroup. (D–G) Relationship between risk score 
(upper) and expression of two prognostic immune genes (bottom). (E–H) Time-dependent receiver operating characteristic (ROC) curve 
analysis of the IPM.  
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Figure 4. Landscape of immune cell infiltration in high- and low-risk lung adenocarcinoma (LUAD) patients. (A) Relative 
proportion of immune cell infiltration in high- and low-risk LUAD patients. (B) Correlation matrix of all 29 immune cell proportions. (C) Violin 
plots illustrating immune cells at significant proportions between high-risk and low-risk patients. 

 

 
 

Figure 5. Enrichment analysis of the immune prognostic model. (A) Correlation of the risk score with the expression of several 
prominent immune checkpoint molecules. (B) Violin plots illustrating immune checkpoint molecules at significant levels between high-risk 
and low-risk patients. 
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p < 0.05 and |Pearson’s correlation coefficient| > 0.2; 

Figure 6A). Subsequently, GO and KEGG analyses 

were performed for identifying possible biological 

functions (FDR<0.001) and pathways (FDR < 0.01) 

enriched by the identified IRGs (Figure 6B, 6C). 

Consequently, risk score–related genes identified  

from the TCGA-derived LUAD cohort were mostly 

associated with humoral immune response and the 

immune system diseases pathway. 

Associations between the constructed four-gene IPM 

and clinical features 

 

The independence of the constructed risk score from 

traditional clinical factors was assessed based on the 

constructed four-gene IPM. The results of the univariate 

Cox regression analysis showed that MUC16 mutation 

status, risk score, T stage, and TNM stage predicted  

the dismal prognostic outcome of LUAD cases. In 

 

 
 

Figure 6. Functional analysis of the immune prognostic model. (A) Heatmap of immune-related genes that were differentially 

expressed in the samples of patients with high- and low-risk scores. (B) Circular plot of the biological processes wherein the immune-related 
genes are enriched. (C) Scatter plot of the pathways wherein the immune-related genes are enriched. 
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multivariate Cox regression analysis, the four 

aforementioned factors were identified as independent 

prognostic factors for LUAD (p < 0.05; Figure 7A). 

Furthermore, a prognostic nomogram was constructed 

based on the factors significant in multivariate 

regression. Relative to T stage and TNM stage, risk 

score exhibited better predictability (Figure 7B). As 

shown in the calibration plot, the bias-corrected line 

was close to the optimal curve (the 45-degree line), 

indicating high consistency between the predicted and 

observed values (Figure 7C). 

 

Gene signature verification with clinical samples 

 

To confirm that our gene signature was reliable, 

FKBP4, TK1, HERPUD1, and CLEC3B expression 

levels were analyzed through qRT-PCR assay of 48 

pairs of LUAD tissues with or without MUC16 

mutation. FKBP4 and TK1 expression markedly 

increased in the mutation tissue samples relative to that 

in the non-mutation tissue samples (Figure 8). On the 

contrary, the expression of HERPUD1 and CLEC3B in 

the mutation tissues was reduced. 

 

DISCUSSION 
 

LC is a major contributor to cancer-associated deaths 

worldwide, and LC with MUC16 mutation causes 

higher mutational burden, elevated immune checkpoint 

protein expression, enhanced PD-L1 amplification, and 

increased T-cell infiltration, all of which can be 

regulated with the use of PD-1 inhibitors [17, 18]. 

Nonetheless, the mechanism of MUC16 mutation in 

affecting the TME and LC prognostic outcome remains 

unclear. Therefore, elucidating the immune impacts of 

MUC16 mutation status is of great importance. 

 

The present research is the first to identify IRGs 

impacted by MUC16 mutation, which may provide new 

biomarkers to predict the prognosis and treatment of 

LUAD. MUC16 mutation cases were associated with 

dismal prognosis. Moreover, MUC16 mutation–related 

genes were significantly associated with immune 

response-related GO terms. Additionally, the four-gene 

IPM was constructed for predicting the LUAD 

prognostic outcome. According to the median risk score, 

LUAD cases were classified as high- and low-risk 

LUAD cases, with high-risk cases showing dismal OS.  

