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INTRODUCTION 
 

Energy metabolism, essential for brain function, is one 

of the main processes dysregulated during brain aging 

(reviewed in [1, 2]). Although the brain constitutes only 

2% of total body mass, it represents 20–25% of total 

body energy expenditure [3, 4], where most of it is  

used for re-establishing cation gradients after neuro-

transmission [5], a process mediated by sodium/ 
potassium-ATPase pumps [6, 7]. To meet this high 

energy demand, the neuron and astrocyte form a two-

cell metabolic network (The neuron-astrocyte metabolic 
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ABSTRACT 
 

Dysregulated central-energy metabolism is a hallmark of brain aging. Supplying enough energy for 
neurotransmission relies on the neuron-astrocyte metabolic network. To identify genes contributing to age-
associated brain functional decline, we formulated an approach to analyze the metabolic network by 
integrating flux, network structure and transcriptomic databases of neurotransmission and aging. Our findings 
support that during brain aging: (1) The astrocyte undergoes a metabolic switch from aerobic glycolysis to 
oxidative phosphorylation, decreasing lactate supply to the neuron, while the neuron suffers intrinsic energetic 
deficit by downregulation of Krebs cycle genes, including mdh1 and mdh2 (Malate-Aspartate Shuttle); (2) 
Branched-chain amino acid degradation genes were downregulated, identifying dld as a central regulator; (3) 
Ketone body synthesis increases in the neuron, while the astrocyte increases their utilization, in line with 
neuronal energy deficit in favor of astrocytes. We identified candidates for preclinical studies targeting energy 
metabolism to prevent age-associated cognitive decline. 
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network) with extensive metabolite exchange [4, 8]. 

One example of metabolic exchange is the astrocyte-

neuron lactate shuttle (ANLS) [2]. The astrocyte 

performs aerobic glycolysis, converts pyruvate into 

lactate, and then transports it to the neuron to fuel ATP 

synthesis via oxidative phosphorylation [9, 10]. The 

neuron-astrocyte metabolic network also performs the 

glutamate-glutamine cycle (GGC). In the GGC, 

astrocytes take up glutamate -the main excitatory 

neurotransmitter in the central nervous system- after 

neurotransmission. Inside the astrocyte, glutamate is 

converted into glutamine, shuttled back to the neuron, 

and re-converted into glutamate for a new neuro-

transmission cycle [11–14]. The ANLS, GGC, and the 

exchange of sodium and potassium constitute essential 

metabolic interactions between neurons and astrocytes, 

and they are closely related to energy metabolism. 

Indeed, energy availability is vital to ensure proper 

neurotransmission. However, during human brain aging, 

metabolism becomes dysregulated in the brain. Healthy 

aged human individuals display slower mitochondrial 

metabolism and glutamate-glutamine cycle neuronal 

flux (−28%) when compared with healthy young 

individuals. In comparison, astroglial mitochondrial 

flux is 30% faster [15]. In rats, adult primary astrocyte 

cultures also display a higher mitochondrial oxidative 

metabolism when compared with astrocytes derived 

from young rats [16]. To date, the only intervention 

demonstrated to extend lifespan in several model 

organisms is caloric restriction, a metabolic intervention 

where animal models are fed a diet consisting of 60–

70% of the calorie intake in a regular diet [17]. This 

further supports the role of energy metabolism during 

aging. Metabolic challenges like the ketogenic diet [18, 

19] and intermittent fasting that aim to mimic the 

metabolic state entered during caloric restriction have 

also been shown to extend lifespan and health-span 

[20]. Furthermore, a phase II clinical trial using a 

fasting-mimicking diet improved metabolic health 

[21]. 

 

The complexity of brain aging is determined by  

the diversity and number of metabolic pathways  

that contribute to energy balance. The molecular 

mechanisms underlying age-associated dysregulation of 

brain energy metabolism remain mostly unknown. 

Complex systems -particularly metabolic pathways- are 

studied by modeling them as networks, which allows to 

simulate and probe complex phenomena, such as aging, 

in a computationally tractable and interpretable fashion 

[22, 23]. Here, we present a novel network-wise 

approach mapping complex interactions into a graph 

representation to discover energy-related genes in the 
neuron-astrocyte metabolic network that may contribute 

to brain aging. We used a genome-scale model of the 

neuron-astrocyte metabolic network [24] and analyzed 

it using complementary flux and network-based 

methods. Flux-based methods allowed us to identify 

reactions critical for maintaining optimal neuro-

transmission. 

 

On the other hand, network-based methods (centrality) 

searched for reactions that may modulate 

neurotransmission via network-wide effects. This 

analysis provided us with a set of genes (metabolic hub 

genes) that are key for neurotransmission in terms of 

flux distribution and network structure. Next, we 

determined which metabolic hub genes showed 

differential abundance associated with neurotrans-

mission and/or brain aging in the neuron and/or 

astrocyte, thus getting a final set of genes called 

differential hub genes (DHG). These gene set represents 

a validation of network analysis contrasting numerical 

predictions with experimental data, including expected 

and novel results. 

 

Functional annotation analysis of DHGs led to the 

following main findings: (1) Gene expression changes 

in both the neuron and astrocyte suggest an energetic 

deficit in the neuron, mainly by substantial 

downregulation of tricarboxylic acid (TCA) cycle in the 

aging neuron; (2) In line with the neuronal energy 

deficit, our results suggest that the aging astrocyte 

undertakes a metabolic switch from aerobic glycolysis 

to oxidative metabolism, where glucose is directed to 

CO2 instead of lactate; (3) Impaired branched-chain 

amino acid degradation in both the neuron and 

astrocyte, mainly supported by downregulation of the 

dld gene during aging. This gene encodes for a subunit 

of the branched-chain amino acid (BCAA) 

dehydrogenase complex, which catalyzes an early step 

in BCAA degradation; (4) Altered ketone body 

metabolism, where gene expression changes in the 

neuron agree with an increased synthesis during brain 

aging, while in the aging astrocyte bdh1 is upregulated. 

This gene catalyzes the interconversion between 

acetoacetate and β-hydroxybutyrate, the main two 

ketone bodies required for ketone body utilization. 

These findings further support that energy metabolism 

is favored in the astrocyte, in detriment of neuronal 

energy supply; (5) Downregulation of genes associated 

with synaptic transmission in the neuron, including 

downregulation of Na/K-ATPase pumps in the aging 

neuron, and lower glutamate synthesis in both neuron 

and astrocyte; (6) Our results suggest that the aging 

neuron downregulates genes that supply the one carbon 

and tetrahydrofolate (THF) pool, which is required for 

the synthesis of the methylation precursor S-

adenosylmethionine (SAM) and antioxidant glutathione 
synthesis. Instead, the aging astrocyte displays 

expression changes that agree with an increase in the 

THF pool available for glutathione synthesis as an 
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antioxidant strategy, which is also in line with the 

metabolic switch into an oxidative metabolism in the 

astrocyte (which requires more antioxidation). 

 

The genes identified here are valuable candidates for 

future studies to understand the molecular mechanisms 

of healthy brain aging and prevent brain age-associated 

failure using energy metabolism as a target. We also 

highlight how our approach provides a robust and 

tractable number of final gene candidates for future 

studies, using an integrative analysis of the two-cell 

neuron-astrocyte metabolic network, which may be 

applied to other metabolic models. 

 

RESULTS 
 

Workflow overview 

 

To facilitate reading of the following sections, we 

provide an overview of the analyses performed in 

simple terms. We started by using a previously 

available genome-scale neuron-astrocyte (N-A) 

metabolic network model [24], which included all 

metabolic reactions and transport events (each 

representing a node in the network) that occur in each 

cell across subcellular compartments, as well as 

transport between cell types. Genome-scale metabolic 

models are constructed using genome-wide gene 

expression data to only include nodes that are present in 

neurons and/or astrocytes [24] (Figure 1A). We used 

this N-A metabolic network to perform a Flux Balance 

Analysis (FBA) (Figure 1B) and a Centrality Analysis 

(Figure 1C). Broadly, the FBA calculates the extent to 

which the flux through each node in the N-A metabolic 

network should be modified for optimal achievement  

of the metabolic objective, which we defined as 

glutamatergic neurotransmission workload (i.e., energy 

burden derived from neurotransmission). This is defined 

as the optimal metabolic response. The FBA identifies 

two types of nodes: flux nodes, which are those that 

most contribute to optimally achieving the metabolic 

objective of neurotransmission workload, and sensitive 

nodes, which are the key nodes exerting control over 

neurotransmission workload. Merging these two types 

of nodes yielded the list of optimal nodes, where each 

node has been previously associated with specific 

genes. We defined optimal genes as the list of genes 

associated with optimal nodes. 

 

The FBA was followed by a centrality analysis, which 

analyzes intrinsic network structure, and is therefore 

independent of flux. In a centrality analysis, each node 

in the network has a centrality score, which, largely, 

represents the number of connections and pathways 

each node participates in. We calculated how the 

removal of each individual node in the network affected 

the centrality score of sensitive nodes identified in the 

previous step, as those represent the ones that exert 

control over the metabolic objective. Nodes 

significantly altering the centrality of sensitive nodes 

were defined as central nodes, from which the list of 

central genes was obtained. By merging optimal and 

central node lists we obtained the list of hub genes 

(Figure 1D), which represent the genes that most affect 

glutamatergic neurotransmission workload, and 

therefore play a key role in N-A metabolic network 

function. 

 

Having identified hub genes that play key roles in the 

N-A metabolic network, we next determined which of 

these were differentially expressed, i.e., up- or 

downregulated after neurotransmission and/or brain 

aging in the neuron and/or astrocyte (Figure 2A). To 

achieve this, we used previously available trans-

criptomic databases for neurotransmission (Figure 2B) 

and brain aging (Figure 2C) [12, 25]. The last step in 

gene selection identified hub genes that were 

differentially expressed during neurotransmission 

and/or brain aging (see shaded area in Venn diagram, 

Figure 2D) defined as differential hub genes (DHG) 

(Figure 2E). This curated group of genes represents 

those that most contribute to achieving glutamatergic 

neurotransmission workload. The ultimate goal of this 

integrative analysis was to identify genes and pathways 

important for neurotransmission, which fail during brain 

aging, thus constituting candidates to explain age-

associated cognitive decline. To achieve this, the final 

step was a KEGG pathway enrichment analysis of 

DHG, which allowed us to identify the predominant 

metabolic pathways. 

 

Flux-based analysis identifies optimal nodes in the 

neuron-astrocyte network required for gluta-

matergic neurotransmission workload 

 

Regarding the FBA (Figure 1B), in this analysis we 

defined three sub-objectives that represent key 

processes required for achieving neurotransmission 

workload: (1) The astrocyte-neuron lactate shuttle 

(ANLS), (2) The glutamate-glutamine cycle (GGC), and 

(3) Sodium removal by Na/K-ATPase pumps (Figure 

3A–3C). The FBA therefore determined how to 

optimize flux through these three processes by 

identifying flux and sensitive nodes (Figure 1B). 

