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INTRODUCTION 
 

Kidney renal clear cell carcinoma (KIRC) is the most 

common subtype of renal cell carcinoma, constituting 

approximately 75%-85% of renal cell carcinoma cases 

[1]. Its morbidity is rising each year, and patients  

often present with postoperative metastases, which are 

associated with great patient hardship [2]. The American 

Joint Committee on Cancer (AJCC) tumor node 

metastasis (TNM) classification system is often used for 

staging and is used to divide patients into stages I, II, III, 

and IV for prognostic assessment [3]. However, the 

predictions of the prognosis of patients treated based  

on this system are not accurate [4]. Therefore, novel 
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ABSTRACT 
 

Background: Immunogenic cell death (ICD) is an important part of the antitumor effect, yet the role played by 
long noncoding RNAs (lncRNAs) remains unclear. We explored the value of ICD-related lncRNAs in tumor 
prognosis assessment in kidney renal clear cell carcinoma (KIRC) patients to provide a basis for answering the 
above questions. 
Methods: Data on KIRC patients were obtained from The Cancer Genome Atlas (TCGA) database, prognostic 
markers were identified, and their accuracy was verified. An application-validated nomogram was developed 
based on this information. Furthermore, we performed enrichment analysis, tumor mutational burden (TMB) 
analysis, tumor microenvironment (TME) analysis, and drug sensitivity prediction to explore the mechanism of 
action and clinical application value of the model. RT‒qPCR was performed to detect the expression of lncRNAs. 
Results: The risk assessment model constructed using eight ICD-related lncRNAs provided insight into patient 
prognoses. Kaplan‒Meier (K-M) survival curves showed a more unfavorable outcome in high-risk patients 
(p<0.001). The model had good predictive value for different clinical subgroups, and the nomogram constructed 
based on this model worked well (risk score AUC=0.765). Enrichment analysis revealed that mitochondrial 
function-related pathways were enriched in the low-risk group. The adverse prognosis of the higher-risk cohort 
might correspond to a higher TMB. The TME analysis revealed a higher resistance to immunotherapy in the 
increased-risk subgroup. Drug sensitivity analysis can guide the selection and application of antitumor drugs in 
different risk groups. 
Conclusions: This prognostic signature based on eight ICD-associated lncRNAs has significant implications for 
prognostic assessment and treatment selection in KIRC. 
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prognostic models are urgently needed to guide the 

treatment of patients with KIRC. Biomarker-based 

prognostic models have shown great potential in recent 

years for tumor patient prognostic assessment. 

 

Immunogenic cell death (ICD), one of the important 

modalities of regulatory cell death, promotes antitumor 

effects by triggering the activation of cytotoxic T cells 

[5]. Simultaneously, long noncoding RNAs (lncRNAs) 

are indispensable for performing this function,  

and lncRNA-related models have been successfully 

constructed for numerous cancer types. lncRNA models 

constructed by Liu Z et al. were validated in the 

prognostic assessment of colorectal cancer patients [6]. 

lncRNA contributions in tumor therapy were reviewed 

by Eptaminitaki GC et al. [7]. Liang YL et al. 

constructed a tumor immune heterogeneity-associated 

lncRNA prognostic model to determine the long-term 

prognosis of patients with nasopharyngeal carcinoma 

[8]. However, a KIRC prognostic assessment model 

based on ICD-related lncRNAs is still not available. 

 

Thus, we constructed an ICD-associated lncRNA-based 

prognostic model for assessing the prognosis of patients 

with KIRC and appraised its clinical application value 

through enrichment analysis, tumor mutational burden 

(TMB) analysis, tumor microenvironment (TME) 

differential analysis, and drug sensitivity prediction. 

 

MATERIALS AND METHODS 
 

Data sources and access 

 

The University of California, Santa Cruz (UCSC) Xena 

database (https://xena.ucsc.edu/, until November 1st, 

2022) was the primary source of data for this study [9]. 

The Cancer Genome Atlas (TCGA) database in Xena 

provided patient information, including transcriptomic 

data for 607 KIRC cases and clinicopathological 

information for 979 KIRC clinical patients. Tumor 

somatic cell mutation data were obtained from the TCGA 

database (https://portal.gdc.cancer.gov/repository, until 

November 1st, 2022). Transcriptomic data were obtained 

in two data formats, HTSeq-Counts and HTSeq-FPKM, 

which are used for different types of data analysis. We 

selected patients with complete transcriptional and 

clinical information and ensured that they were identified 

in both datasets. Ultimately, a total of 597 samples were 

analyzed in this study. 

 

Select ICD-associated genes and ICD-related lncRNAs 

 

ICD-associated genes were identified from the 

GeneCards website (https://www.genecards.org/, until 

November 1st, 2022). We conducted a search using 

immunogenic cell death as a keyword, and target genes 

were selected for subsequent analysis [10]. In addition, 

we conducted Pearson correlation analysis to investigate 

the associations among ICD-associated genes and all 

lncRNAs and acquired ICD-related lncRNAs (filter 

conditions indicated as |correlation coefficient| > 0.3 

and p < 0.05). We ran variance analysis on the results 

obtained from Pearson correlation analysis using the 

“DESeq2” package [11], with the retention of lncRNAs 

with a p value < 0.05 and |log2-fold change > 3|. 

 

All KIRC patients were randomly assigned 1:1 to the 

training cohort, which was used for model construction, 

or the test cohort, which was used to verify the model. 

Then, ICD-associated lncRNAs relevant to patient 

survival were short-listed in the training cohort using 

univariate Cox regression analysis. We used least 

absolute shrinkage and selection operator (LASSO) 

regression analysis to avoid overfitting. Finally, ICD-

related lncRNAs were identified through multivariate 

Cox regression analysis. 

 

KIRC ICD-associated lncRNA prognostic model 

 

We used the results from predictive model building. 

The format of the risk score was as follows: risk score  

= coefficient (lncRNA1) × expression (lncRNA1) + 

coefficient (lncRNA2) × expression (lncRNA2) + 

coefficient (lncRNA3) × expression (lncRNA3) +......+ 

coefficient (lncRNAn) × expression (lncRNAn). Using 

the midpoint of the risk score as its threshold, the 

training group, the test group and all patients were 

sorted into high- and low-risk cohorts for survival 

analysis. Kaplan‒Meier (K-M) survival analysis 

utilizing “survival” and “survminer” was conducted to 

examine the variation in overall survival (OS) between 

risk categories in the training cohort, test cohort, and 

total cohort. Receiver operating characteristic (ROC) 

values at one, three, and five years were extrapolated to 

evaluate the predictive performance of the signature. 

 

Principal component analysis (PCA) using the expression 

profiles of all genes, all lncRNAs, lncRNAs associated 

with ICD, and lncRNAs in the selected prognostic 

models was conducted to validate the subgrouping effect. 

In addition, univariate and multifactor Cox independent 

prognostic analyses were conducted to assess risk scores 

and clinical data to validate the predictive value of the 

risk model. After that, K-M survival analysis was 

conducted to probe the model feasibility under dissimilar 

clinical characteristics. 

 

Creation of a nomogram for predicting patient 

survival 

 

We used the R programming language “RMS” to create 

a prognostic nomogram using age, risk group, and 

https://xena.ucsc.edu/
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tumor stage as factors to predict patient outcomes at  

1, 3, and 5 years [12]. We also determined the value of 

this nomogram in prognosis prediction. 

 

Enrichment analysis 

 

KEGG enrichment analysis was applied to optimize the 

functions that might be interrelated with the genetic set. 

We divided the cases into high- and low-risk groups 

under the simulations constructed from 8 ICD-related 

lncRNAs, and enrichment analysis was used to filter the 

pathways with a p value<0.05 and false discovery rate 

(FDR)<0.25 using GSEA_4.3.2 software (downloaded 

at https://www.gsea-msigdb.org) [13]. 

 

Tumor mutational burden contributes to the 

prognostic evaluation of tumors 

 

We obtained tumor somatic mutation data from the 

TCGA database. We manipulated the data using the 

“TCGAbiolinks” package, sketched waterfall plots using 

the R programming language “maftools”, and calculated 

TMB [14, 15]. 

 

Evaluation of TME and immuno-infiltration 

 

The R software package “ESTIMATE” was used as an 

analysis vehicle to calculate any difference in stromal 

score, ESTIMATE score, immune score, and tumor 

purity between the high- and low-risk subgroups. We 

obtained further information through the Tumor 

Immune Estimation Resource (TIMER) 2.0 website 

(http://timer.cistrome.org/, until November 1st, 2022) 

using “TIMER”, “CIBERSORT”, “CIBERSORT-

ABS”, “QUANTISEQ”, “XCELL”, and “EPIC”, 

together with “MCPCOUNTER”, which are six 

methods used to optimize the correlation between 

individual immune cell types and risk scores [16]. To 

detail the constitutive shifts in immune cells, we 

undertook an immune infiltration analysis of 22 

immune cell lineages. 