 

In line with the tumor immunoediting hypothesis, few 

immunogenic tumor cells from the developed tumor can 

be chosen in immune-competent hosts for evading 

anticancer immunity [19, 20]. This approach increases 

the number of immunosuppressive cells (such as tumor-

associated macrophages, regulatory T-cells), reduces 

the count of immunoreactive cells (such as follicular 

helper T-cells), and upregulates the expression of 

immunosuppressive molecules (such as CTLA-4 and 

PD-1) within the TME. PD-1 is an important factor 

regulating T-cell CD8+ exhaustion, and blocking this 

inhibition pathway can promote T-cell–mediated 

immunity in diverse cancers [21, 22]. Therefore, cases 

from diverse patient groups may show diverse 

immunotherapeutic responses. Moreover, high-risk 

LUAD cases exhibited an increased abundance of B 

cells, iDCs, type I IFN T-cell response, and neutrophils 

when compared with low-risk LUAD cases. 

Additionally, high-risk LUAD cases were associated 

with an increased TMB level when compared with low-

risk LUAD cases, which was attributed to the higher 

benefits of immunotherapy [23–25]. As revealed in 

TIDE prediction, high-risk LUAD cases may show 

higher anti-PD-1 therapeutic responses. Collectively, 

high-risk LUAD cases demonstrated poor prognostic 

outcome, which was possibly associated with increased 

immunosuppression and decreased immunoreactivity in 

the TME. Such heterogeneities accelerated tumor 

proliferation, migration, invasion, and progression. 

High-risk LUAD cases could therefore gain more 

benefits from chemotherapy and immunotherapy. 

 

 
 

Figure 7. Relationship between the immune prognostic model (IPM) and other clinical information. (A) Univariate and 

multivariate regression analyses of the relationship between the IPM and clinicopathological features regarding prognostic value.  
(B) Nomogram for predicting the probability of 1-, 3-, and 5-year overall survival (OS) in lung adenocarcinoma (LUAD) patients. (C) Calibration 
plot of the nomogram for predicting the probability of OS at 1, 3, and 5 years. 
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Our study showed that MUC16 mutation status, risk 

score, T stage, and clinical TNM stage had a remarkable 

effect on OS in LUAD cases, and the constructed four-

gene IPM effectively predicted the prognosis of LUAD 

cases. The pathological stage is an important factor in 

determining LC prognosis. Nonetheless, even cases at 

an identical stage have different clinical outcomes, 

suggesting that the existing classification systems may 

not have sufficient effectiveness to predict patient 

prognosis, which may not comprehensively represent 

biological heterogeneity in LC cases. Therefore, 

identifying possible biomarkers to predict patient 

prognosis and treat LC patients is of great importance. 

To the best of our knowledge, this study is the first to 

construct a MUC16 mutation status–related prognostic 

nomogram. This is a new approach for assessing LUAD 

cases and guiding prognosis prediction and treatment 

decision-making. The constructed four-gene IPM 

helped to differentiate prognostic outcomes in LUAD 

cases among diverse MUC16 mutation subtypes. 

Moreover, a nomogram integrating risk score and 

clinical information from LUAD cases was constructed 

to predict the prognostic outcome. Risk score showed a 

better performance in predicting short- and long-term 

LUAD prognostic outcome.  

 

FKBP4, TK1, HERPUD1, and CLEC3B levels were 

measured and verified in clinical samples (tumor 

tissues). FKBP4 and TK1 protein expression markedly 

increased in MUC16 mutation tissue samples relative to 

that in their non-mutation counterparts. HERPUD1 and 

CLEC3B expression showed a contrary trend. These 

findings confirmed that our results were reliable.  

 

Collectively, the present research is the first to construct 

the four-gene IPM based on MUC16 mutation status,  

 

 
 

Figure 8. Validation of the immune prognostic model 
(IPM) in clinical tissue samples by performing qRT-PCR 
assay in lung adenocarcinoma (LUAD) mucin 16 (MUC16) 
mutation tissue samples and LUAD non-MUC16 mutation 
tissue samples. 

which facilitates the independent prediction of LUAD 

prognosis. High-risk LUAD cases can gain more 

benefits from chemotherapy and immunotherapy. The 

constructed four-gene signature significantly affects 

LUAD management. 
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