Furthermore, for the results to be biologically coherent, 

we used experimentally determined flux values during 

neurotransmission as constraints. These were the 

neuronal and astrocytic glucose and oxygen 

consumption rates, and neuronal ATP maintenance rate, 
reported by Fernandez-Moncada et al. [26] and Baeza-

Lehnert et al. [6]. Also, metabolite steady state was 

imposed as a constraint. This means that intracellular 
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metabolite concentration levels remain constant under 

neurotransmission (see Supplementary Theoretical 

Framework Section 1.2 on how this is relevant for the 

analysis). 

Figure 3D–3G depict fluxes previously associated with 

the metabolic sub-objectives ANLS, GGC and Na/K-

ATPase pumps in phenotypic phase planes (PhPPs), 

where non-zero slopes can be observed (see Methods 

 

 
 

Figure 1. Summary flowchart of network analyses depicting how optimal and central genes were identified, which merged 
together form the hub genes group. (A) A genome-scale metabolic model from Lewis et al., 2010 was used. This network was analyzed 
first using. (B) Flux Balance Analysis, from which Flux and Sensitive Nodes were identified. Merging these two node lists yielded Optimal 
Nodes, from which Optimal Genes were identified. Sensitive Nodes were then analyzed using. (C) Centrality Analysis, which allowed 
identifying Central Nodes, from which Central Genes were identified. Merging the list of Optimal and Central Genes produced the Hub 
Genes list. (D) See boxes in dashed lines for the explanation of each type of analysis. 
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section Phenotypic Phase Plane Analysis for details). 

These allowed validating that each sub-objective is 

dependent on oxygen and glucose uptake rates, which is 

a hallmark of brain metabolism. The optimal flux that 

maximizes each metabolic sub-objective is shown as a 

red-filled circle in each PhPP (Figure 3D–3G). Figure 

3D shows that the calculated optimal neuronal sodium 

efflux associated with removal through Na/K-ATPase 

pumps was 350 uM/s. Also, Figure 3E shows that 

lactate efflux from the astrocyte was 6.913 uM/s, and 

Figure 3F that vesicle-mediated export of glutamate 

from the neuron was 4.138 uM/s (influx into the 

complementary cell and other relevant fluxes are shown 

in Supplementary Table 1). Furthermore, from Figure 

3G it is possible to assume that the optimal solution is 

unique since it is located on a vertex. In addition, the 

optimal metabolic response was associated with 

complete (aerobic) glucose oxidation. In this sense, six 

oxygen molecules oxidized one glucose molecule 

(Supplementary Figure 1A), while ATP yield was close 

to 27.5 ATP molecules per glucose molecule 

(Supplementary Figure 1B). Of note, it is possible that 

 

 
 

Figure 2. Summary flowchart of integration of hub genes with transcriptomic data generated during neurotransmission 
and brain aging. (A) Transcriptomic data during neurotransmission (Hasel et al., 2017) and aging (Tabula Muris Consortium, 2020), 

reporting differentially expressed genes during each process in the neuron and/or astrocyte was obtained. This allowed us to obtain a list of 
differentially expressed (DE) genes in both cell types during. (B) neurotransmission and/or (C) brain aging. (D) Venn diagram showing 
common genes: (1) Between DE genes during neurotransmission and hub genes (pink and green sets); (2) Between DE genes during brain 
aging and hub genes (yellow and green sets), and (3) The intersection between all three gene groups (pink, yellow and green sets). (E) The 
differential hub genes (DHG) list is shown in (D) in the shaded area. 
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Figure 3. Identification of optimal nodes using flux balance analysis in the neuron-astrocyte metabolic network suggests 
division of labor between the neuron and astrocyte in response to neurotransmission workload. (A–C) Reactions considered in 
the metabolic objective; here, metabolite names correspond to the same as in the model reported by Lewis et al. (2010). (A) Fluxes 
associated with the Astrocyte-Neuron Lactate Shuttle (ANLS); left side: Lactate efflux from astrocyte to the interstitial space (Lact-Ast); right 
side: Lactate from the interstitial space entering neurons (Lact-Neu). (B) Fluxes related to the Glutamate-Glutamine Cycle (GGC); left side: 
vesicle-exported glutamate from neuron (GluVe-Neu); right side: glutamine excretion from astrocyte (GlnEx-As). (C) Neuronal sodium efflux 
associated with its removal via sodium ATPase pump. (D–G) Phenotypìc phase planes are shown as two-dimensional color maps. Here, the 
Flux Balance Analysis (FBA) solution is represented by the red-filled circle, while all fluxes shown correspond to micromolar per second 
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(uM/s). A white piece-wise line depicts the specific contour level of the solution. (H) The neuron-astrocyte metabolic network is 
represented as a bipartite network; here, node shape (circle or square) denotes the partition where it belongs, i.e., reaction or metabolite. 
(I) left side, flux values distribution in each cell; right side: the bipartite network presented in (H) showing node size proportional to 
absolute flux. (J) left side, sensitivity values distribution in each cell; right side: the bipartite network presented in (H) showing node size 
proportional to absolute sensitivity. (K) Distribution of the Absolute Optimality values in neuron and astrocyte, the 90 percentile is 
highlighted by a red dashed line. This line depicts the cutoff over which a reaction was classified as an optimal metabolic reaction. (L) 
Optimal metabolic reactions (descending order) sorted by their Absolute Optimality and presented alongside their flux and sensitivity. 

 

this last yield was lower than the theoretical one due to 

flux to other pathways such as the pentose phosphate 

pathway and reactions that exit the tricarboxylic acid 

cycle (TCA), e.g., glutamate synthesis and the malate-

aspartate shuttle (MAS). Furthermore, in line with what 

Baeza-Lehnert et al. [6] reported, we observed flux 

coupling between ATP demand from the sodium 

ATPase pump and ATP supply from oxidative 

phosphorylation in neurons (Supplementary Figure 2). 

Overall, our model was mathematically consistent and 

agreed with the biology of neurons and astrocytes 

undergoing neurotransmission. 

 

In addition to fluxes, the optimal metabolic response is 

shaped by sensitivity, which is equally relevant to flux 

in the FBA [27, 28]. Sensitivity values inform the extent 

to which a change in any given reaction modifies the 

optimal metabolic response. We calculated sensitivities 

and, together with fluxes, determined how they 

distributed throughout the neuron-astrocyte metabolic 

network. Interestingly, high-flux reactions were mostly 

neuronal (Figure 3I), while high-sensitivity reactions 

were mainly astrocytic (Figure 3J). This cellular 

separation among flux and sensitivity suggests 

neurotransmission sets up fluxes in neurons, and 

sensitivities in astrocytes. Next, we combined the flux 

and sensitivity of each node into a single quantity called 

Absolute Optimality (AO) (see Methods section 

Absolute Optimality for details). The AO informed us 

about the involvement any given node has in the 

achievement of the optimal response. All nodes that had 

an AO above the significant threshold were considered 

optimal nodes (Figures 1B and 3K). Figure 3L shows 

fluxes and sensitivities of optimal nodes separated by 

cell type and sorted in descending order for AO. 

 

Taken together, the optimality analysis suggests a 

division of labor between neurons and astrocytes in 

response to neurotransmission workload. Here, the 

execution, represented by flux, is allocated to neurons, 

while control, represented by sensitivity, is executed by 

astrocytes. 

 

Analysis of network structure based on sensitive 

nodes further supports the division of labor between 

the neuron and astrocyte in the network 

 

We further analyzed the N-A metabolic network to 

enrich our analysis, by performing a centrality analysis 

(Figure 1C). While part of aging-derived damage to 

brain metabolism may reside in fast stationary events 

such as those represented by FBA results, much of 

aging deterioration may occur in non-steady state long-

term events. Intrinsic network structure allows 

identifying long-term phenomena beyond steady state 

and short timescales (see Methods, Modeling rationale). 

As mentioned before, the centrality score of a node 

represents how connected the node is in the network. 

We calculated the extent to which each node in the 

network, when removed, affected the centrality of 

sensitive nodes identified in the previous step (see 

Methods, Absolute Centrality Contribution). Four 

complementary centrality metrics were employed to 

ensure analysis robustness; thus, each reaction was 

associated with four quantities. These accounted for 

how much a given reaction contributes to the centrality 

of the sensitive nodes and were denominated centrality 

contributions. As can be observed in Figure 4A, in 

astrocytes centrality contributions tended to be positive, 

while in neurons it was mostly negative. This result 

indicates that astrocytic nodes tend to increase the 

centrality of the sensitivity set, while neuronal nodes 

tend to decrease it. This finding suggests opposite and 

complementary roles between cells.  

 

In Figure 4B, this behavior was confirmed via 

unsupervised clustering of the correlations between the 

centrality contributions of each node (see Methods 

section for details on this procedure). Here we see that 

centrality contributions from the same cell are clustered 

together. The latter was also confirmed via 

dimensionality reduction, where the 2-dimensional 

distribution of the centrality contributions also 

resembled the two-cell structure (Figure 4C). Next, we 

aggregated the four centrality contributions into a single 

index which was a normalized and absolute value 

representing the capacity of a node to change the 

centrality of sensitivity nodes. We called this index 

Absolute Centrality Contribution (ACC). The ACC for 

each reaction is shown on the right-hand side of the 

heatmap in Figure 4B (see the column with green bars). 

Finally, the nodes with the last tenth percentile of the 

ACC values from each cell were categorized as central 

nodes (Figure 4D). Interestingly, the astrocyte 

concentrated the highest ACC values (Figure 4E). 

Merging optimal and central genes resulted in the hub 

genes list, which represent the genes with the highest 

probability to affect or control the N-A metabolic 
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network in achieving glutamatergic neurotransmission 

workload. 

 

As a whole, positive centrality contributions in the 

astrocyte and negative in the neuron, along with the 

predominantly high ACC of the astrocyte suggest well-

differentiated roles for the neuron and astrocyte. These 

results are in the same line with those obtained by the 

FBA supporting the division of labor between the two 

cells. 

 

Identification of hub genes differentially regulated 

during neurotransmission and/or brain aging 

 

Previously identified hub genes represent the 

scaffolding required for achieving glutamatergic neuro-

transmission, and among these, we sought to identify 

which were also differentially expressed during 

neurotransmission and/or brain aging. Disruption of 

these genes should lead to subpar neurotransmission 

workload, and therefore provide molecular insights into 

aging-associated brain functional decline. We 

denominated this group differential hub genes (DHG). 
To achieve this, we determined which of these were 

differentially expressed, i.e., up- or downregulated after 

neurotransmission and/or brain aging in the neuron 

and/or astrocyte (Figure 2A). We used available 

transcriptome databases for neurotransmission (Figure 

2B) and brain aging (Figure 2C) [12, 25] (see shaded 

area in Venn diagram, Figure 2D and 2E). 

 

On the one hand, the neurotransmission database 

reported transcriptomic changes occurring in neurons 

and astrocytes grown in a mixed culture setting, before 

 

 
 

Figure 4. Centrality-based analysis of the neuron-astrocyte metabolic network further supports the division of labor 
between the neuron and astrocyte. (A) Distributions, separated by cell, of the contributions of each reaction to the centrality of the 
sensitivity set. (B) Unsupervised hierarchical clustering of the pairwise correlations between the contributions of each reaction to the 
centrality of the sensitivity set. The Absolute Centrality Contribution per reaction (ACC) is shown on the right-hand side of the heatmap. (C) 
Dimensionality reduction via Principal Component Analysis (PCA) of the pairwise correlations between the contributions of each reaction. 
(D) Distribution of ACC in the neuron (top) and astrocyte (bottom), here, the red dashed line by the 90% percentile indicates the cutoff over 
which reactions were considered central metabolic reactions. (E) ACC values for the central metabolic reaction separated by cell. 
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and after neurostimulation, followed by RNA-seq [12]. 