 

ICD-related signature in immunotherapy versus 

chemotherapy 

 

To fully address the distinctions between KIRC patients 

in different risk groups presenting with tumor immune 

dysfunction and rejection, the Tumor Immune 

Dysfunction and Exclusion (TIDE) website 

(http://tide.dfci.harvard.edu/, until November 1st, 2022) 

was used to retrieve the TIDE scores and related data of 

KIRC patients [17]. Therefore, we conducted single-

sample gene set enrichment analysis (ssGSEA) using 
the “GSVA” R package. Half-maximal inhibitory 

concentrations (IC50) of typical antineoplastic drugs 

were determined using the R software “oncoPredict” 

package [18]. The IC50 values were compared between 

different classes utilizing a Wilcoxon signed-rank test. 

 

Validation by RT‒qPCR 

 

Twenty-one KIRC samples were obtained from the 

Second Affiliated Hospital of Nanchang University, and 

patients were divided into high- and low-risk groups. The 

study was approved by the Ethics Committee of the 

Second Affiliated Hospital of Nanchang University, and 

all participants gave their informed consent. We extracted 

RNA from each KIRC tissue sample using TRIzol 

reagent (Life Technologies CA, USA) and randomly 

selected samples for RT‒qPCR analysis. The 

experiments were performed using BlazeTaq SYBR 

Green qPCR master mix (GeneCopoeia, Guangzhou, 

China) and the Applied Biosystems 7500 Fast Real-Time 

PCR System (Applied Biosystems). All RNAs of every 

sample were analyzed in three independent experiments. 

The primers for ICD-associated lncRNAs are shown  

in Supplementary Table 1. The relative expression of 

lncRNAs was calculated using the 2^(-ΔΔCt) method. 

 

We used the Human Protein Atlas 

(https://www.proteinatlas.org/) database to compare the 

protein expression levels of selected ICD-related genes 

in KIRC tissues with those in normal tissues. 

 

Availability of data and material 

 

The data sets used and/or analyzed during the current 

study are available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

Screening for ICD-associated lncRNAs in KIRC 

patients 

 

The overall study design of this paper is displayed in a 

flow chart (Figure 1). First, we identified ICD-related 

genes and constructed a protein–protein interaction 

(PPI) network associated with 16 of these genes by 

using the STRING website (Figure 2A). Further 

Pearson correlation analysis was executed, from which 

we derived 9096 ICD-associated lncRNAs. Next, we 

narrowed the pool down to 547 lncRNAs that were 

shown by differential analysis to be differentially 

expressed in tumor tissues (Figure 2B). 

 

Based on difference analysis, we rerandomized 526 

patients into training and test groups (Table 1). In the 

training group, a single-factor Cox model was used to 

screen 180 lncRNAs associated with differential 

prognosis using p<0.05 as the cutoff value 

(Supplementary Table 2). Follow-up LASSO analysis 

https://www.gsea-msigdb.org/
http://timer.cistrome.org/
http://tide.dfci.harvard.edu/
https://www.proteinatlas.org/
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revealed 14 differentially expressed ICD-related 

lncRNAs (Figure 2C, 2D) (Supplementary Table 3), and 

multifactorial Cox regression analysis was used to further 

screen the 8 most significant lncRNAs (Supplementary 

Figure 1A). We subsequently explored the correlations 

among these 8 lncRNAs (Supplementary Figure 1B) and 

their correlation with ICD-related genes (Supplementary 

Figure 1C) that were found to exhibit a marked 

difference in up- and downregulation in tumor tissues 

(Supplementary Figure 1D). 

 

 
 

Figure 1. Flow chart. 
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Building and validating the prognostic model 

 

Based on the 8 ICD-related lncRNAs, we calculated 

risk scores for different patients: risk score= 

coefficient(AP000439.3)×expression (AP000439.3)+ 

coefficient (RP11.1151B14.5)×expression(RP11.1151 
B14.5)+coefficient(RP11.479J7.2)×expression(RP11.47

9J7.2)+coefficient(AC099552.4)×expression(AC099552

.4)+coefficient(RP11.19E11.1)×expression(RP11.19E
11.1)+coefficient(CTB.33O18.1)×expression(CTB.33O

18.1)+coefficient(RP11.339D23.1)×expression(RP11.3
39D23.1)+coefficient(LINC01192)×expression(LINC01

192). Clinical information for all patients in the high- 

and low-risk clusters is presented in Table 2. In the 

training cohort, the test cohort, and the total cohort, 

survival was much worse in the high-risk group than in 

the low-risk group (all p values<0.001) (Figure 3A–3C), 

and the time-dependent ROC curve demonstrated that 

the model’s predictive value was excellent (AUCs were 

0.831, 0.775, and 0.796 for the training cohort at one, 

three, and five years, respectively; 0.710, 0.688, and 

0.768 for the test cohort at one, three, and five years, 

respectively; and 0.775, 0.743, and 0.786 for the total 

cohort at one, three, and five years, respectively) 

(Figure 3D–3F). In different cohorts, the manifestations 

of 8 lncRNAs in patients with different risks 

(Supplementary Figure 2A–2C), the risk curves 

(Supplementary Figure 2D–2F), the risk distribution 

plot (Supplementary Figure 2G–2I), and the scatter plot 

(Supplementary Figure 2J–2L) showed the forecasting 

value of the model. 
 

The outcomes of principal component analysis (PCA) 

(Figure 4A–4D) indicated that the high- and low-risk 

subgroups showed obvious categorical clustering. 

Univariate Cox independent prognostic analysis indicated 

 

 
 

Figure 2. Filter for ICD-related lncRNAs. PPI network among 16 ICD-related genes (A); Volcano plot of differentially expressed ICD-
associated lncRNAs (B); LASSO regression analysis (C, D). 
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Table 1. Clinical information of the patients in the test and training groups. 

Characteristics 
Train cohort (n=264)  Test cohort (n=262)  Entire cohort (n=526) 

n %  n %  n % 

Age         
<65 184 69.70   163 62.21   347 65.97  

>65 80 30.30   99 37.79   179 34.03  

Status         
Alive 176 66.67   179 68.32   355 67.49  

Dead 88 33.33   83 31.68   171 32.51  

Gender         
Female 90 34.10   93 35.50   183 34.79  

Male 174 69.90   169 64.50   343 65.21  

Stage         
Stage I 128 48.48   133 50.76   261 49.62  

Stage II  30 11.36   27 10.31   57 10.84  

Stage III 62 23.48   61 23.28   123 23.38  

Stage IV 42 15.91   40 15.27   82 15.59  

Unknow 2 0.76   1 0.38   3 0.57  

T stage         
T1 132 50.00   135 51.53   267 50.76  

T2 36 13.64   33 12.60   69 13.12  

T3 91 34.47   88 33.59   179 34.03  

T4 5 1.89   6 2.29   11 2.09  

M stage         
M0 209 79.17   209 79.77   418 79.47  

M1 42 15.91   36 13.74   78 14.83  

Unknow 13 4.92   17 6.49   30 5.70  

N stage         
N0 119 45.08   119 45.42   238 45.25  

N1 8 0.03   8 3.05   16 3.04  

Unknow 137 51.89   135 51.53   272 51.71  

Race         
White 232 87.88   225 85.88   457 86.88  

Black or African American 25 9.47   29 11.07   54 10.27  

Asian 3 1.14   5 1.91   8 1.52  

Unknow 4 1.52   3 1.15   7 1.33  

Abbreviation: T stage, Tumor stage; N stage, Node stage; M stage, metastasis stage. 

 

that age (HR=1.68, 95% CL=1.24-2.28, p<0.001), tumor 

stage (HR=1.92, 95% CL=1.68-2.20, p<0.001), and  

risk score (HR=1.44, 95% CL=1.34-1.54, p<0.001)  

were standalone risk factors (Figure 4E). Likewise, 

multifactorial independent prognostic analysis showed 

that age (HR=1.57, 95% CL=1.15-2.15, p=0.004), tumor 

stage (HR=1.73, 95% CL=1.50-1.99, p<0.001), and risk 

score (HR=1.34, 95% CL=1.25-1.44, p<0.001) were 

standalone risk factors (Figure 4F). 

 

The expression heatmap containing different clinical 

data, risk groupings, and prognostic model-related 

lncRNAs (Supplementary Figure 3A) and the survival 

curves of patients in a variety of clinical states (Figure 5) 

illustrate the significance of the model predictions (stage 

I-II: p<0.001, stage III-IV: p<0.001; female: p<0.001, 

male: p<0.001; age<=65: p<0.001, age>65: p=0.002). 

 

Clinical OS prediction nomogram 

 

The scatter plot showed a positive correlation with 

respect to tumor stage and risk scores (p<0.001) 

(Supplementary Figure 3C). Age >65 years also tended 

to be a factor for an increased risk score (p=0.096) 

(Supplementary Figure 3B). Decision curve analysis 

(DCA) (Figure 6A) and ROC curves (Figure 6B) (risk 

AUC=0.765, age AUC=0.646, sex AUC=0.500, and 

stage AUC=0.815) showed that risk had a superior 
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Table 2. Clinical information for 526 patients in different risk categories. 

Characteristics 
High-risk group (n=263)  Low-risk group (n=263) 

n %  n % 

Age      

<65 163 61.98   184 69.96  

>65 100 38.02   79 30.04  

Status      

Alive 134 50.95   221 84.03  

Dead 129 49.05   42 15.97  

Gender      

Female 90 34.22   93 35.36  

Male 173 65.78   170 64.64  

Stage      

Stage I 100 38.02   161 61.22  

Stage II  27 10.27   30 11.41  

Stage III 74 28.14   49 18.62  

Stage IV 60 22.81   22 8.37  

Unknow 2 0.76   1 0.38  

T stage      

T1 104 39.54   163 61.98  

T2 36 13.69   33 12.55  

T3 113 42.97   66 25.10  

T4 10 3.80   1 0.38  

M stage      

M0 192 73.10   226 85.93  

M1 57 21.67   21 7.98  

Unknow 14 5.32   16 6.08  

N stage      

N0 132 50.19   106 40.30  

N1 13 4.94   3 1.14  

Unknow 118 44.87   154 58.56  

Race      

White 226 85.93   231 87.83  

Black or African American 29 11.03   25 9.51  

Asian 4 1.52   4 1.52  

Unknow 4 1.52   3 1.14  

Abbreviation: T stage, Tumor stage; N stage, Node stage; M stage, metastasis stage. 

 

prediction value compared to most clinical information. 

A prospective estimator of KIRC patients based on age, 

risk, sex, and disease staging was conceived (Figure 6C), 

patients were used to verify its effectiveness, and the 

results indicated good performance (Supplementary 

Figure 4). The forecasting value of the nomogram 

combined with the risk model (Supplementary Figure 

4D) was higher than that of the nomogram without the 

risk model (Supplementary Figure 4E). 

Enrichment analysis 

 

KEGG enrichment analysis revealed the related functions 

of variably expressed genes, including ubiquitin-

mediated proteolysis, glycolipid biosynthesis, galactose 

metabolism, ethoxylate, and dicarboxylate metabolism 

(Supplementary Figure 5). GSEA demonstrated that 

different pathways were enriched in different gene sets. 

Pathway functions enriched in the low-risk category in 
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Figure 3. The model prediction effect is validated by the training group, test group, and entire group. K-M analysis (A–C) and 

Time-dependent ROC curves (D–F) to compare the survival of the high-risk group and low-risk group. 
 

 
 

Figure 4. PCA and independent prognostic analysis of the signature. PCA based on all genes (A), all lncRNAs (B), ICD-related lncRNAs 
(C), and risk signature (D); Univariate (E) and multivariate (F) independent prognostic analysis. 
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the GOBP library included mitochondrial gene 

expression, assembly of the mitochondrial respiratory 

chain complex, mitochondrial translation, neuro-

transmitter reuptake, and mitochondrial electron transport 

from NADH to ubiquinone (Supplementary Figure 6). 

All the pathway information is shown in Supplementary 

Table 4. 

 

Tumor mutational burden 

 

The TMB in patients was determined and found to be 

higher in the high-risk subgroup (Figure 7A). Based on 

this, we generated a waterfall plot of the top 20 mutant 

genes according to different subclusters (Figure 7B, 

7C). The five most commonly mutated genes in the 

high-risk patients were VHL (45%), PBRM1 (38%), 

TTN (17%), BAP1 (16%), and SETD2 (16%). VHL 

(48%), PBRM1 (42%), TTN (15%), SETD2 (8%) and 

MUC16 (7%) were prone to mutation in low-risk 

patients. 

 

Tumor immune infiltration status analysis 

 

The TME analysis suggested that the immune score 

(Figure 8A) and the ESTIMATE score (Figure 8C) were 

higher in the high-risk segment (p<0.01), but the 

stromal score (Figure 8B) did not show dramatic 

differences. Patients at high risk had significantly lower 

tumor purity (p<0.01) (Figure 8D). We hypothesized 

that an immunosuppressive microenvironment was 

present in the high-risk subgroup that weakened 

antitumor immunity. Additionally, we showed an 

association between immune cells and the risk score 

under different algorithms (Figure 8E). Naive B cells 

(p<0.05), plasma cells (p<0.05), follicular helper T cells 

(p<0.01), regulatory T cells (Tregs) (p<0.0001), and M0 

macrophages (p<0.01) constituted a greater proportion 

within the high-risk group, and resting memory CD4 T 

cells (p<0.05), monocytes (p<0.01), M1 macrophages 

(p<0.0001), and resting mast cells (p< 0.0001) showed 

comparatively higher expression in the low-risk group 

(Figure 8F). The relationships among immune cells and 

risk scores are shown in Supplementary Figure 7. 

Accordingly, APC coinhibition (p<0.01) and type II 

IFN response (p<0.001) functions were inhibited in 

high-risk KIRC patients, while parainflammation 

(p<0.01) and T-cell costimulation functions were 

improved (Figure 8G). It can be speculated that tumor 

development in high-risk KIRC patients is facilitated by 

both T-cell parainflammation and costimulation. 

 

Benefits of promotional models in the treatment of 

KIRC 

 

T-cell exclusion and T-cell dysfunction, together with 

TIDE scores, were consistently higher in the high-risk 

 

 
 

Figure 5. Further validation of model effects. Survival curves of patients in different clinical states (A–F). 
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Figure 6. Nomogram predicts patient prognosis. Decision curve to test for forecast value (A); ROC curves containing different clinical 
information (B); A clinical prognosis nomogram is constructed by age, gender, risk, and stage together (C). Nomogram with (D) and without 
(E) risk model. 
 

 
 

Figure 7. Tumor mutation burden in different risk groups. Percentage bar graph showing TMB for different risk subgroups (A); High-

risk group waterfall chart (B); Low-risk group waterfall chart (C). 
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patients with ICD-related signatures (Supplementary 

Figure 8). This may indicate that there is more potential 

for tumors in the high-risk subgroup to exhibit immune 

escape, complicating treatment. The antitumor drugs 

with different mechanisms of action to which tumors in 

the low-risk subgroup are sensitive are shown in 

Supplementary Table 5, those to which tumors in the 

higher-risk subgroup are sensitive are shown in 

Supplementary Table 6, and those without significant 

intergroup susceptibility differences are shown in 

Supplementary Table 7. The high-risk group appears to 

be more sensitive to drugs that act on the PI3K/mTOR 

signaling pathway and metabolism pathway, which can 

guide drug selection. 

 

In vitro experimental validation of risk models 

 

The protein expression levels of selected ICD-related 

genes in KIRC tissues and normal tissues were 

visualized with immunohistochemical staining images 

in the HPA database (Supplementary Figure 9A). 

 

RT‒qPCR results showed that among the eight ICD-

related lncRNAs, AP000439.3 was highly expressed in 

 

 
 

Figure 8. Analysis of tumor immune microenvironment. Violin plots of differences in immune scores (A), stromal scores (B), ESTIMATE 
scores (C), and tumor purity (D) for different risk subgroups; Bubble plots of correlations between immune cells and risk scores under six 
algorithms (E); Proportions of 22 immune cells in two subgroups under the CIBERSORT algorithm (F); single sample gene set enrichment 
analysis (G). *p < 0.05, **p < 0.01, ***p < 0.001. 
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the low-risk group, and the remaining seven lncRNAs 

were highly expressed in the high-risk group 

(Supplementary Figure 9B). 