The authors reported 4441 genes with differential 

abundance in the neuron and 1307 in the astrocyte 

(fold-change, FC ≥1.3 or ≤0.77 and padj-SSS-value 

<0.05). On the other hand, the brain aging database was 

generated using single-cell RNA sequencing to obtain 

the age-coefficient for each gene, which is equivalent to 

the fold-change of each gene when comparing neurons 

and astrocytes from aged and young mouse brains [25]. 

This study reported 5415 differentially abundant genes 

in neurons and 1294 in astrocytes when comparing 1–3 

months old with 18–30 months old mice (age-

coefficient threshold at 0.005 reported by authors as 

equivalent to a 10%-fold change and an FDR threshold 

of 0.01). 

 

The differentially expressed genes reported in these 

databases were then cross-referenced to the hub genes 

identified in the network analyses, resulting in DHG 

(Figure 2D and 2E). In response to neurotransmission, 

we found 53 DHG in the neuron and 14 DHG in the 

astrocyte. While for brain aging, we found 73 in the 

neuron and 26 in the astrocyte. 

 

Differential hub genes in the neuron suggest a 

metabolic deficit and impaired synaptic transmission 

during brain aging 

 

We performed a pathway enrichment analysis using the 

KEGG pathway database, followed by manual curation 

to obtain a functional characterization of DHG in 

neurotransmission and brain aging (see Methods for 

manual curation criteria). Figure 5 shows KEGG 

pathways enriched in neuronal DHG during 

neurotransmission (Figure 5A–5F) and brain aging 

(Figure 5A’–5F’), where node colors indicate up (red 

nodes) or downregulation (blue nodes) during each 

process. 

 

We identified five main biological processes with 

different regulation when comparing neurotransmission 

and brain aging. The first group contained DHG 

associated with central energy metabolism associated 

with KEGG pathways “Pyruvate metabolism”, “Citrate 

cycle (TCA cycle)” and “Central carbon metabolism in 

cancer” (Figure 5A and 5A’, blue). This last pathway 

was included because metabolic changes observed in 

cancer, such as the Warburg effect, also occur in the 

brain [29]. During neurotransmission, we observed 

upregulation of acss1, a mitochondrial enzyme that 

synthesizes acetyl-CoA from acetate, and of pdha1, 

which encodes for a subunit of the pyruvate 

dehydrogenase complex (PDC) (Figure 5A, blue). 
Upregulation of both enzymes agrees with increased 

acetyl-CoA levels and therefore suggests increased 

TCA flux, which would lead to high levels of oxidative 

phosphorylation. Instead, during aging, we observed 

downregulation of most genes involved in the three 

KEGG pathways mentioned above (except for fh1, 

which was upregulated). Notably, most of these DHG 

downregulated during neuronal aging participate in the 

TCA cycle. Plus, we found downregulation of three 

genes encoding for PDC subunits: pdha1, pdhb, and 

dld. These changes also suggest that acetyl-CoA entry 

into the neuronal TCA cycle and TCA cycle activity are 

impaired in the aged brain. 

 

The second group was associated with synaptic activity, 

including a cluster of Na/K-ATPase pumps (Figure 5B 

and 5B’, orange) and enzymes that catalyze glutamate 

synthesis (Figure 5C and 5C’, green). During 

neurotransmission, they were upregulated, while in 

brain aging, they were downregulated except for 

atp1a2. Na/K-ATPase pumps are required to re-

establish ion gradients after neurotransmission to allow 

the following cycle of synaptic activity. At the same 

time, glutamate is the primary excitatory neuro-

transmitter, for which these results agree with synaptic 

activity dysregulation during brain aging, with got1/2 as 

DHG regulating glutamate levels. 

 

The third group corresponds to the “Synthesis and 

degradation of ketone bodies” pathway (Figure 5D and 

5D’, yellow). During neurotransmission, hmgcs1, 

encoding for the cytosolic form of 3-hydroxy-3-

methylglutaryl-CoA synthase 1 was upregulated while 

hmgcll1 (3-hydroxymethyl-3-methylglutaryl-CoA lyase 

like (1) was downregulated. Hmgcs1 catalyzes the 

formation of HMG-CoA, which is further converted 

into mevalonate for cholesterol synthesis (as opposed to 

the mitochondrial isoform hmgcs2, which catalyzes the 

first irreversible step in ketogenesis using the same 

substrates as hmgcs1). Instead, hmgcll1, which 

catalyzes the second irreversible step in ketogenesis and 

is downregulated, and oxct1, which catalyzes the 

interconversion between acetoacetyl-CoA and 

acetoacetate and was upregulated. These results suggest 

the downregulation of ketone body synthesis during 

neurotransmission while favoring an increased 

degradation or utilization (Figure 5D). In contrast, 

during neuronal aging, it is hmgcs2 which is 

upregulated (ketone body synthesis mitochondrial 

isoform), while hmgcs1 is downregulated. In addition, 

oxct1 and bdh1 are also downregulated (Figure 5D’). 

Bdh1 catalyzes the interconversion between aceto-

acetate and beta-hydroxybutyrate, the two main ketone 

bodies. Therefore, the downregulation of oxct1 and 

bdh1 suggest a decrease in ketone body turnover in the 

aged neuron.  
 

The fourth group was associated with the “Valine, 

leucine, and isoleucine degradation” pathway, and 
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Figure 5. KEGG pathway enrichment of differential hub genes reveals that the aged neuron displays energetic deficit, 
dysfunctional neurotransmission, decreased branched-chain amino acid degradation and utilization of ketone bodies, and 
decreased one-carbon pool levels. KEGG pathway enrichment of differential hub genes was followed by manual curation of associated 

genes. The results are shown for neurotransmission (top panel) and aging (bottom panel). Oxidative phosphorylation (OxPhos, blue): high 
OxPhos levels during neurotransmission (A) but low OxPhos levels during aging (A’). Synaptic transmission: upregulated Na/K-ATPase pumps 
(orange) and glutamate synthesis (green) suggest active re-establishment of cation gradients (B) and high glutamate levels (C). The opposite 
was observed during aging (B’, C’). 3) Ketone body metabolism (yellow): decreased synthesis and increased degradation/utilization during 
neurotransmission (D), with the opposite observed during aging (D’). 4) Branched-chain amino acid (BCAA) degradation (purple): while 
differential hub genes involved in the degradation of BCAA were found downregulated during both neurotransmission (E) and aging (E’), dld, 
which encodes for a subunit of BCAA-decarboxylase, an early step in the degradation of all three BCAA was only downregulated during brain 
aging. 5) One carbon pool (pink): differential hub gene expression associated with one-carbon metabolism suggests high levels of one-carbon 
pool intermediates during neurotransmission (F) but low during aging (F’). Created with https://www.biorender.com/. 

https://www.biorender.com/
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therefore refers to branched-chain amino acid (BCAA) 

degradation (Figure 5E and 5E’, purple). While enzymes 

associated with BCAA degradation were downregulated 

during both neurotransmission and brain aging in the 

neuron, dld, which encodes for a subunit of the BCAA 

decarboxylase and thus catalyzes one of the first steps of 

the degradation of all three BCAA was only down-

regulated during brain aging (Figure 5E’), supporting 

downregulation of BCAA degradation during neuronal 

aging but possibly not during neurotransmission. 

 

Finally, the fifth group was associated with regulating 

one-carbon pool levels (Figure 5F and 5F’, pink), 

including pathways “Glycine, serine and threonine 

metabolism” and “One carbon pool by folate.” During 

neurotransmission, glycine degradation enzymes alas1 

and amt were downregulated, while shmt2, which  

feeds the one-carbon pool by producing 5,10-

methylenetetrahydrofolate was upregulated. Also, 2 out 

of 3 enzymes involved in the metabolism of one-carbon 

pool intermediates were upregulated (Figure 5F, pink). 

However, all enzymes (except for alas2) associated with 

these two pathways were downregulated during neuronal 

aging, suggesting a decrease in the one-carbon pool. We 

present a summary of all these changes in Table 1. 

 

Differential hub gene abundance changes in the 

astrocyte suggest a metabolic switch during brain 

aging 

 

We next performed the same pathway enrichment of 

DHG in the astrocyte during neurotransmission and 

brain aging, followed by manual curation. The number 

of DHG in the astrocyte was lower than those found in 

the neuron, leading also to a lower number of enriched 

pathways. All five biological processes described for 

the neuron were also found during astrocyte aging. 

 

In the first group we identified DHG enriched in central 

energy metabolism pathways (Figure 6A and 6A’, blue). 

These were “Pyruvate metabolism” during both 

astrocyte neurotransmission and aging, while “Central 

metabolism in cancer” was only enriched during 

neurotransmission, and “Citrate cycle (TCA cycle)” was 

only enriched during astrocyte aging. The following 

changes were observed in the astrocyte during 

neurotransmission (Figure 6A). First, slc2a1, encoding 

for the leading glucose uptake transporter in the blood-

brain barrier GLUT1 was upregulated. Second, ldha, 

which encodes for a subunit of lactate dehydrogenase 

(LDH) that favors lactate levels in the interconversion 

between pyruvate and lactate was also upregulated [30]. 

And third, pcx and acss1, which encode for enzymes that 
feed substrates into the TCA cycle, were downregulated. 

These changes suggest high glucose uptake during 

neurotransmission by the astrocyte, elevated lactate 

synthesis, and low TCA cycle flux, which agrees with an 

active astrocyte-neuron lactate shuttle (ANLS). In 

contrast, during astrocyte aging, we observed the 

following changes (Figure 6A’). Instead of ldha, we 

observed upregulation of ldhb, which encodes for an 

LDH subunit that favors pyruvate levels. Furthermore, 

mdh1 and mdh2, which encode for the cytosolic and 

mitochondrial malate dehydrogenases, respectively, 

were upregulated. These enzymes participate in the 

malate-aspartate shuttle, which transports reducing 

equivalents into mitochondria (NADH) therefore fueling 

the electron transport chain and ATP synthesis by 

oxidative phosphorylation. These changes observed in 

differential hub gene regulation suggest that oxidative 

metabolism is favored in the aged astrocyte instead of 

flux through the ANLS, affecting neuronal energy needs. 

 

The second group was related to branched-chain amino 

acid (BCAA) degradation (Figure 6B and 6B’, purple), 

where slc7a5, a cell surface amino acid transporter that 

is also present in the lysosome for leucine uptake for 

degradation, was upregulated during neurotransmission 

(Figure 6B, purple). In contrast, dld, aldh6a1, and 

hibadh, all BCAA degradation genes, were down-

regulated during brain aging (Figure 6B’, purple). These 

results are in line with BCAA accumulation in the 

astrocyte during brain aging. 

 

The third group was associated with ketone body 

degradation/utilization (Figure 6C, yellow), where bdh1 

was upregulated during brain aging. As mentioned 

previously, this gene encodes for the enzyme that 

catalyzes interconversion of acetoacetate and β-hydroxy-

butyrate, thus suggesting that the aged astrocyte favors 

ketone body degradation or utilization. The fourth group 

was associated with glutamate levels (Figure 6D, green), 

including abat, which encodes for an enzyme that 

degrades GABA converting it into glutamate. Abat was 

found downregulated during astrocyte aging. These 

results support a metabolic switch in the astrocyte during 

brain aging that decreases ANLS flux, which is required 

for meeting the high-energy neuronal demand, promoting 

ATP synthesis for the astrocyte’s use. Finally, the fifth 

group was related to one-carbon pool regulation (Figure 

6E), where gcat was upregulated during aging, while gldc 

was downregulated. Gcat activity feeds the one-carbon 

pool while gldc consumes one carbon intermediates. 

These results strongly suggest that the aging astrocyte 

favors the one-carbon pool. A summary of all changes 

observed in the astrocyte is included in Table 2. 

 

Differential hub genes previously associated with 

aging 

 

As a final step, we performed functional annotation  

for each individual differential hub gene 
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Table 1. Summary of the main biological processes and pathways identified among differential hub genes 
during neurotransmission and aging in the neuron. 

Process or 

gene(s) 

Associated KEGG 

pathways and 

biological processes 

Differential hub genes 

upregulated after 

neurotransmission 

Differential hub 

genes downregulated 

after 

neurotransmission 

Differential 

hub genes 

upregulated in 

the aged brain 

Differential hub genes 

downregulated in the aged brain 

Central 

energy 

metabolism: 

oxidative 

phosphorylat

ion (OxPhos) 

Pyruvate 

metabolism; Citrate 

cycle (TCA cycle); 

Central carbon 

metabolism in 

cancer 

Acetyl-CoA synthesis: 

acss1, pdha1 (pdha1 is the 

subunit inhibited by 

phosphorylation by PDK 

regulating the activity of 

the whole pyruvate 

dehydrogenase complex 

(PDC)); Glucose uptake 

transporter: slc2a1; 

Lactate synthesis: ldha 

TCA cycle enzymes: 

idh2, aco1 

fh1: malate 

synthesis 

Pyruvate dehydrogenase complex 

(conversion of pyruvate into acetyl-

CoA for entry into the TCA cycle): 

dld, pdha1, pdhb; dlst, dlat; 

Malate-aspartate shuttle for 

NADH transport into the 

mitochondrial matrix: mdh1, mdh2; 

Synthesis of alpha-ketoglutarate 

(which can exit TCA cycle as 

glutamate, connecting central 

metabolism and neurotransmission): 

idh1, idh2; Lactate synthesis from 

pyruvate: ldha, ldhb; Other TCA 

cycle enzymes: sdha, sdhb, aco2, 

hagh. 

Synaptic 

activity and 

glutamate 

Na/K-ATPase 

pumps; glutamate 

synthesis 

Na/K-ATPase pumps: 

atp1b1 (non-catalytic 

subunit, regulates 

translocation to the plasma 

membrane), atp1a3, 

atp1a1, atp1b2; Glutamate 

synthesis: got1 

– 
Na/K-ATPase 

pumps: atp1a2 

Na/K-ATPase pumps: atp1b2, 

atp1b1, atp1b3, atp1a3; Glutamate 

synthesis: got1, got2 

Ketone body 

metabolism 

Synthesis and 

degradation of 

ketone bodies 

hmgcs1: diverts ketone 

body precursors into 

cholesterol synthesis; oxct1 

hmgcll1: second 

irreversible step in 

ketogenesis, but it’s a 

cytosolic isoform.  

hmgcs2: first 

rate-limiting 

step in 

ketogenesis.  

bdh1: catalyzes interconversion of 

the two main ketone bodies, 

acetoacetate and beta-

hydroxybutyrate (this conversion is 

required for ketone body 

utilization); oxct1: catalyzes 

reversible reaction between 

acetoacetyl-CoA and acetoacetate; 

hmgcs1 

Branched-

chain amino 

acid (BCAA) 

degradation 

Valine, leucine and 

isoleucine 

degradation 

– 

aldh6a1: valine 

degradation; mccc2: 

leucine degradation 

(deficiency is an 

autosomal recessive 

disorder).  

– 

dld: subunit of the BCAA 

decarboxylase, catalyzes early step 

of the degradation of all three 

BCAA; mccc1: leucine degradation; 

hibadh: valine degradation.  

One carbon 

pool 

Glycine, serine and 

threonine 

metabolism; One 

carbon pool by 

folate 

shmt2: feeds the one 

carbon pool by increasing 

serine and 5,10-

methylenetetrahydrofolate; 

Folate metabolism: 

mthfd1l, mthfd2 

Glycine degradation: 

alas1, amt; Folate 

metabolism: mthfd1 

alas2 

shmt2, alas1, gcat, mthfd2, mthfd2l. 

An overall decrease in genomic 

DNA methylation occurs during 

aging, and these changes agree with 

that. 

 

(see Supplementary Tables 2–7), to determine which 

had been previously annotated to aging annotations. 

Among annotated functional categories, we found the 

following associated with aging: (1) From gene 

ontology, “aging” (GO:0007568), “cell aging” 

(GO:0007569) and “multicellular organism aging” 

(GO:0010259); (2) From BioCarta (database containing 

maps of metabolic and signaling pathways) (see 

Supplementary Table 8). We only found six genes that 

had been previously annotated with these categories: 

abat (4-aminobutyrate aminotransferase), dld 

(dihydrolipoamide dehydrogenase), slc1a2 (solute 

carrier family 1 (glial high affinity glutamate 

transporter, member 2) and superoxide dismutases sod1, 

sod2, sod3 (see Supplementary Table 9). 

 

DISCUSSION 
 

In the present work, we analyzed the neuron-astrocyte 

metabolic network by integrating a flux-based approach 

(Flux Balance Analysis), and a centrality analysis, 

which addresses the intrinsic structure of the network. 

This network analysis was followed by cross-reference 
of the identified hub genes, with gene expression data 

for both cell types during neurotransmission and brain 

aging (see Workflow Overview in the Results section, 
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and Figures 1 and 2). The integration of these three 

approaches allowed the identification of differential hub 

genes (DHG), which are a robust selection of gene 

candidates with a high probability of playing pivotal 

roles in the neuron-astrocyte metabolic network, and to 

explain the molecular mechanisms of age-associated 

brain functional decline. DHG were further analyzed 

using pathway enrichment analysis. This allowed 

identifying the main biological processes in    

 

Brain energy metabolism dysfunction has been 

described as a hallmark of brain aging [1, 31], and 

metabolic deficit in the neuron during human brain 

aging has been reported [15]. This group reported that 

flux through the tricarboxylic acid (TCA) cycle 

decreased by 28% in the presynaptic neuron using 

in vivo magnetic resonance spectroscopy. However, the 

genes involved in this deficit remain largely unknown. 

Our analyses showed that the aging neuron 

downregulated a high number of TCA cycle genes, 

including: 

 

(1) Subunits of the pyruvate dehydrogenase complex, 

dld (EC:1.8.1.4), pdha1 (EC:1.2.4.1), pdhb 

(EC:1.2.4.1), and dlat (EC:2.3.1.12), which catalyzes 

the conversion of pyruvate into acetyl-CoA for entry 

into the TCA cycle. Among these, it is worth 

highlighting that dld (EC:1.8.1.4) is also a catalytic 

subunit of two other essential dehydrogenase 

complexes: the α-ketoglutarate dehydrogenase complex 

(α-KGDH), which catalyzes the conversion from α-KG 

into succinyl-CoA (reaction that produces NADH in the 

mitochondrial matrix), and the branched-chain amino 

acid (BCAA) dehydrogenase complex. Remarkably, 

downregulation of dld severely affects overall metabolic 

function and causes the hereditary disease 

 

 

 
 

 

Figure 6. KEGG pathway enrichment analysis of astrocyte differential hub genes suggests a metabolic switch from aerobic 
glycolysis to oxidative phosphorylation during aging. (A and A’) Metabolic switch (blue): upregulation of ldha during 
neurotransmission but ldhb during aging. Ldha/b genes encode for subunits of lactate dehydrogenase, which catalyzes the interconversion of 
pyruvate into lactate. Ldha subunits favor lactate levels and were upregulated during neurotransmission, while ldhb favors pyruvate and is 
upregulated during aging. Also, the major glucose uptake transporter in the blood-brain barrier, encoded by slc2a1, was upregulated during 
neurotransmission only. Instead, during aging, mdh1/2 encode for enzymes of the malate-aspartate shuttle, which allows transport of NADH 
into the mitochondrial matrix to provide electrons for the ETC. Both genes were upregulated during aging, in agreement with a high OxPhos 
rate. (B and B’) Branched-chain amino acid (BCAA) degradation (purple): during neurotransmission, upregulation of slc7a5 was observed 
(amino acid transporter present in the cell surface and lysosome; participates in leucine uptake into the lysosome for degradation), while 
during aging, three enzymes involved in BCAA degradation, including dld, were downregulated. (C) Ketone body degradation/utilization 
(yellow): the enzyme encoded by bdh1 catalyzes the interconversion of acetoacetate and β-hydroxybutyrate, the two main ketone bodies, 
and was upregulated during aging only. (D) Synaptic transmission (green): abat encodes for an enzyme that breaks down GABA into 
glutamate and is downregulated during aging in the astrocyte. (E) One carbon pool (pink): differential hub gene expression associated with 
one-carbon metabolism suggests an increase in one-carbon pool during astrocyte aging. Created with https://www.biorender.com/. 

https://www.biorender.com/


www.aging-us.com 9909 AGING 

Table 2. Summary of the main biological processes and pathways identified among differential hub genes 
during neurotransmission and aging in the astrocyte. 

Process or 

gene(s) 

Associated 

KEGG pathways 

and biological 

processes 

Differential 

hub genes 

upregulated after 

neurotransmission 

Differential 

hub genes 

downregulated 

after 

neurotransmission 

Differential hub genes upregulated 

in the aged brain 

Differential 

hub genes 

downregulated in 

the aged brain 

Central energy 

metabolism: 

switch from 

aerobic 

glycolysis 

(neurotransmis

sion) into 

oxidative 

phosphorylatio

n metabolism 

Pyruvate 

metabolism; 

Citrate cycle 

(TCA cycle); 

Central carbon 

metabolism in 

cancer 

Aerobic glycolysis 

and astrocyte-neuron 

lactate shuttle 

(ANLS): ldha, 

catalyzes 

interconversion 

between pyruvate and 

lactate, favoring 

lactate; slc2a1 (a.k.a. 

GLUT1), the main 

glucose uptake 

transporter in the 

blood brain barrier 

pcx, acss1: feed the 

TCA cycle with 

intermediates (TCA 

anabolic reactions). 

Also in agreement 

with aerobic 

glycolysis metabolic 

state  

Oxidative metabolism: ldhb favors 

pyruvate levels instead of lactate 

(suggesting glycolytic flux in the 

aged astrocyte is directed towards its 

own ATP synthesis); mdh1 and 

mdh2 are involved in the malate-

aspartate shuttle, which allows 

NADH transport into the 

mitochondria to provide electrons for 

the electron transport chain (also in 

agreement with favoring ATP 

synthesis in the aged astrocyte instead 

of the ANLS). 