 

DISCUSSION 
 

KIRC is one of the major pathological types of renal 

cell carcinoma, which often spreads and metastasizes 

[1]. Nevertheless, the etiology and pathogenesis of this 

tumor remain to be further explored [19]. Hence, it is 

particularly important to accurately assess a patient’s 

prognosis and provide appropriate treatment. However, 

clinical TNM staging is not able to accurately assess the 

prognosis of patients with KIRC [4]. Accordingly, there 

is a great need to construct a new prognostic assessment 

model. ICD is an important component of regulated cell 

death and is involved in the antitumor process [5]. Thus, 

we screened ICD-related lncRNAs for the construction 

of a KIRC prognostic assessment model and explored 

their possible molecular mechanisms and clinical 

applications. The outcome indicated that the risk score 

derived from 8 ICD-associated lncRNAs could be used 

as a standalone predictive factor and that patients in the 

high-risk subgroup had a worse prognosis. The 

nomogram constructed in accordance with this had 

good predictive value. Enrichment analysis showed that 

mitochondria-associated pathways might be relevant in 

the low-risk subgroup. The model provides a reference 

for antitumor drug selection for KIRC patients. 

 

ICD involves the release of danger-associated molecular 

patterns (DAMPs) from apoptotic tumor cells, which 

activate immune cells, thus promoting the antitumor 

effect of immune cells [5]. ICD-based prognostic 

models have good predictive value in other cancer 

types. Cai J used an ICD-based evaluation model to 

verify the prognosis of low-grade glioma patients with 

good results [20], and an ICD-related prognostic model 

constructed by Ma J. and team to forecast the prognosis 

of patients suffering from hepatocellular carcinoma also 

achieved satisfactory results [21]. We downloaded 

sample data from TCGA-KIRC patients, performed 

Pearson correlation analysis to identify ICD-related 

genes, and then carried out difference analysis to select 

test groups from the obtained tumor samples to conduct 

subsequent one-way Cox regression analysis, LASSO 

regression analysis, and multifactor regression analysis 

to obtain ICD-related lncRNAs to construct prognostic 

models. A nomogram was constructed to forecast the 1-, 

3-, and 5-year survival rates of patients. The survival 

rates of patients in the ICD-related high-risk subgroup 

according to the prognostic model were all worse than 

those of patients in the ICD-related low-risk subgroup, 

while the risk scores had a better predictive effect than 

traditional tumor staging, which we speculated was due 

to the worse ICD effect in the upper-risk subgroup, 

leading to a worse prognosis. When the risk scores were 

applied, the nomogram predictions were better. Among 

ICD-related lncRNAs, AP000439.3 is regulated by 

estrogen receptor (ER) and can regulate CCND1 

expression through enhancement of estrogen receptors, 

thereby inhibiting cell cycle progression and cell 

proliferation [22]. In contrast, LINC01192 expression is 

upregulated in triple-negative breast cancer and is 

associated with the low survival likelihood of patients 

with triple-negative breast cancer [23]. This may give 

better predictive value to the risk score. Overall, our 

ICD-associated lncRNA prognostic model showed good 

predictive properties in KIRC patients and had more 

potential than conventional assessment methods. 

 

We carried out GSEA and TMB analysis to detect the 

possible mechanisms involved. GSEA revealed 

numerous pathways related to mitochondrial function 

enriched in the low-risk subgroup. It has been shown 

that the enzyme RIPK3 can mediate signaling between 

mitochondria and the immune system to initiate 

antitumor immunity [24]. Impaired oxidative 

phosphorylation due to mitochondrial defects leads to 

cellular carcinogenesis [25]. More vigorous aerobic 

glycolysis in cancerous tissues provides energy to the 

tissue [26]. Additionally, a higher TMB usually results 

in a worse prognosis for patients with KIRC [27]. 

 

We further explored the contribution of this prognostic 

model to clinical drug selection. It has been shown that 

plasma cells can produce immunoglobulins and inhibit 

cell growth in the early stages of disease. At an early 

stage, pathological IgG can enter tumor cells through 

the AP2 complex and degrade overexpressed proteins 

through the TRIM21-mediated ubiquitin pathway, thus 

achieving antitumor effects [28]. M1 isoforms of 

tumor-associated macrophages (TAMs) can enhance 

antitumor immunity, and mast cell resting tends to lead 

to a better prognosis in KIRC patients [29, 30]. The 

higher content of the above cells in the low-risk 

subgroup may prolong patient survival. Tregs can use 

CTLA4 to inhibit the costimulatory signaling 

molecules CD80 and CD86, secrete suppressive 

cytokines, and directly kill effector T cells, creating an 

immunosuppressive microenvironment [31]. High 

Treg expression in high-risk groups may cause worse 

patient prognosis. All these immune cells point the 

way to immunotherapy. Additionally, the high-risk 

subgroup had higher sensitivity to drugs targeting the 

PI3K/mTOR pathway. Cellular responses dominated 

by the PI3K/AKT/mTOR pathway are frequently seen 

in KIRC and are associated with tumor progression 

[32]. This might be connected to the higher sensitivity 
of the high-risk group. Therefore, this model is 

expected to be useful in the selection of antineoplastic 

drugs for KIRC patients. 
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We consider the following advantages of our study. We 

did not find other studies reporting an ICD-associated 

lncRNA model that had been successfully developed to 

predict the outcome of KIRC patients. Nevertheless, to 

verify the validity of our model, we compared it with 

other similar studies. First, the autophagy-related 

lncRNA model constructed by Xuan Y et al. showed 

predictive value in KIRC patients, but we further 

calculated the tumor mutational load for our constructed 

model and explored its use in applications such as 

antitumor drug selection [33]. Second, compared with the 

focal death-related lncRNA model constructed by Zhou 

X et al., we validated our model more comprehensively 

using all patients, and the results were more convincing 

[34]. Third, the prognostic model we constructed 

(AUC=0.765) was more meaningful than the metastasis-

related lncRNA prognostic model constructed by Dou Q 

et al. (AUC=0.755) for the prognostic assessment of 

KIRC [35]. We must acknowledge that our study still has 

shortcomings. The information in this study was obtained 

from one of many databases and was not validated with 

external data. Thus, further clinical experiments are 

needed to validate this study in the future. 

 

CONCLUSIONS 
 

Overall, we developed a prognostic model with eight 

ICD-associated lncRNAs and constructed a nomogram, 

which was shown to be a valuable guide in prognostic 

assessment of and treatment selection for KIRC. The 

inferior prognosis in the high-risk cohort may be 

correlated with mitochondria-associated pathways and 

higher TMB. Due to various shortcomings, this study 

awaits further basic research to explore the relevant 

mechanisms and clinical control studies to clarify the 

value of the model in drug selection. Furthermore, the 

results of the prognostic model based on clinical 

samples need to be validated in further trials. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Construct a prognostic model. Forest plots associated with multifactor regression (A); Correlation circle plot 
of 8 ICD-related lncRNAs (B); Mulberry plots of 8 ICD-related lncRNAs with ICD-related genes (C); Deviation plots indicating up- and down-
regulation changes of 8 ICD-related lncRNAs (D). 
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Supplementary Figure 2. The model prediction effect is validated by the training group, test group, and the entire group. 
Heat map of 8 ICD-related lncRNA expressions (A–C). Risk curve for risk scores (D–F) and Scatterplot (G–I) for the survival status of each 
patient; Scatterplot of risk scores of patients with different survival statuses (J–L). 
 



www.aging-us.com 5322 AGING 

 
 

Supplementary Figure 3. Further validation of model effects. lncRNA signature expression heat map with clinical information (A); 

Correlation analysis of risk signature with age (B) and stage (C). 
 

 
 

Supplementary Figure 4. Nomogram with patient verification. 
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Supplementary Figure 5. KEGG enrichment analysis. Bar chart (A); Circle chart (B). 
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Supplementary Figure 6. GSEA enrichment analysis. Enrichment pathways in low-risk group in different gene sets (A–F); Enrichment 
pathways in high-risk group in different gene sets (G, H). 
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Supplementary Figure 7. Correlation plot of risk scores with immune cells. Scatter plot of the correlation between risk scores and 

naïve B cells (A), resting dendritic cells (B), eosinophils (C), activated CD4 memory T cells (D), macrophages M1 (E), activated mast cells (F), 
resting mast cells (G), resting CD4 memory T cells (H), monocytes (I), neutrophils (J), plasma cells (K), T follicular helper cells (L), macrophages 
M0 (M), regulatory T cells (Treg) (N). 
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Supplementary Figure 8. The ICD-relevant lncRNA risk pattern in tumor therapy. Differences in TIDE (A) and immune exclusion (B) 

and dysfunction (C) in high and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 9. In vitro experimental validation of the risk model. Immunohistochemical staining images of partial  

ICD-associated gene proteins in KIRC tissue and normal tissue (A); Relative expression of 8 ICD-related lncRNAs in different risk subgroups 
(B). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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Supplementary Tables 
 

 

Supplementary Table 1. Primer sequences for 8 ICD-related lncRNAs. 