– 

Synaptic 

activity and 

glutamate 

Na/K-ATPase 

pumps; glutamate 

synthesis 

– – – 

abat: catalyzes 

GABA degradation, 

producing 

glutamate.  

Ketone body 

metabolism 

Synthesis and 

degradation of 

ketone bodies 

– – 

bdh1: catalyzes interconversion of the 

two main ketone bodies, acetoacetate 

and beta-hydroxybutyrate (this 

conversion is required for ketone 

body utilization); hmgcs1: diverts 

ketone body precursors into 

cholesterol synthesis 

– 

Branched-

chain amino 

acid (BCAA) 

degradation 

Valine, leucine 

and isoleucine 

degradation 

slc7a5: cell surface 

amino acid transporter, 

also present in the 

lysosomal membrane 

for leucine uptake into 

the lysosome. 

– – 

dld: subunit of 

the BCAA 

decarboxylase, 

catalyzes early step 

of the degradation 

of all three BCAA; 

aldh6a1 and hibadh: 

valine degradation 

One carbon 

pool levels 

Glycine, serine 

and threonine 

metabolism; One 

carbon pool by 

folate 

– – 
gcat: threonine degradation into 

glycine and acetyl-CoA 

gldc: glycine 

degradation 

 

dihydrolipoamide dehydrogenase deficiency (OMIM: 

246900) [32, 33]. 

 

(2) Two isoforms of malate dehydrogenase (mdh1 and 

mdh2) were downregulated in aging neurons. These 

enzymes are involved in the malate-aspartate shuttle 

(MAS), which allows the shuttling of NADH into the 

mitochondrial matrix [34], providing reducing 

equivalents for the electron transport chain (ETC). 

Furthermore, it has been shown that the expression of 

malate-aspartate shuttle enzymes decreases with  

normal aging and can be reverted using dietary 

restriction [35]. Also, loss-of-function mutations in the 

mdh2 gene are associated with severe neurological 

deficits in children (Ait-El-Mkadem et al., 2017). 

Notably, the NADH/NAD+ ratio is one of the driving 

forces of the ANLS together with pyruvate levels [36], 

highlighting these two enzymes as candidates to study 

age-associated brain functional decline. 

 

(3) Downregulation of idh1 and idh2 (encoding for the 

enzymes Isocitrate Dehydrogenases 1 and 2), which 

catalyze α-ketoglutarate (α-KG) synthesis. This metabolite 

exits the TCA cycle and is converted into glutamate, which 

is the main excitatory neurotransmitter, and therefore it  

is central for metabolism since it connects energy 

metabolism with neurotransmission via glutamate. 

 

These changes agree with previous findings of 

metabolic deficit in the neuron during aging and provide 

both previously reported genes (validating our modeling 

method) and novel gene targets. An energetic shortage 



www.aging-us.com 9910 AGING 

in a cell with such high energy demand is critical and 

will necessarily lead to dysfunction.  

 

Astrocyte metabolic switch from aerobic glycolysis 

to oxidative phosphorylation 

 

Differential gene expression patterns in astrocytes 

indicate a metabolic switch from aerobic glycolysis to 

oxidative metabolism. Since astrocytes fuel neurons with 

lactate, this metabolic switch can lead to neuronal 

energy deficit. This behavior has been described 

previously as a selfish phenotype adopted by the 

astrocyte during aging [16]. Here, astrocytes use 

pyruvate for their ATP synthesis instead of shuttling it to 

neurons. In this regard, lactate dehydrogenase isoforms 

dictate the fate of pyruvate, either by favoring its 

conversion into lactate or by directing it into the TCA. 

Specifically, lactate dehydrogenase isoform LDH-5 

favors lactate production, while isoform LDH-1 favors 

pyruvate production [30]. Consistent with the ANLS, the 

ldha1 gene (coding for polypeptides forming the LDH-5) 

increases in astrocytes during neurotransmission. 

Remarkably, the ldhb gene, which codes for the subunits 

of the polypeptides of LDH-1, was upregulated during 

brain aging. These findings support the glycolytic-to-

oxidative metabolic switch in the astrocyte. Furthermore, 

while LDH-1 isoenzymes localize in both neurons and 

astrocytes, the LDH-5 isoenzymes localize exclusively 

in astrocytes [30]. Hence, it is highly relevant that ldhb 

increases in aged astrocytes. 

 

Ldh upregulation occurs Drosophila melanogaster 

aging, where loss-of-function in either neurons or 

astrocytes leads to an increase in lifespan, while gain-of-

function reduces lifespan [37]. Ldh overexpression also 

leads to increased neurodegeneration and motor function 

decline, while downregulation is neuroprotective [37]. 

However, specific studies on the ldha-to-ldhb switch in 

astrocytes have not been performed and would be of 

great interest to understand the mechanisms of 

functional brain decline during aging. 

 

Returning to MAS, mdh1 and mdh2 were upregulated 

during astrocyte aging (as opposed to downregulation in 

the aged neuron), supporting the oxidative metabolism 

switch in the astrocyte [34]. Of note, while there were 

controversial reports of Aralar, the glutamate/aspartate 

antiporter in the MAS not being expressed in astrocytes 

[38], later evidence showed the opposite [39]. In fact, 

both transcriptomic databases used here detected 

slc25a12 transcript expression (which encodes for 

Aralar) in astrocytes, albeit not differentially expressed 

[12, 25]. 
 

Taken together, these results show that while the neuron 

displays an intrinsic energetic deficit as demonstrated 

by its expression changes, the astrocyte further 

contributes to this deficit by undergoing a metabolic 

switch into a selfish phenotype during brain aging. 

 

Role of mdh2 and ldhb in the metabolic switch of 

other cell types 

 

In cancer cells, the “Warburg effect”, which is also 

known as aerobic glycolysis, was first described. In the 

transition from normal-to-tumoral cells, they undergo 

an oxidative-to-aerobic glycolysis switch, favoring 

proliferation [40]. However, exposure of cancer cells to 

radiation induces a switch to oxidative metabolism 

arresting proliferation [41]. Notably, treatment of cancer 

cells with an Mdh2 inhibitor induces downregulation of 

oxidative phosphorylation [42], which is in line with the 

role in the metabolic switch of Mdh2. 

 

Furthermore, it was recently reported that ldhb plays a 

role in tumor-associated macrophages in breast 

carcinoma [43]. These macrophages express low levels 

of ldhb, perform aerobic glycolysis and secrete high 

lactate levels. Yet, when the authors upregulate ldhb 

this significantly decreases lactate production in these 

macrophages, further supporting the role of ldhb 

upregulation in inducing an oxidative phenotype. 

 

Impaired branched-chain amino acid degradation 

 

Valine, leucine, and isoleucine are the three branched-

chain amino acids (BCAA). Impairment in their 

degradation is detrimental to overall metabolic health 

[44–46], and that a high consumption of BCAA coupled 

with a high-fat diet increases tau neuropathology in the 

3xTg-AD Alzheimer’s disease mouse model [47]. We 

observed the downregulation of genes involved in 

BCAA degradation during neurotransmission and aging 

in the neuron. During neurotransmission, aldh6a1, 

involved in valine degradation (Figure 5E and Table 1), 

and mccc2 involved in leucine degradation, while 

during aging, mccc1 (also leucine degradation), hibadh 

(valine degradation), and dld, which catalyzes an early 

step in the degradation of all three BCAA (Figure 5E’). 

Importantly, a recent report showed that detrimental 

effects of BCAA are mediated mainly through 

isoleucine, and to a lesser extent, by valine [46]. 
 

Significantly, dld was also downregulated in the 

astrocyte. In fact, slc7a5 which transports leucine into 

the lysosome for degradation was upregulated during 

neurotransmission in the astrocyte, while dld, aldh6a1, 
and hibadh were downregulated in the aging astrocyte. 

Taken together with the fact that dld encodes for a 
subunit in three central dehydrogenases, its down-

regulation in both the aged neuron and the astrocyte, 

plus its role in BCAA degradation, we propose dld as 
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one of the strongest candidates to target in the aging 

brain. 

 

Altered ketone body metabolism 

 

Ketone bodies are produced during caloric restriction, 

which is the only intervention known to extend lifespan 

across various organisms [17], and several metabolic 

challenges are being developed to emulate the effects of 

caloric restriction, including the ketogenic diet [18, 19] 

and intermittent fasting [20]. Our results suggest that 

DHGs are regulated in the neuron such that during 

neurotransmission, they suggest downregulation of 

ketogenesis by upregulation of hmgcs1, the cytosolic 

isoform of hmgcs2. While Hmgcs2 (the mitochondrial 

isoform) catalyzes the first rate-limiting step in 

ketogenesis [48], Hmgcs1 catalyzes cholesterol 

biosynthesis in the cytosol instead of ketone body 

synthesis. However, during neuronal aging, hmgcs2 was 

upregulated while hmgcs1 downregulated, thus 

suggesting upregulation of ketone body synthesis [48]. 

Bdh1 (EC:1.1.1.30) and oxct1 (EC:2.8.3.5), which 

participate in the utilization of ketone bodies were 

downregulated, suggesting downregulation of ketone 

body degradation during neuronal aging. 

 

In the astrocyte, bdh1 (EC:1.1.1.30) was upregulated. 

This gene encodes for the enzyme that catalyzes the 

interconversion between β-hydroxybutyrate and 

acetoacetate, the two main ketone bodies, a reaction 

required for acetoacetate conversion into acetyl-CoA for 

eventual ATP synthesis [31]. Therefore, this suggests an 

upregulation of ketone body degradation and utilization 

in the astrocyte during aging. Taken together, our 

results suggest that ketone body utilization increased 

during astrocyte aging while the aging neuron 

upregulated ketogenesis. These results agree with  

those mentioned above regarding astrocyte energy 

expenditure being favored over the neuronal demand 

during brain aging. 

 

Downregulation of genes associated with synaptic 

transmission in the aging neuron 

 

During synaptic transmission, we observed that the 

neuron upregulated genes encoding for four 

sodium/potassium-ATPase (Na/K-ATPase) pumps 

(Figure 5B orange), while four out of five Na/K-

ATPase pumps were downregulated during neuronal 

aging (Figure 5B’, orange). These pumps are required to 

re-establish neuronal ion gradients after neuro-

transmission (Baeza-Lehnert et al., 2019; Erecinska and 

Silver, 1994). A downregulation of their expression 
during aging could contribute to neuronal dysfunction. 

Furthermore, got1 (EC:2.6.1.1), which synthesizes 

glutamate from TCA intermediate α-ketoglutarate,  

is upregulated during neurotransmission, while got1 and 

got2 (EC:2.6.1.1) were downregulated during brain 

aging. Since glutamate is the main excitatory neuro-

transmitter [49] and α-ketoglutarate a key metabolic 

intermediate in the TCA cycle, these two enzymes, in 

particular, got1 (the cytoplasmic isozyme), with 

opposite regulation during neurotransmission and aging, 

provide a link between central energy metabolism and 

synaptic activity. Remarkably, activity for the enzyme 

encoded by got is increased in the brain of 

Alzheimer’s disease individuals compared with 

healthy controls [50]. However, further charac-

terization of the enzyme during pathological or healthy 

brain aging is still lacking, making it an exciting target 

for future studies. 

 

Regarding glutamate levels, the enzyme abat 

(EC:2.6.1.19), which also catalyzes the conversion of α-

ketoglutarate into glutamate, is downregulated during 

astrocyte aging. The reaction catalyzed by this enzyme 

involves the degradation of ɣ-aminobutyric acid, or 

GABA, the main inhibitory neurotransmitter. 

 

As a whole, glutamate synthesized by got1, got2, and 

abat decreases during both neuron and astrocyte aging. 

This has a possible detrimental effect on neuro-

transmission and coupled with the downregulation of 

the expression of Na/K-ATPase pumps in the aging 

neuron, provides valuable future horizons for 

elucidating the molecular mechanisms of brain aging. 

 

Altered one-carbon pool for tetrahydrofolate (THF) 

synthesis 

 

The final group we observed was defined by KEGG 

pathways “One carbon pool by folate” (KEGG 

map00670) and “Glycine, serine and threonine 

metabolism” (KEGG map00260). These pathways are 

of interest during brain aging because THF is the 

precursor for S-adenosylmethionine (SAM), the 

substrate required for methylation, including DNA and 

histone methylation [51–53] linking central energy 

metabolism with epigenetic modifications. Overall 

methylation levels decrease during aging [54–56] and is 

one of the epigenetic clocks, which can be modified by 

metabolic challenges such as caloric restriction [57]. 

Furthermore, glycine and serine degradation also feed 

the one-carbon pool [58]. 

 

In the neuron, we observed the following changes in 

one carbon pool associated enzymes (Figure 5F and 

5F’). During neurotransmission, shmt2 (EC:2.1.2.1), an 

enzyme that synthesizes 5,10-Methylene-THF (KEGG 
map00260), mthfd1l (EC: 6.3.4.3) and mthfd2 (EC: 

3.5.4.9) were all upregulated. The enzymes encoded by 

mthd1l and mthfd2 feed the THF pool (KEGG 



www.aging-us.com 9912 AGING 

map00670). However, in the aged neuron, alas1 was 

downregulated and this change is associated with 

decreased THF levels [58]. These changes suggest that 

during neurotransmission, availability of THF increases, 

while during aging it decreases, in line with the overall 

decrease in DNA methylation reported during aging 

[54–56, 59]. Furthermore, THF is required for 

glutathione synthesis (GSH), required to quench the 

high reactive oxygen species levels produced from 

oxidative phosphorylation. Therefore, high THF levels 

can be associated with the oxidative metabolism during 

neurotransmission. 

 

In the astrocyte, we observed differential expression of 

gcat and gldc. The Gcat enzyme (EC:2.3.1.29) increases 

glycine levels from threonine degradation, and therefore 

feeds the one carbon and THF pool was upregulated 

during aging. In contrast, Gldc (EC:1.4.4.2) catalyzes 

glycine degradation and therefore consumes THF, was 

downregulated. These results suggest an overall 

increase in the one carbon pool during astrocyte aging, 

which also suggest an increase in THF and a subsequent 

increase in availability for GSH synthesis. This agrees 

with an oxidative metabolic state that is also in line with 

the aerobic glycolysis to oxidative phosphorylation 

switch we propose for the aged astrocyte. 

 

Pathways and genes previously associated with brain 

aging 

 

The set of differential hub genes highlighted in Figures 

5 and 6 had been previously associated with metabolic 

pathways that are related to neurotransmission, e.g., 

glutamate metabolism and Na/K-ATPase pumps, or are 

related to brain aging. Among these, we found: (1) 

Glycolysis and oxidative phosphorylation [1], which, 

given their differential expression during aging, are 

associated with metabolic dysregulation; (2) Ketone 

body metabolism, associated with caloric restriction and 

other dietary interventions [17–19]; (3) Branched-chain 

amino acid degradation, described to play a role in 

metabolic health and aging [44–46]; and (4) The one 

carbon pool, which participates in glutathione synthesis 

(required during neurotransmission and aging) as well 

as in SAM synthesis (the sole DNA and histone 

methylation substrate), related with epigenetic changes 

that occur during aging [54–56]. However, out of a total 

of 115 DHG, only 6 had been annotated in a functional 

annotation database as associated with aging-related 

terms. These included: (1) Superoxide dismutases 

sod1/2/3, which play a role in oxidative stress control; 

(2) The glial glutamate transporter slc1a2; (3) abat, 

which catalyzes the conversion of GABA and α-
ketoglutarate into L-glutamate and succinate 

semialdehyde; and (4) dld, which, as mentioned 

previously, encodes for a subunit of the branched-chain 

amino acid, pyruvate, and α-ketoglutarate de-

hydrogenase complexes, and was identified as a neuron 

optimal gene, and a central gene for both the neuron and 

the astrocyte. 

 

A lower Dld enzymatic activity has been observed in 

Alzheimer’s disease, mainly associated with the α-

ketoglutarate complex, which converts α-ketoglutarate 

into succinyl-CoA and NADH in the TCA cycle [60, 

61]. In physiological brain aging, Yan and collaborators 

reported that mitochondrial Dld expression and activity 

(in mitochondria isolated from whole rat brains) 

increases in the progression into adulthood, with no 

further changes from 5 to 30 months old [62]. However, 

during caloric restriction, Dld levels are higher in the 

hippocampus of rats subjected to caloric restriction [63]. 

Given that our results show that dld expression is lower 

in aged astrocytes and neurons, and the beneficial anti-

aging effects of caloric restriction, we propose that 

restoring dld expression is an interesting target to 

further address its role in brain aging. Intriguingly, Dld 

has been reported to have a moonlighting proteolytic 

activity [64], which was more recently demonstrated to 

degrade the NF-κB inhibitor IκBε in a context 

associated with Parkinson’s disease [65]. Taken 

together, the lower dld expression in aged astrocytes 

and neurons, the decrease in Dld enzymatic activity in 

Alzheimer’s disease, its proteolytic function in 

Parkinson’s disease, and that its levels are partially 

restored during caloric restriction, suggest a critical role 

for Dld in the neuron-astrocyte metabolic network. 

From a geroscience standpoint, these results also 

propose Dld as an aging-associated change that could 

increase the risk for neurodegenerative disease. This 

supports that the method presented here allows the 

identification of strong candidate genes for future 

preclinical studies on brain aging and neurodegenerative 

disease. Furthermore, differential hub genes involved in 

aging-associated metabolic processes that have not been 

studied in brain aging represent a set of robust 

candidates for future studies. 

 

Labor division between the neuron and astrocyte 

 

Differential hub gene expression in the aged astrocyte 

further reinforces the notion of division of labor 

between the neuron and astrocyte in the metabolic 

network shown by both flux balance analysis and 

centrality analysis. The regulation of biological 

processes associated with DHG suggests that the aged 

astrocyte fails to perform its part in this division of 

labor, which is mainly providing lactate to the neuron 

and recycling glutamate and glutamine. Instead, the 
astrocyte switches into a selfish phenotype, where 

energy expenditure reallocates to this cell during brain 

aging. Taken together, differential hub gene regulation 
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in both cell types strongly supports neuronal metabolic 

deficit, which could contribute to the cognitive deficit 

observed in the brain during aging. 

 

CONCLUSIONS 
 

The work reported here integrated two network-based 

approaches combined with bioinformatics analyses of 

transcriptomics data, through which we identified 

differential hub genes. These constitute a selection of 

genes that play an important role in the neuron-astrocyte 

metabolic network in terms of metabolite flux, intrinsic 

network structure, and are also regulated during 

neurotransmission and/or brain aging. Our findings 

suggest that the astrocyte undergoes a metabolic switch 

from aerobic glycolysis to oxidative metabolism, with a 

concomitant upregulation of THF precursor synthesis 

required for glutathione synthesis, to control the 

increased oxidative stress caused by this metabolic 

switch. Additionally, differential hub genes in the 

neuron suggest substantial metabolic impairment and 

downregulation of genes required for synaptic 

transmission. 

 

The proposed integrative computational analysis is a 

versatile approach that can be applied to other 

biological questions, ranging from brain function in 

neurodevelopmental disorders to neurodegenerative 

diseases. In fact, available metabolic network models 

for other cell-types and tissues are available [66], for 

which the applicability is not limited to the brain. 

However, it is important to note that the method does 

have limitations. First, enzyme gene expression changes 

may not correlate with metabolite abundance, given the 

different levels of regulation of metabolic enzyme 

expression, such as negative feedback from metabolite 

levels and/or post-translational modifications. Second, 

high-throughput databases like the transcriptomics data 

used here will have an intrinsic heterogeneity, as they 

were generated by different research groups under 

different conditions. For example, the transcriptomics 

neurotransmission database used here [12] was obtained 

from a mixed culture of primary rat postnatal astrocytes 

with primary mouse embryonic neurons. This allowed 

obtaining cell-type specific data using bioinformatics 

analyses to separate reads corresponding to each 

species. Instead, the transcriptomics aging database [25] 

used brain samples from adult young and aged mice and 

obtained cell-type specific gene expression data by 

performing single-cell RNA-sequencing. Each approach 

was appropriate for the question the study was 

addressing. On the one hand, obtaining primary neurons 

from adult brains is a technically difficult procedure 

making the single-cell RNA-seq approach more 

appropriate for the aging study. On the other hand, for 

the neurotransmission study, in order to dissect 

transcriptomic changes specific to neurotransmission in 

neurons and astrocytes, that result from their 

interaction, a primary cell culture approach is required. 
 

In spite of these limitations, our analysis identified a 

small group of genes that had been previously reported 

to play a role in brain aging, and a larger set of genes 

that participate in metabolic pathways associated in 

brain aging, but their specific role has not been 

addressed yet. We propose that this second group 

includes genes that have a high probability of mediating 

functional changes in the neuron-astrocyte metabolic 

network during brain aging and are candidate targets for 

future studies to prevent age-associated cognitive 

changes. We also highlight the value of using of 

integrative computational approaches, from the 

integration of network analyses to the integration of 

multi-omics databases as powerful tools to make an 

unbiased selection of pathways and genes of interest, 

saving valuable resources and time before starting 

experimental studies. 

 

METHODS 
 

Modeling rationale 
 

Our modeling approach tackled three aspects of the 

metabolic network conformed by neurons and 

astrocytes: (i) fast response to glutamatergic-

neurotransmission workload [67], (ii) constant energy 

availability, i.e., invariant neuronal concentrations of 

cytosolic ATP and ADP [6], and (iii) long-term 

impairment upon aging [1]. We addressed the former 

aspect (i) by employing a genome-scale constraint-

based model of the neuron-astrocyte metabolic network 

[24]; henceforth, the neuron-astrocyte model. To 

simulate the response to neurotransmission workload 

(i), we coupled and maximized three critical fluxes. 