Gene id Primer F Primer R 

AP000439.3 GTTTCTGGGCCCCTCCTTTG GCTCCACACCTTTTTGCAGG 

RP11.1151B14.5 AGAAAGCTGTGCAGTCTAAAGT ACATACTCTTTCCAGGAGATGTAAT 

RP11.479J7.2 TGGAACAAACTCCTAGTTTCTGGG AGCCTGTGCTCCTAACCCTA 

AC099552.4 GCCGACTTGGGGAAAGTTGA CTCGGCTTGCTCCTCACAG 

RP11.19E11.1 CAGAGTTTCAACGGCTCTGG CATTACACAGGGAGAGCCAGG 

CTB.33O18.1 GCCCCTGTTGTGGCTCATTG TGGAGAGATTTGTGTTGAGAATGGA 

RP11.339D23.1 TGACCAAATTCTGTTGGTACCTT ACCACCAATTTTCCCCATTCTC 

LINC01192 GCTGCATGCGTGGAAATGTT GCTTTTGCACCGCTTCTGAC 

Abbreviation: ICD, Immunogenic cell death. 
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Supplementary Table 2. 180 differentially expressed ICD-related lncRNAs. 

LncRNA HR (95%Cl) P-value LncRNA HR (95%Cl) P-value 

RP5.1018K9.1 0.77(0.63-0.95) 0.02 RP11.457K10.1 1.36(1.06-1.75) 0.02 

RP11.14C10.5 0.88(0.82-0.95) 0.00 RP11.622A1.2 0.82(0.71-0.95) 0.01 

RP11.380J14.1 1.10(1.01-1.20) 0.03 IL21.AS1 1.11(1.01-1.21) 0.02 

AP000696.2 1.23(1.05-1.44) 0.01 RP11.142M10.2 1.32(1.14-1.52) 0.00 

CTD.2015G9.2 0.90(0.83-0.97) 0.01 RP11.120K18.2 1.28(1.10-1.50) 0.00 

AP000439.3 0.84(0.79-0.90) 0.00 RP3.340N1.2 1.18(1.08-1.29) 0.00 

LINC01020 0.77(0.64-0.93) 0.01 AC067959.1 0.84(0.78-0.91) 0.00 

RP11.89B16.1 1.25(1.04-1.51) 0.02 RP11.400N13.3 1.15(1.05-1.26) 0.00 

LUCAT1 1.16(1.04-1.28) 0.01 DKFZp434J0226 1.19(1.07-1.31) 0.00 

CTD.2026K11.6 1.23(1.07-1.41) 0.00 RP11.206M11.7 1.14(1.05-1.24) 0.00 

RP11.389O22.1 1.20(1.01-1.43) 0.03 CTD.2004A9.1 0.83(0.75-0.93) 0.00 

AC073115.6 0.89(0.81-0.98) 0.01 CTA.392C11.1 1.23(1.10-1.39) 0.00 

AC133644.2 1.58(1.29-1.94) 0.00 LINC00461 1.21(1.07-1.37) 0.00 

LINC00299 1.20(1.04-1.38) 0.01 AC002331.1 1.37(1.18-1.60) 0.00 

CTC.327F10.5 1.09(1.01-1.17) 0.03 RP11.567M16.2 1.49(1.19-1.86) 0.00 

GATM.AS1 0.86(0.77-0.97) 0.01 RP13.259N13.2 1.85(1.20-2.85) 0.01 

CTD.2020K17.1 1.24(1.09-1.41) 0.00 GS1.600G8.5 1.14(1.03-1.25) 0.01 

MIAT 1.22(1.10-1.36) 0.00 RP11.617F23.2 1.23(1.08-1.41) 0.00 

RP11.211G23.2 1.09(1.01-1.19) 0.04 FLJ22763 0.86(0.78-0.94) 0.00 

LINC00944 1.20(1.05-1.36) 0.01 AP004372.1 1.26(1.14-1.39) 0.00 

LINC00551 0.87(0.76-0.99) 0.04 RP11.429B14.4 1.20(1.08-1.33) 0.00 

RP11.309M7.1 1.21(1.05-1.39) 0.01 KB.1043D8.8 0.76(0.63-0.92) 0.00 

RP11.341G23.4 1.18(1.03-1.34) 0.01 RP11.145A3.1 1.21(1.06-1.38) 0.01 

CTD.2131I18.1 1.41(1.01-1.98) 0.05 AF064858.7 1.19(1.03-1.38) 0.02 

MIR155HG 1.23(1.07-1.41) 0.00 RP11.479J7.2 1.43(1.26-1.63) 0.00 

LINC00443 0.75(0.59-0.94) 0.01 RP11.100G15.10 1.23(1.05-1.44) 0.01 

AC012123.1 1.23(1.04-1.46) 0.02 RP11.586K2.1 1.15(1.07-1.24) 0.00 

RP11.496I9.1 1.11(1.00-1.24) 0.04 PCSK6.AS1 1.18(1.03-1.35) 0.02 

LINC00943 1.19(1.04-1.37) 0.01 RP11.804N13.1 1.22(1.09-1.36) 0.00 

F11.AS1 0.87(0.78-0.98) 0.02 RP11.129I19.2 1.68(1.03-2.74) 0.04 

RP11.361L15.4 0.86(0.79-0.95) 0.00 RP11.631F7.1 1.14(1.03-1.27) 0.01 

AC015977.6 0.84(0.76-0.93) 0.00 AP000233.4 1.16(1.01-1.33) 0.04 

RP11.167N4.2 1.11(1.01-1.22) 0.03 LINC00955 0.83(0.73-0.94) 0.00 

LINC01428 0.91(0.83-0.99) 0.03 AC006262.5 1.24(1.15-1.34) 0.00 

HNF4A.AS1 0.81(0.71-0.94) 0.00 AC099552.4 1.98(1.50-2.60) 0.00 

LINC00158 1.16(1.03-1.31) 0.02 LINC01501 1.23(1.02-1.47) 0.03 

RP11.44K6.4 1.14(1.01-1.29) 0.04 RP11.146E13.4 1.22(1.05-1.42) 0.01 

ELDR 1.16(1.05-1.29) 0.00 LINC01281 1.22(1.07-1.39) 0.00 

RP3.393E18.2 1.24(1.08-1.43) 0.00 RP11.815M8.1 1.21(1.09-1.34) 0.00 

LINC00460 1.17(1.09-1.26) 0.00 LINC01583 1.18(1.06-1.33) 0.00 

LINC01234 1.19(1.12-1.27) 0.00 CTD.2562J17.2 1.20(1.06-1.36) 0.00 

RP11.417E7.1 1.29(1.13-1.46) 0.00 LINC00410 1.41(1.12-1.79) 0.00 

RP11.255G12.3 0.81(0.71-0.92) 0.00 RP11.493L12.5 1.23(1.08-1.40) 0.00 

RP11.1018N14.5 0.86(0.76-0.99) 0.03 RP11.407A16.3 1.18(1.03-1.34) 0.02 

RP6.91H8.3 1.23(1.08-1.41) 0.00 LINC00705 1.25(1.03-1.51) 0.02 

PROX1.AS1 1.37(1.15-1.61) 0.00 IL20RB.AS1 1.24(1.10-1.39) 0.00 

RP11.475O23.2 0.75(0.61-0.91) 0.00 CTD.2532K18.2 1.19(1.08-1.31) 0.00 

RP11.465L10.10 1.28(1.09-1.50) 0.00 RP5.984P4.6 1.14(1.02-1.27) 0.02 
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RP5.884M6.1 1.13(1.06-1.20) 0.00 AP000439.1 1.17(1.02-1.35) 0.03 

RP11.291B21.2 1.25(1.09-1.42) 0.00 MYCNUT 1.34(1.00-1.78) 0.05 

LINC00845 0.70(0.58-0.84) 0.00 AC008088.4 1.36(1.20-1.54) 0.00 

CTD.2616J11.3 1.22(1.04-1.43) 0.01 AC011752.1 0.78(0.66-0.92) 0.00 

CTD.2171N6.1 1.24(1.10-1.39) 0.00 RP11.275I4.2 1.22(1.02-1.45) 0.03 

RP5.1172A22.1 1.12(1.03-1.23) 0.01 CTD.2527I21.15 1.17(1.04-1.31) 0.01 

RP11.674P19.2 1.34(1.16-1.55) 0.00 AC116614.1 1.17(1.08-1.26) 0.00 

RP11.395B7.2 1.21(1.07-1.36) 0.00 RP11.344P13.4 1.36(1.16-1.60) 0.00 

AC068492.1 1.27(1.10-1.48) 0.00 RP11.543G18.1 1.34(1.09-1.64) 0.01 

TMEM92.AS1 1.25(1.10-1.42) 0.00 RP11.486M23.2 1.21(1.04-1.41) 0.01 

RP11.568J23.8 1.13(1.01-1.27) 0.03 RP11.356I2.1 1.44(1.21-1.71) 0.00 

RP11.556E13.1 1.18(1.01-1.38) 0.03 RP11.73M14.1 1.25(1.09-1.44) 0.00 

RP11.1151B14.5 1.31(1.14-1.51) 0.00 RP11.909N17.2 1.19(1.08-1.31) 0.00 

AFAP1.AS1 1.11(1.02-1.21) 0.02 LL22NC03.63E9.3 1.21(1.05-1.38) 0.01 

LINC00704 1.24(1.09-1.42) 0.00 LINC01411 1.10(1.02-1.18) 0.01 

RP11.551L14.4 1.22(1.08-1.38) 0.00 RP11.191N8.2 1.29(1.15-1.46) 0.00 

LL22NC03.N14H11.1 1.22(1.07-1.40) 0.00 RP11.478J18.2 1.33(1.14-1.55) 0.00 

RP11.879F14.1 0.80(0.65-0.98) 0.03 RP11.19E11.1 1.29(1.17-1.43) 0.00 

RP11.414H23.3 1.14(1.01-1.28) 0.03 RP3.417L20.4 1.33(1.08-1.65) 0.01 

RP5.988G17.1 0.79(0.66-0.95) 0.01 HOTTIP 1.25(1.12-1.40) 0.00 

RP11.322D14.2 1.31(1.14-1.52) 0.00 CTC.241F20.4 1.14(1.01-1.29) 0.04 

LINC00264 1.17(1.01-1.36) 0.04 NPSR1.AS1 1.16(1.02-1.33) 0.02 

RP4.547N15.3 1.45(1.08-1.96) 0.01 RP11.377G16.2 1.13(1.00-1.27) 0.05 

AP000697.6 1.79(1.39-2.30) 0.00 LINC01351 1.28(1.04-1.59) 0.02 

CTD.2023M8.1 1.36(1.18-1.57) 0.00 RP11.429E11.2 1.21(1.07-1.37) 0.00 

RP11.10J5.1 1.14(1.01-1.28) 0.04 RP11.440G9.1 1.29(1.16-1.44) 0.00 

CTD.2357A8.3 1.41(1.24-1.6) 0.00 RP11.414H23.2 1.27(1.09-1.47) 0.00 

EGLN3.AS1 0.84(0.72-0.98) 0.02 CTD.2008P7.8 1.23(1.02-1.49) 0.03 

CTD.2553C6.1 1.20(1.04-1.37) 0.01 CTB.178M22.1 1.16(1.02-1.34) 0.03 

RP11.366L20.2 1.15(1.02-1.30) 0.02 RP11.279O17.1 1.18(1.02-1.36) 0.02 

RP11.84D1.1 1.24(1.05-1.46) 0.01 CTB.33O18.1 1.28(1.13-1.45) 0.00 

AC010729.1 1.24(1.08-1.43) 0.00 WASF3.AS1 1.16(1.01-1.33) 0.03 

LINC00380 0.67(0.49-0.91) 0.01 RP11.616M22.3 1.19(1.01-1.41) 0.04 

RP3.380B4.1 0.78(0.62-0.99) 0.04 RP11.339D23.1 1.55(1.32-1.82) 0.00 

RP11.70D24.4 1.17(1.02-1.36) 0.03 LINC01405 1.24(1.08-1.43) 0.00 

AC006262.4 1.23(1.10-1.38) 0.00 LINC01551 1.18(1.05-1.34) 0.01 

PTCSC3 0.88(0.78-0.99) 0.04 RP11.161D15.1 1.13(1.02-1.25) 0.01 

RP11.108E14.1 0.88(0.78-0.99) 0.04 RP11.96B2.1 1.14(1.02-1.28) 0.02 

RP11.184A2.2 0.79(0.66-0.96) 0.02 LINC01192 1.39(1.19-1.63) 0.00 

RP1.142L7.9 1.42(1.24-1.62) 0.00 RP11.94A24.1 1.12(1.00-1.26) 0.05 

RP11.14C10.3 1.15(1.00-1.33) 0.05 RP11.161D15.3 1.27(1.11-1.45) 0.00 

RP1.105O18.1 0.83(0.71-0.96) 0.01 AC092484.1 1.29(1.13-1.46) 0.00 

Abbreviation: ICD, Immunogenic cell death; HR, Hazard Ratio; CL, Confidence level. 
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Supplementary Table 3. 14 differentially 
expressed ICD-related lncRNAs. 

LncRNA Coef 

AP000439.3 -0.05695 

LINC01234 0.032357 

RP11.1151B14.5 0.026259 

CTD.2357A8.3 0.025506 

RP1.142L7.9 0.039787 

AP004372.1 0.008293 

RP11.479J7.2 0.051337 

AC006262.5 0.030434 

AC099552.4 0.000912 

AC008088.4 0.034797 

RP11.19E11.1 0.01574 

CTB.33O18.1 0.004644 

RP11.339D23.1 0.121664 

LINC01192 0.007471 

Abbreviation: ICD, Immunogenic cell death. 
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Supplementary Table 4. GSEA pathways for different risk groups. 

Pathways Group 

C1.all.v2022.1.Hs.symbols.gmt  

CHR18Q22 Low risk 

CHR1P31 Low risk 

CHR4P12 Low risk 

CHR4Q21 Low risk 

CHR4Q24 Low risk 

CHR5Q13 Low risk 

CHR5Q31 Low risk 

CHR9Q32 Low risk 

C2.cp.wikipathways.v2022.1.Hs.symbols.gmt  

WP_GENES_RELATED_TO_PRIMARY_CILIUM_DEVELOPMENT_BASED_ON_CRISPR Low risk 

WP_INSULIN_SIGNALING Low risk 

WP_LEUCINE_ISOLEUCINE_AND_VALINE_METABOLISM Low risk 

WP_NEOVASCULARISATION_PROCESSES Low risk 

WP_PHOSPHOINOSITIDES_METABOLISM Low risk 

WP_PROXIMAL_TUBULE_TRANSPORT Low risk 

WP_RAC1PAK1P38MMP2_PATHWAY Low risk 

WP_CAMKK2_PATHWAY Low risk 

WP_CYTOKINES_AND_INFLAMMATORY_RESPONSE High risk 

WP_DOPAMINERGIC_NEUROGENESIS High risk 

WP_MATRIX_METALLOPROTEINASES High risk 

WP_OVERVIEW_OF_PROINFLAMMATORY_AND_PROFIBROTIC_MEDIATORS High risk 

C4.cgn.v2022.1.Hs.symbols.gmt  

GCM_DFFA Low risk 

GCM_MYST2 Low risk 

GCM_RAB10 Low risk 

GCM_RAN Low risk 

GCM_UBE2N Low risk 

MORF_CTBP1 Low risk 

MORF_PAPSS1 Low risk 

MORF_TERF2IP Low risk 

GNF2_CDH3 High risk 

GNF2_CDKN1C High risk 

GNF2_EGFR High risk 

GNF2_IGF1 High risk 

GNF2_IGFBP1 High risk 

GNF2_SERPINB5 High risk 

GNF2_SERPINI2 High risk 

GNF2_SPRR1B High risk 

C5.go.bp.v2022.1.Hs.symbols.gmt  

GOBP_MACROAUTOPHAGY Low risk 

GOBP_MITOCHONDRIAL_ELECTRON_TRANSPORT_NADH_TO_UBIQUINONE Low risk 

GOBP_MITOCHONDRIAL_GENE_EXPRESSION Low risk 

GOBP_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_ASSEMBLY Low risk 

GOBP_MITOCHONDRIAL_TRANSLATION Low risk 

GOBP_NADH_DEHYDROGENASE_COMPLEX_ASSEMBLY Low risk 

GOBP_NEUROTRANSMITTER_REUPTAKE Low risk 

C7.immunesigdb.v2022.1.Hs.symbols.gmt  

GSE13484_12H_UNSTIM_VS_YF17D_VACCINE_STIM_PBMC_UP Low risk 

GSE13485_CTRL_VS_DAY1_YF17D_VACCINE_PBMC_UP Low risk 

GSE1791_CTRL_VS_NEUROMEDINU_IN_T_CELL_LINE_6H_DN Low risk 

GSE21774_CD62L_POS_CD56_DIM_VS_CD62L_NEG_CD56_DIM_NK_CELL_UP Low risk 
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GSE25123_WT_VS_PPARG_KO_MACROPHAGE_ROSIGLITAZONE_STIM_UP Low risk 

GSE29164_CD8_TCELL_VS_CD8_TCELL_AND_IL12_TREATED_MELANOMA_DAY7_UP Low risk 

GSE44649_NAIVE_VS_ACTIVATED_CD8_TCELL_MIR155_KO_DN Low risk 

GSE46606_DAY1_VS_DAY3_CD40L_IL2_IL5_STIMULATED_IRF4MID_BCELL_DN Low risk 

C2.cp.biocarta.v2022.1.Hs.symbols.gmt  

BIOCARTA_FCER1_PATHWAY Low risk 

BIOCARTA_GLEEVEC_PATHWAY Low risk 

BIOCARTA_GPCR_PATHWAY Low risk 

BIOCARTA_HIVNEF_PATHWAY Low risk 

BIOCARTA_PPARA_PATHWAY Low risk 

BIOCARTA_TOLL_PATHWAY Low risk 

BIOCARTA_VDR_PATHWAY Low risk 

BIOCARTA_VEGF_PATHWAY Low risk 

Abbreviation: GSEA, Gene Set Enrichment Analysis. 
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Supplementary Table 5. Antineoplastic drug sensitivity information (sensitive group: low). 