These fluxes were those that are activated under 

glutamatergic neurotransmission and comprised 

neuronal ATP consumption derived from sodium 

removal, the ANLS, and the GGC. These three events 

were combined into a single flux denoted as the 

metabolic objective. The second aspect (ii), constant 

energy availability, was managed by subjecting the 

maximization of the metabolic objective to a steady-

state constraint. This optimization-based procedure is 

known as FBA [68] and simulates an optimal metabolic 

response to neurotransmission. The essentials of FBA 

can be found in the Supplementary Theoretical 

Framework Section 1. The FBA allowed us to identify 

the optimal metabolic reactions, which were the 

reactions responsible for achieving a proper response to 

neurotransmission. Up to this point, our model encoded 

the stationary and optimal nature of the response to 

neurotransmission workload. Notably, metabolic states 
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computed via FBA simulate events that are required to 

be reproducible for the cell [69]. Consistently, the brain 

must maintain a reproducible outcome, namely a proper 

response to energy workload, particularly in the face of 

aging. Even though part of aging-derived damage to 

brain metabolism may reside in fast stationary events, 

much of aging deterioration may relate to non-

stationary long-term events. Network topology can 

encode wide-spectrum phenomena beyond steady-state 

and short timescales since it can encode the row space 

of the stoichiometric matrix (see Supplementary 

Theoretical Framework Section 4). Therefore, we 

identified a group of reactions that modulate the optimal 

metabolic response via topological effects to analyze 

aging-derived phenomena (theoretical details on  

the topology-based analysis are exposed in the 

Supplementary Theoretical Framework section 2). Since 

we employed centrality analysis [70], these modulators 

were called central metabolic reactions and, along with 

the optimal metabolic reactions, were used to identify 

aging-affected genes. 

 

Neuron-astrocyte metabolic network 

 

We used a genome-scale metabolic network re-

construction [71, 72] of the glutamatergic synapse 

comprising neurons and astrocytes [24]. This model  

is available at https://systemsbiology.ucsd.edu/ 

InSilicoOrganisms/Brain. 

 

Flux constraints 

 

The theory behind constraint-based modeling and flux 

constraints is briefly presented in the Supplementary 

Theoretical Framework Sections 1.1 to 1.4. Neuronal 

flux constraints were derived from measurements taken 

in primary cultures reported by [6]. In this study, they 

used genetically encoded fluorescence resonance energy 

transfer (FRET) reporters [73, 74] along with ion-

sensitive dyes to make real-time measurements of 

intracellular fluxes in neurons co-cultured with 

astrocytes. Baeza-Lehnert et al. [6] investigated how the 

neuronal ATP pool is maintained upon acute energy 

demands derived from the activity of the Na+/K+ 

ATPase pump induced by neuronal stimulation. They 

were able to estimate that sodium ions are extruded at a 

rate of 350 µM/s after neuronal stimulation. This 

sodium efflux rate corresponds to 116.6 µM/s of ATP 

consumption since 1 molecule of ATP is spent to export 

3 ions of sodium. Also, Baeza-Lehnert et al. [5] 

estimated a housekeeping ATP demand of 38 µM/s. 

Adding the ATP spent during stimuli-associated sodium 

removal and the housekeeping demand, the same 

authors estimated a total ATP demand of 155 µM/s to 

re-establish ions gradient after neurotransmision. 

Additionally, they reported that at resting conditions 

neuronal glucose consumption was near 0.9 µM/s (in 

the presence of lactate) and that neuronal glycolytic rate 

increases 2.353 times after stimulation. This yields a 

glycolytic rate of 2.1177 µM/s in stimulated neurons. 

Overall, a stimulated neuron must cope with an ATP 

demand of 155 µM/s having a glycolytic rate of 2.1177 

µM/s. Considering this glycolytic rate of 2.1177 µM/s 

and an energy yield of 31 molecules of ATP per glucose 

[6], the neuronal metabolism roughly produces 66 µM/s 

of ATP. The rest of the required ATP is achieved via 

lactate uptake, where lactate is supplied by astrocytes 

[75]. Such lactate production in astrocytes is associated 

with an astrocytic glycolic flux that is triggered under 

neuronal stimulation [26]. We used Flux Balance 

Analysis (FBA) to fit the astrocytic glycolytic flux to 

meet the neuronal ATP demand of 155 µM/s, and hence 

the sodium efflux of 350 µM/s. Astrocytic oxygen 

uptake was fixed at 0.01666 µM/s as reported in 

experiments where astrocytes are co-cultured with 

neurons that undergo stimulation [22]. Hence, we 

computed the optimal metabolic state using the latter 

astrocytic oxygen uptake rate along with the fitted 

astrocytic glycolytic rate, the neuronal glycolytic rate, 

and the housekeeping ATP demand as flux constraints. 

 

Phenotypic phase plane analysis 
 

In this analysis, a non-zero slope of the planes means 

that the optimal state depends on the given substrates 

[76]. We computed the phenotypic phase planes as 

follows: 
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 (Eq. 1) 

 

here, ratesoxygen and ratesglucose are ranges of uptake rates 

which may be of any length. For details, the theoretical 

basics of the Flux Balance Analysis (FBA) are 

presented in the Supplementary Theoretical Framework 

Sections 1.2–1.4. The term z = cTv correspond to the 

metabolic objective of the FBA, which correspond to a 

linear combination of the fluxes v weighted by cT 

Specifically, the vector c has ones for the reactions 

shown in Figure 2A–2C, and zero for the rest. The 

stoichiometric matrix is denoted as S, and the equality 

constraint Sv = 0 corresponds to the mass-balance at 

https://systemsbiology.ucsd.edu/InSilicoOrganisms/Brain
https://systemsbiology.ucsd.edu/InSilicoOrganisms/Brain
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steady state. The vectors Lb, Ub, boxygen, bglucose are 

bounds for the inequality constraints, respectively, these 

correspond to the full-length lower bounds, full-length 

upper bounds, lower bound for oxygen uptake rate, and 

lower bound for glucose uptake rate. The flux variables 

voxygen and vglucose correspond to oxygen uptake rate, and 

glucose uptake rate. The term Phpp is a tensor where 

the first two dimensions are of the corresponding 

lengths of the uptake ranges. The third dimension of the 

tensor Phpp is the number of fluxes in the model. From 

this tensor, we extracted the phenotypic phase planes 

shown in Figure 3D–3G. 

 

Sensitivity analysis of the FBA 

 

The sensitivity analysis was carried out over the 

solution of the FBA. This was done via calculation of 

what is known as the reduced cost vector [77, 78]. Each 

value of this vector indicates the amount by which the 

objective function changes upon an increase in a given 

flux. Thus, a reduced cost (δi) is the sensitivity of the 

objective function z with respect to a change in the ith 

flux value (vi). 

 

 z
i

i

δ
υ


=


 (Eq. 2) 

 

Hence, a group of reactions able to perturb the optimal 

response may be identified. This group comprised of 

reactions having non-zero δi, being named as the 

sensitivity set. This group acts as an “interface” able to 

send fast perturbations to the optimal state. 

 

Absolute optimality 

 

We constructed an index of reaction importance in the 

context of the optimal metabolic response. This index 

was called Absolute Optimality (AO) and corresponds 

to the L2 norm of a vector composed by normalized 

flux and normalized sensitivity. We normalized flux and 

sensitivity in order to get standardized positive values. 

Such a normalization consisted in applying the Signed 

Pseudo Logarithm and rescaling the values to a zero-

one range (scaler): 
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where z corresponds to any given flux or sensitivity. 

Then, the AO for the i reaction is: 

 

 
2
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where vi and δi corresponds to the flux and sensitivity of 

the i reaction, respectively. 

Absolute centrality contribution 

 

We carried out centrality analysis over the reaction 

projection of the stoichiometric matrix. The projection 

of the stoichiometric matrix is explained in detail in the 

Supplementary Theoretical Framework Section 2.2. It is 

worth noting that we did not only assess the centrality 

of the reactions involved in the sensitivity set. Rather, 

we determined how other nodes contribute to the 

centrality of the reactions involved in the sensitivity set. 

In this sense, we build from the concept of induced 
centrality, which views a node’s centrality as a measure 

of its contribution to another node’s centrality [79]. 

Formally, induced centrality accounts for the 

contribution of any node to the network's cohesiveness, 

where cohesiveness is defined as the aggregation of all 

nodes’ centrality scores. Induced centrality is computed 

by taking any centrality metric and aggregating all node 

scores (averaging them, for instance) to get a baseline 

measure of network cohesiveness, and then 

recalculating the aggregation without the node of 

interest. The difference between the baseline and the 

recalculation yields the induced centrality of the node of 

interest. We adapted this procedure to our ends. Instead 

of taking the centrality scores of all nodes, we only took 

sensitivity nodes and aggregated them via arithmetic 

mean. Also, instead of using the difference, we used the 

fold change between the baseline and the recalculation. 

Formally, our implementation of the node induced 

centrality defines the basal centrality of the sensitivity 

set as the mean of its node centralities: 
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 (Eq. 5) 

 

Where C is any given centrality metric (eigenvector, 

closeness or information), and k is the numbers of 

members of the sensitivity set (s), while Ci is the 

centrality of a member of the sensitivity set. Next, we 

defined the perturbed centrality of the sensitivity set as 

the same mean but recalculated without node x, 
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here, ci – {x} refers to the recalculated centrality 

(centrality without x) of a member of sensitivity set, and 

C−x is the perturbed centrality. Then, we computed the 

induced centrality of node x as, 
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 (Eq. 7) 

 

where centrality C can be eigenvector, closeness or 

information centrality. Ic(x) is the contribution of node x 
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to the centrality of sensitivity set. Next, we normalized 

these data in order to get standardized positive values. To 

such an end, we employed Eq. 3. Induced centrality may 

be calculated by using centrality metrics that inform on 

the probability of getting an interaction (eigenvector) or 

calculated via centralities associated with the cost of such 

interaction (closeness or information centrality). Details 

on the concept of probability and cost-associated 

centralities can be found in the Supplementary 

Theoretical Section 3. Finally, we added the normalized 

cost-associated induced centralities into one quantity (CS 

(x)), and for consistency, normalized eigenvector 

induced-centrality was renamed as Ps(x). 

 

 
( ) ( )( )

( ) ( )( ) ( )( )

s eigenvector

s closeness information

P x N I x

C x N I x N I x
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 (Eq. 8) 

 

here, subscripts s highlight the fact that induced 

centralities are defined regarding the sensitivity set. 

Finally, we computed the Absolute Centrality 

Contribution (ACC) as the L2 norm of a vector 

compose by the probability and the cost, 
 

 ( ) ( )
2
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s s s

ACC x P x ,C x=  (Eq. 9) 

 

here, ACCs(x) encodes the contribution of node x to the 

availability of the sensitivity set (s) to have interactions 

with the rest of the network. 

 

Pairwise correlations between nodal contributions 

 

Correlations were calculated using Pearson’s coefficient 

via its implementation in the R language. Non-

parametric coefficients were not necessary as each node 

was related only to four data points, each one 

corresponding a different Ic(x). 

 

Hierarchical clustering 

 

We used unsupervised hierarchical clustering to verify 

the opposite regulation found between neurons and 

astrocytes regarding their induced centralities. In this 

sense, we determined if the clusterization of nodal 

contributions resembles the two-cell structure (neuron-

astrocyte) of the network. To this end, each reaction was 

regarded as a variable while its four induced centralities 

were regarded as samples. Hence, we computed the 

correlation matrix between reactions. If there is opposite 

regulation, the neuron-astrocyte structure should emerge 

from unsupervised clusterization of the correlation 

matrix. Hierarchical clustering was done by using 
euclidean norm to compute distances, and complete-

linkage as agglomeration method. The PCA was applied 

according to standard implementation. 