Target pathways 
Low-risk group  High-risk group 

P-value 
IC50 (25%-75%)  IC50 (25%-75%) 

WNT signaling     

WIKI4 42.29(37.88-47.68)  75.50(65.11-88.45) 0.00 

VX.11e 16.56(14.04-20.06)  38.91(34.91-42.75) 0.01 

Unclassified     

Sepantronium.bromide 0.01(0.01-0.02)  36.44(30.60-44.06) 0.00 

Gallibiscoquinazole 12.86(11.58-14.66)  13.57(11.74-15.76) 0.05 

ABT737 9.23(6.81-11.59)  129.26(95.99-168.98) 0.01 

RTK signaling     

Sabutoclax 0.72(0.60-0.88)  13.38(11.02-15.53) 0.00 

Protein stability and degradation     

NVP.ADW742 13.80(10.81-18.05)  89.56(70.55-116.29) 0.00 

Other, kinases     

WEHI.539 34.60(28.26-41.18)  37.74(30.64-48.38) 0.00 

PAK_5339 10.51(8.98-12.42)  23.54(18.01-32.21) 0.00 

JAK_8517 19.33(15.09-25.41)  62.25(50.55-77.02) 0.00 

Ipatasertib 33.70(26.00-43.77)  134.84(116.90-152.35) 0.00 

IGF1R_3801 5.00(3.86-6.63)  95.09(70.00-138.36) 0.04 

GSK343 16.56(14.35-19.60)  124.03(105.44-149.96) 0.00 

AZD5153 5.25(4.39-6.93)  17.14(12.59-23.20) 0.00 

AT13148 33.19(26.12-44.75)  199.26(167.97-245.92) 0.00 

Other     

Zoledronate 40.71(34.13-49.19)  43.54(35.16-53.14) 0.00 

LY2109761 153.27(126.84-189.48)  179.12(143.41-246.60) 0.00 

Ibrutinib 78.65(62.87-98.99)  173.16(135.80-230.66) 0.01 

CDK9_5576 0.64(0.54-0.84)  5.16(3.23-8.01) 0.00 

Mitosis     

Eg5_9814 0.04(0.04-0.06)  0.08(0.06-0.15) 0.00 

Hormone-related     

Teniposide 1.83(1.26-2.53)  33.56(29.52-38.86) 0.03 

Genome integrity     

Telomerase.Inhibitor.IX 1.69(1.37-2.08)  22.22(15.6-34.44) 0.00 

MK.8776 25.33(20.38-34.05)  68.51(51.11-93.33) 0.02 

MIM1 49.25(41.24-59.66)  99.13(79.42-130.58) 0.00 

ERK MAPK signaling     

ULK1_4989 12.24(9.56-16.2)  16.5(13.11-19.55) 0.02 

Cediranib 7.35(6.24-9.64)  91.59(67.86-116.00) 0.00 

EGFR signaling     

Ribociclib 43.98(39.57-51.04)  54.24(43.41-68.68) 0.03 

GNE.317 1.73(1.48-1.98)  26.65(21.38-32.28) 0.00 

Foretinib 2.56(2.16-3.17)  14.12(11.69-17.03) 0.00 

AZD3759 13.51(11.58-16.15)  15.38(12.67-18.39) 0.00 

DNA replication     

Topotecan 1.27(0.95-1.77)  1.40(0.86-2.19) 0.00 

Mitoxantrone 1.98(1.35-2.79)  421.96(336.39-553.11) 0.00 

KRAS..G12C..Inhibitor.12 80.02(63.25-100.65)  136.39(117.1-163.16) 0.03 

CDK9_5038 0.11(0.08-0.14)  20.33(14.16-30.94) 0.00 

Chromatin other     

ERK_6604 33.68(28.64-39.57)  160.16(129.28-215.77) 0.00 
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Vinorelbine 0.05(0.03-0.07)  3.90(3.29-5.00) 0.00 

Cell cycle     

PRT062607 25.53(21.00-32.87)  41.85(37.07-49.75) 0.02 

Osimertinib 4.75(3.67-6.60)  33.40(23.53-50.41) 0.02 

Apoptosis regulation     

MG.132 0.20(0.19-0.22)  45.92(37.49-57.63) 0.00 

JQ1 14.16(12.75-16.31)  143.92(115.17-175.26) 0.00 

Alkylating Agents     

BPD.00008900 86.84(71.70-105.46)  446.46(376.50-555.49) 0.00 

Abbreviation: IC50, half maximal inhibitory concentration. 

 

Supplementary Table 6. Antineoplastic drug sensitivity information (sensitive group: high). 

Target pathway 
Low-risk group  High-risk group 

P-value 
IC50 (25%-75%)  IC50 (25%-75%) 

WNT signaling     

AGI.6780 61.49(54.08-70.18)  11.39(9.98-12.99) 0.00 

Unclassified     

Elephantin 35.7(29.36-41.13)  27.88(23.13-36.02) 0.00 

RTK signaling     

Savolitinib 14.35(12.02-16.16)  11.23(7.64-14.67) 0.00 

Oxaliplatin 158.03(120.85-197.77)  60.21(40.16-86.14) 0.01 

Carmustine 424.01(361.17-492.53)  8.56(6.45-12.26) 0.03 

Protein stability and degradation     

LJI308 159.58(139.34-193.48)  0.09(0.06-0.14) 0.01 

BIBR.1532 140.36(118.87-165.55)  0.01(0.01-0.01) 0.01 

PI3K/MTOR signaling     

Uprosertib 16.82(12.41-22.07)  14.23(10.67-20.88) 0.00 

Podophyllotoxin.bromide 0.51(0.42-0.64)  0.11(0.08-0.15) 0.00 

BDP.00009066 10.18(8.8-11.93)  0.70(0.59-0.85) 0.00 

AZD6482 24.15(21.27-28.18)  22.25(19.19-26.01) 0.00 

AZ6102 10.71(9.72-11.95)  7.40(6.65-8.46) 0.00 

AGI.5198 111.82(99.84-125.75)  38.22(28-52.07) 0.00 

Afuresertib 12.82(10.3-16.04)  11.55(9.15-15.33) 0.00 

Other, kinases     

UMI.77 14.45(12.16-17.16)  7.78(5.57-10.70) 0.01 

Sinularin 32.78(29.27-38.27)  13.17(10.80-16.78) 0.00 

AMG.319 123.96(101.37-152.52)  6.80(4.69-9.84) 0.00 

Other     

VSP34_8731 11.11(9.72-13.21)  9.78(7.93-11.96) 0.01 

TAF1_5496 50.63(41.84-59.02)  46.21(36.06-57.84) 0.00 

P22077 80.11(65.41-97.91)  1.72(1.23-2.41) 0.00 

Dactinomycin 0.09(0.07-0.11)  0.08(0.06-0.10) 0.00 

Mitosis     

Vincristine 0.17(0.11-0.26)  0.04(0.02-0.06) 0.00 

Venetoclax 8.66(7.40-9.96)  0.14(0.09-0.25) 0.01 

VE821 57.31(43.43-82.9)  0.02(0.01-0.03) 0.00 

OF.1 59.52(53.31-67.57)  0.05(0.04-0.08) 0.00 

Docetaxel 0.09(0.07-0.14)  0.01(0.01-0.01) 0.00 

Metabolism     
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GSK591 96.54(83.48-116.68)  42.8(32.43-57) 0.01 

Dihydrorotenone 2.49(2.14-2.77)  0.01(0.01-0.02) 0.00 

Hormone-related     

GDC0810 140.88(124.09-155.74)  131.69(114.65-156.33) 0.00 

Fulvestrant 92.37(80.02-110.15)  17.73(14.89-20.70) 0.00 

Genome integrity     

AZD6738 8.40(6.57-10.84)  6.60(4.60-9.41) 0.05 

ERK MAPK signaling     

Ulixertinib 9.07(7.60-10.72)  1.90(1.38-2.62) 0.00 

Selumetinib 63.91(51.39-79.99)  13.68(13.06-14.24) 0.00 

OTX015 11.46(9.38-15.25)  1.66(1.31-2.27) 0.00 

Fludarabine 153.12(122.24-196.14)  28.46(21.96-37.26) 0.03 

EGFR signaling     

ML323 84.62(74.47-99.24)  6.00(4.16-8.62) 0.03 

JAK1_8709 65.14(56.32-76.69)  18.54(15.03-22.95) 0.00 

Acetalax 139.44(109.12-176.62)  6.46(4.90-8.35) 0.01 

DNA replication     

Ulixertinib 14.8(12.71-17.91)  0.91(0.61-1.29) 0.00 

Picolinici.acid 166.22(146.25-191.24)  26.33(19.64-34.06) 0.03 

Nelarabine 385.41(321.70-485.20)  143.42(108.65-188.38) 0.01 

MIRA.1 228.08(179.69-298.01)  1.64(1.04-2.56) 0.00 

IRAK4_4710 144.97(131.83-158.61)  11.42(7.24-17.22) 0.00 

GSK2578215A 144.31(122.45-167.17)  0.41(0.21-0.67) 0.00 

ERK_2440 14.53(12.50-17.10)  0.31(0.22-0.42) 0.00 

BMS.754807 1.32(0.82-2.32)  0.08(0.05-0.11) 0.00 

Cytoskeleton     

I.BRD9 75.04(59.99-99.81)  16.04(12.94-20.44) 0.00 

Chromatin other     

MN.64 112.51(96.58-130.52)  10.54(8.29-15.62) 0.00 

AZD4547 17.18(14.60-20.68)  4.81(3.78-6.78) 0.00 

Entospletinib 39.20(33.69-45.94)  8.07(6.12-11.3) 0.01 

Cell cycle     

Buparlisib 2.44(2.19-2.88)  0.08(0.06-0.12) 0.00 

AZD8186 24.1(20.19-29.98)  0.91(0.67-1.33) 0.00 

AZD5363 18.99(15.07-23.95)  8.15(6.38-10.41) 0.00 

Apoptosis regulation     

Pyridostatin 30.02(24.78-38.68)  0.59(0.49-0.77) 0.01 

AZD5991 72.74(52.64-102.08)  7.57(4.54-14.02) 0.01 

Abbreviation: IC50, half maximal inhibitory concentration. 
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Supplementary Table 7. Antineoplastic drug sensitivity information (no obviously sensitive group). 

Target pathway 
Low-risk group 

 
High-risk group 

P-value 
IC50 (25%-75%) IC50 (25%-75%) 

WNT signaling     

SB216763 179.83(156.6-212.83)  181.75(148.47-225.68) 0.59  

LGK974 55.86(48.16-64.32)  54.87(44.85-66.89) 0.43  

Unclassified     

Dihydrorotenone 2.49(2.14-2.77)  2.46(2.11-2.94) 0.61  

RTK signaling     

Axitinib 20.05(16.51-25.95)  19.45(15.25-26.63) 0.24  

Staurosporine 0.04(0.04-0.06)  0.04(0.03-0.06) 0.10  

Crizotinib 23.12(18.48-30.73)  24.38(17.58-34.72) 0.34  

AZD1332 45.62(39.19-55.18)  44.39(34.49-56.93) 0.11  

AZD4547 17.18(14.6-20.68)  17.49(14.11-22.72) 0.55  

Foretinib 2.56(2.16-3.17)  2.42(1.96-3.27) 0.07  

Protein stability and degradation     

ML323 84.62(74.47-99.24)  87.29(72.25-107.26) 0.21  

PI3K/MTOR signaling     

Dactolisib 0.19(0.16-0.23)  0.18(0.15-0.23) 0.10  

Pictilisib 3.91(3.17-4.92)  3.78(2.97-5.04) 0.75  

Uprosertib 18.46(16.09-23.5)  19.21(15.26-25.18) 0.92  

Alpelisib 33.17(22.44-51.15)  33.6(22.19-51.25) 0.75  

Taselisib 7.13(4.36-11.73)  8.11(4.65-13.63) 0.09  

CZC24832 156.48(134.35-191.13)  153.06(119.65-191.94) 0.15  

Buparlisib 2.44(2.19-2.88)  2.53(2.14-2.94) 0.53  

AZD8186 24.1(20.19-29.98)  25.55(19.76-34.36) 0.06  

Ipatasertib 33.70(26.00-43.77)  32.39(24.54-42.96) 0.29  

LJI308 159.58(139.34-193.48)  155.09(124.33-192.56) 0.06  

Other, kinases     

Dasatinib 5.15(4.95-5.39)  5.08(4.83-5.42) 0.05  

Ruxolitinib 118.28(96.65-149.94)  125.76(97.35-165.38) 0.08  

Entospletinib 39.2(33.69-45.94)  39.71(31.21-51.33) 0.95  

JAK_8517 19.33(15.09-25.41)  18.41(12.84-29.02) 0.22  

Other     

Eg5_9814 0.04(0.04-0.06)  0.04(0.03-0.06) 0.11  

Mitosis     

ZM447439 17.85(15.07-21.97)  17.53(13.74-23.70) 0.31  

Alisertib 6.51(4.69-9.11)  6.03(3.85-10.49) 0.23  

Tozasertib 17.53(13.45-21.76)  17.7(13.09-24.93) 0.32  

JNK and p38 signaling     

Doramapimod 86.53(79.92-96.86)  86.61(77.31-98.81) 0.89  

IGF1R signaling     

GSK1904529A 74.93(60.29-91.33)  72.98(58.94-90.4) 0.73  

Linsitinib 43.21(33.21-55.65)  41.31(32.23-58.00) 0.63  

IGF1R_3801 5.00(3.86-6.63)  4.86(3.38-7.29) 0.39  

Hormone-related     

Fulvestrant 92.37(80.02-110.15)  90.44(74.35-110.84) 0.17  

Genome integrity     

NU7441 13.06(11.89-14.56)  13.07(11.46-15.45) 0.54  

Niraparib 73.26(59.10-96.31)  73.10(49.36-98.28) 0.13  
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VE821 57.31(43.43-82.9)  55.63(37.10-83.44) 0.27  

ERK MAPK signaling     

ERK_2440 14.53(12.50-17.10)  14.09(10.91-17.32) 0.07  

Selumetinib 63.91(51.39-79.99)  67.34(45.39-89.41) 0.56  

Ulixertinib 9.07(7.60-10.72)  8.88(7.46-10.70) 0.60  

DNA replication     

Oxaliplatin 42.82(31.71-54.63)  41.10(29.22-58.18) 0.59  

Temozolomide 394.3(318.49-486.01)  378.71(296.19-510.18) 0.23  

Cyclophosphamide 172.72(151.42-208.87)  165.82(138.41-204.14) 0.06  

Fludarabine 153.12(122.24-196.14)  148.68(109.94-205.26) 0.46  

Cytoskeleton     

PAK_5339 10.51(8.98-12.42)  10.73(8.89-13.17) 0.31  

Chromatin other     

PFI3 184.47(161.04-216.21)  188.11(157.32-226.18) 0.59  

EPZ5676 241.95(203.57-297.67)  258.07(205.18-319.53) 0.18  

GSK343 16.56(14.35-19.60)  16.15(13.37-19.58) 0.14  

GSK591 96.54(83.48-116.68)  90.85(75.51-116.73) 0.12  

Cell cycle     

Dinaciclib 0.06(0.05-0.07)  0.06(0.04-0.07) 0.07  

CDK9_5576 0.64(0.54-0.84)  0.62(0.49-0.82) 0.13  

Apoptosis regulation     

Navitoclax 6.45(4.52-9.48)  6.70(4.62-10.13) 0.57  

AZD5991 72.74(52.64-102.08)  72.66(47.73-113.83) 0.82  

Venetoclax 8.66(7.40-9.96)  8.47(6.90-11.01) 0.83  

ABT737 9.23(6.81-11.59)  9.20(6.77-11.94) 0.69  

ABL signaling     

Nilotinib 36.16(27.32-49.48)  35.91(24.81-49.29) 0.65  

Abbreviation: IC50, half maximal inhibitory concentration. 