Genes associated with reactions 

 

Each reaction (enzyme or transporter) is associated with 

some gene or group of genes. We manually annotated 

those genes by using the Virtual Metabolic Human 

website (https://www.vmh.life), which is a database 

based on information provided by constraint-based 

stoichiometric models of human metabolism [80]. 

 

Software, programming languages and libraries 

 

Pathway visualizations shown in Figure 2A–2C were 

done using Escher (https://escher.github.io/). 

Phenotypic phase planes (PhPPs) were computed in the 

Python language using CobraPy (https://opencobra. 

github.io/cobrapy/). All statistical tests (wilcoxon) were 

carried out employing the ggplot2 built-in function 

stat_compare_means. All plots shown in Figures 3 and 

4 were composed and rendered using the R language 

(https://www.r-project.org/) employing the library 

ggplot2 (https://ggplot2.tidyverse.org/), except for the 

network visualizations shown in Figure 3H, 3I (left-

side), and 3J (left-side) which were made in Python 

using graph-tool (https://graph-tool.skewed.de/). 

Hierarchical clustering and heatmap were done using 

the R library ComplexHeatmap (https://jokergoo. 

github.io/ComplexHeatmap-reference/). In the same 

manner, PCA was carried out in R by using the library 

PCAtools (https://github.com/kevinblighe/PCAtools). 

 

Code availability 

 

The code to replicate the results presented in Figures 3 and 

4 is available under prior solicitation to the corresponding 

author. 

 

High-performance computing software and 

infrastructure 

 

This research was partially supported by the 

supercomputing infrastructure of the National Laboratory 

for High Performance Computing (NLHPC) of Chile 

(ECM-02). Distributed computing was implemented by 

using Python package Ray (https://docs.ray.io/). 

 

Extracting differential gene expression values from 

databases 

 

Genes displaying differential abundance in response to 

glutamatergic neurotransmission were extracted from 

Supplementary Material reported in [12], using the 

following threshold reported for the astrocyte: fold-

change (stimulated/basal) ≥1.3 or ≤0.77 and p-adjusted-
SSS-value <0.05. Differentially abundant genes 

reported with or without TBOA treatment were merged 

into a single gene set. For the neuron, the same 

https://www.vmh.life/
https://escher.github.io/
https://opencobra.github.io/cobrapy/
https://opencobra.github.io/cobrapy/
https://www.r-project.org/
https://ggplot2.tidyverse.org/
https://graph-tool.skewed.de/
https://jokergoo.github.io/ComplexHeatmap-reference/
https://jokergoo.github.io/ComplexHeatmap-reference/
https://github.com/kevinblighe/PCAtools
https://docs.ray.io/
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parameters were used for comparable results. The same 

procedure was used to extract genes showing 

differential abundance in response to brain aging in the 

astrocyte and neuron [25]. We used the threshold 

reported by the authors at: age coefficient threshold at 

0.005 reported by authors as equivalent to a 10%-fold 

change and an FDR cutoff of 0.01. Given that the 

abovementioned studies used different RNA-seq 

approaches (Hasel and et al. [12] performed RNA-Seq 

of whole cell samples, while the Tabula Muris 

Consortium [25] used single-cell RNA-Seq), we used 

the fold-change reported by the authors as significant 

differential expression and separated each group into up 

or downregulated after glutamatergic neurotransmission 

or brain aging, in each cell type. 

 

Mouse ortholog search for hub genes 

 

Hub associated genes; denominated hub genes were 

originally linked to a human entrez gene ID (see above). 

We used the g:Profiler tool [81, 82] at 

https://biit.cs.ut.ee/gprofiler/gost, and used the g:Orth 

Orthology search tool to transform human entrez gene 

IDs into mouse orthologs. This tool delivers the official 

gene symbol and Ensembl mouse IDs. The resulting 

mouse ortholog set was cross referenced with the hub 

genes set, and the intersection resulted in the four 

differential hub gene sets: (1) Differential hub genes 

after glutamatergic neurotransmission in the: (a) 

Neuron, (b) Astrocyte; and (2) Differential hub genes 

regulated during brain aging (aged/young) in the: 

(a) Neuron, (b) Astrocyte. 

 

KEGG pathway enrichment analysis 

 

The ClueGO [83] plugin in Cytoscape [84] was used. 

Mus musculus (10090) was selected, and for each subset 

mentioned above (1a, 1b, 2a, 2b), a separate analysis was 

performed, using two clusters: one for upregulated genes 

and the second for downregulated genes. The KEGG 

database from 13 May 2021 was used, the minimum 

number of genes per cluster was set as 2, and all other 

parameters were left as default. Resulting enriched 

KEGG pathways were manually curated to exclude terms 

that were unrelated to the nervous systems (see 

Supplementary Figures 3–6 for uncurated files). 

 

Gene-by-gene functional annotation and 

identification of aging-associated terms and genes 

 

Functional annotation for all differential hub genes was 

obtained from the DAVID Bioinformatics Resources 

database [85]. The annotated differential hub gene list 

was then searched for the terms “aging”, “senescence” 

and “longevity”, and only terms including the words 

“aging” and “longevity” were found. 
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SUPPLEMENTARY MATERIALS 
 

Please browse Full Text version to see the data of Supplementary Theoretical. 

 

Supplementary Figures 
 

 
 

 

Supplementary Figure 1. Glucose yield is consistent with aerobic metabolism. Phenotypic phase planes are shown as two-
dimensional color maps. The Flux Balance Analysis (FBA) solution is represented by the red-filled circle. The white piecewise line depicts the 
specific contour level of the solution. (A) Oxygen molecules spent per molecule of glucose. (B) ATP molecules produced per molecule of 
glucose. 
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Supplementary Figure 2. Flux coupling between sodium removal and oxidative phosphorylation in neurons. 
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Supplementary Figure 3. Uncurated KEGG enrichment diagram for differential hub genes in the neuron during 
neurotransmission. 
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Supplementary Figure 4. Uncurated KEGG enrichment diagram for differential hub genes in the neuron during brain aging. 

 

 
 

Supplementary Figure 5. Uncurated KEGG enrichment diagram for differential hub genes in the astrocyte during 
neurotransmission. 
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Supplementary Figure 6. Uncurated KEGG enrichment diagram for differential hub genes in the astrocyte during brain 
aging. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–8. 

 

Supplementary Table 1. Optimal fluxes relevant to the neuron-astrocyte metabolic network during 
neurotransmission. 

 Name Reaction Flux Sensibility 

EX_o2(e) Oxygen uptake o2[e] <-- −33.425896 0.00000e+00 

NaEX_Neuron 

Neuronal sodium 

accumulation rate under 

stimulation 

na1[e] <=> na1[cN] 350.000024 0.00000e+00 

NaKt_Neuron 
Neuronal sodium-potassium 
ATPase pump (sodium 

removal) 

atp[cN] + h2o[cN] + 2.0 k[I] + 3.0 na1[cN] --> adp[cN] + h[cN] + 

2.0 k[cN] + 3.0 na1[I]  + pi[cN] 
118.045878 0.00000e+00 

L-LACTt2r_Int 

L-lactate reversible transport 

vía proton symport Interstitial 
and Synapse 

h[I] + lact-L[I]  <-- h[cA] + lac-L[cA] −6.912674 0.00000e+00 

L-LACTt2r_Neuron 
L-lactate reversible transport 

vía proton symport Neuron 
h[I] + lact-L[I]  --> h[cN] + lac-L[cN] 6.912674 0.00000e+00 

GLUVESSEC_Neuron 

L-glutamate secretion vía 

secretory vesicle (ATP 
driven) Neuron 

atp[cN] + glu-L[cN] + h2o[cN] --> adp[cN] + glu-L[I] + h[cN] + 

pi[cN] 
4.137608 0.00000e+00 

GLNtN1_Int 
Glutamine transporter 

Interstitial and Synapse 
gln-L[I] + h[cA] + na1[i] <=> gln-L[cA] + h[i] + na1[cA] −4.137608 0.00000e+00 

ATPS4m_Neuron 
ATP synthase (four protons 

per one ATP) Neuron 

adp[mN] + 4.0 h[cN] + pi [mN] --> atp[mN] + h2o[mN] + 

3.0 h[mN] 
155.943088 −2.775558e-16 

ATPS4m 
ATP synthase (four protons 
per one ATP) Astrocyte 

adp[mA] + 4.0 h[cN] + pi [mA] <-- atp[mA] + h2o[mA] + 
3.0 h[mA] 

−0.016660 8.63000e+00 

GLCt1r 
Glucose transport (uniport) 

Astrocyte 
glc-D[e] --> glc-D[cA] 3.452172 6.65200e+01 

GLCt1r_Neuron Glucose transporter Neuron glc-D[e] --> glc-D[cN] 2.120199 6.00000e+01 

ATPtm_Neuron 
ADT/ATP transporter, 

mitochondrial Neuron 
adp[cN] + atp[mN] --> adp[mN] + atp[cN]  155.943088 0.00000e+00 

PYK_Neuron Pyruvate kinase Neuron adp[cN] + h[cN] + pep[cN] --> atp[cN] + pyr[cN] 4.240398 0.00000e+00 

PYK Pyruvate kinase Astrocyte adp[cA] + h[cA] + pep[cA] --> atp[cA] + pyr[cA] 6.896014 0.00000e+00 

The lactate shuttle is active in both directions; L-LACt2r_Int is the efflux from the astrocyte, and L-LACt2r_Neuron corresponds to the influx to neurons. Also, 
the glutamate-glutamine cycle was active for neuronal glutamate export (GLUVESSEC_Neuron) and glutamine efflux from astrocytes (GLNtN1_INt). 

 

 

Supplementary Table 2. List of all hub genes for the neuron and astrocyte. Original human entrez gene ID are 
shown with corresponding mouse orthologs. 

 

Supplementary Table 3. Unique list of all differential hub genes, for both astrocyte and neuron, during 
neurotransmission and aging. 

 

Supplementary Table 4. Differential hub genes in the astrocyte during neurotransmission, including reported 
fold-change for both databases and cell types (Hasel et al., 2017; Tabula Muris Consortium, 2020). 

 

Supplementary Table 5. Differential hub genes in the neuron during neurotransmission, including reported fold-
change for both databases and cell types (Hasel et al., 2017; Tabula Muris Consortium, 2020). 

 

Supplementary Table 6. Differential hub genes in the astrocyte during aging, including reported fold-change for 
both databases and cell types (Hasel et al., 2017; Tabula Muris Consortium, 2020). 
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Supplementary Table 7. Differential hub genes in the neuron during aging, including reported fold-change for 
both databases and cell types (Hasel et al., 2017; Tabula Muris Consortium, 2020). 

 

Supplementary Table 8. List of differential hub genes with previous functional annotation associated with 
aging-related terms. 

 

Supplementary Table 9. List of aging-related terms found among the functional annotation of differential hub genes. 

Term Database 

GO:0007568~aging Gene ontology - biological process 

GO:0007569~cell aging Gene ontology - biological process 

GO:0010259~multicellular organism aging Gene ontology - biological process 

m_LongevityPathway:The IGF-1 Receptor and Longevity BioCarta (online maps of metabolic and signaling pathways) 

 

 


