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INTRODUCTION 
 

Gastric cancer remains one of the malignant tumors 

with the highest morbidity and mortality rates 

worldwide. According to Global Cancer Statistics, as of 

2020, a total of 1,089,103 new gastric cancer patients 

have been diagnosed worldwide, accounting for 5.6% 

of the total new cancer patients. There were 768,793 

new deaths from gastric cancer, accounting for 7.7% of 

the overall mortality [1]. Despite many significant 

advances in therapeutic strategies over the past decade, 

such as immunotherapy, chemotherapy, and radiation 

therapy, therapeutic efficacy is not ideal and the 

survival rate of patients after treatment remains poor 

[2, 3]. The conventional surgical resection is often 

associated with the risk of metastasis and recurrence, as 

most patients were diagnosed at advanced stage [4]. 

Hence, it is more urgent and practical to investigate the 

molecular mechanism of gastric cancer and further 

develop effective prognostic factors. 
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ABSTRACT 
 

Gastric cancer remains a malignant disease of the digestive tract with high mortality and morbidity 
worldwide. However, due to its complex pathological mechanisms and lack of effective clinical therapies, the 
survival rate of patients after receiving treatment is not satisfactory. An increasing number of studies have 
focused on cancer stem cells and their regulatory properties. In this study, we first constructed a co-
expression network based on the WGCNA algorithm to identify modules with different degrees of association 
with tumor stemness indices. After selecting the most positively correlated modules of the stemness  
index, we performed a consensus clustering analysis on gastric cancer samples and constructed the  
co-expression network again. We then selected the modules of interest and applied univariate COX 
regression analysis to the genes in this module for preliminary screening. The results of the screening were 
then used in LASSO regression analysis to construct a risk prognostic model and subsequently a sixteen-gene 
model was obtained. Finally, after verifying the accuracy of the module and screening for risk genes, we 
identified MAGE-A3 as the final study subject. We then performed in vivo and in vitro experiments to verify 
its effect on tumor stemness and tumour proliferation. Our data supports that MAGE-A3 is a tumor stemness 
regulator and a potent prognostic biomarker which can help the prediction and treatment of gastric cancer 
patients. 
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Recently, many studies have focused on a specific class 

of tumor cells, namely cancer stem cells. They are 

involved in most processes of disease progression and 

heterogeneity of tumor [5]. Cancer stem cells own 

some characteristics as normal stem cells, such as self-

renewal and ability to differentiate into other cells that 

consist of various parts of the tumor [6]. Besides, 

cancer stem cells also possess their own characteristics. 

They usually stay at a dormant state for a long time and 

are highly resistant to drugs and insensitive to external 

physical and chemical environments that are 

detrimental to the cells [7]. Accumulating evidence 

suggests that cancer stem cells take the main 

responsibility for post-surgical recurrence, tumor 

metastasis, resistance to chemotherapy and radiation 

therapy [8, 9]. Just for this reason, focusing on cancer 

stem cell therapy and exploring the key molecules that 

regulate the properties of tumor stem cells will greatly 

improve the likelihood of disease cure and patient 

survival rate. 

 

To better investigate and characterize these molecules 

that regulate and maintain tumor stemness, Malta  

and his colleagues analyzed transcriptome and other 

profiles from the TGCA database to obtain an indices 

which could quantify stemness [10]. The mRNA 

expression-based stemness index (mRNAsi) is used to 

quantify the stemness of mRNA expression in samples, 

the epigenetic regulation based-index (EREG-mRNAsi) 

is utilized to characterize the effect of epigenetic 

modifications on stemness. By applying these tumor 

stemness indices, researchers can obtain molecules 

involved in the regulation of tumor stemness in different 

tumors in the TCGA database. Higher index scores 

represent more important in its regulation of tumor 

stemness. Therefore, we got these tumor stem cell 

indices and applied them to the present study. 

 

In this study, we first identified tumor stemness-related 

modules and key genes by using the WGCNA and 

mRNAsi indices differentially expressed genes (DEGs). 

After extracting the expression data of these genes, we 

performed consensus clustering analysis on gastric 

cancer samples in TCGA. We found that gastric cancer 

patient samples could be classified into two tumor 

stemness subtypes (C1 and C2groups) based on these 

key genes. WGCNA were again applied to construct co-

expression network and screen key genes after gastric 

cancer samples consensus clustering analysis. Then, we 

implemented an initial screening of the modules we 

were interested in and applied the LASSO regression 

analysis algorithm to construct a risk model and 

validated it. Finally, we identified MAGE-A3 as the 
final study subject. The results show that MAGE-A3 is 

involved in the regulation of tumor proliferation and 

that tumor stemness regulates through PI3K/AKT 

signalling pathways. Thus, our study provides a new 

potential target for the treatment and prognosis of 

gastric cancer. 

 

MATERIALS AND METHODS 
 

CCK-8 assay 

 

To test the proliferative capacity of the cells, the CCK-8 

(Thermo Fisher, USA) assay was performed. Inoculate 

10,000 cells in wells of a ninety-six-well plate with 

three replicate wells per group. Continue all subsequent 

operations according to the kit instructions. The 

absorbance at 450 nm of each group was measured at 0, 

24 and 72 hours after inoculation using a microplate 

reader. 

 

5-ethynyl-2′-deoxyuridine (EdU) incorporation assay 

 

Cells from the experimental and control groups were 

inoculated on cell coverslips at the same time. After 

overnight incubation at 37° C in 5% CO2, subsequent 

manipulations were performed as follows. Briefly, 

Replace the complete medium with fresh medium 

containing 20mM EDU (Thermo Fisher, USA) and 

incubated at 37° C for 2 hours. DAPI was used to stain 

cell nuclei. Olympus confocal microscope FV3000 was 

used to observe and take pictures. 

 

Immunofluorescence and confocal imaging 

 

Cellular immunofluorescence is utilized to detect  

the expression of tumor stem cell biomarker protein  

levels. The experimental steps are briefly described as 

follows:1 Cells were inoculated on coverslips, cultured 

overnight and washed three times.2 Cells were fixed  

with 4% paraformaldehyde at room temperature and 

permeabilized with 0.1% Triton-100. 3 Sealing of 

antigens at room temperature 1 hour.4 Primary antibody 

(CD44, EpCAM; Abclonal, China) was incubated 

overnight at four degrees and CY3-labeled secondary 

antibody(Abclonal, China) was added. Olympus confocal 

microscopy (Olympus, Japan) was used for photography. 

 

Tumor xenograft model and animal imaging 

 

Four-week-old immunodeficient nude mice, purchased 

from Beijing Huafukang Experimental Animal Co, Ltd, 

were kept in specific pathogen free (SPF) environment 

for three days before conducting the follow-up 

experiments. Test and control groups of 1x107 cells were 

simultaneously injected into the mice by subcutaneous 

injection. The volume size of the xenograft tumors was 

measured on the 6th, 12th and 18th days after injection, 

respectively. Animal imaging was used to observe tumor 

growth in mice in real time [11]. 
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Differentially expressed genes (DEG) 

 

Gastric cancer RNA sequencing data were processed by 

R package limma, pheatmap and ggplot2 for screening 

differentially expressed genes and presenting the top 50 

DEGsin a heat map [12]. The screening criteria were P-

value less than 0.05 and |LogFC|≥2. 

 

WGCNA and identification of key module 

 

Unlike the focus on differentially expressed genes, 

Weighted Gene Co-expression Network analysis 

(WGCNA) analyzed the data based on two assumptions: 

1 Genes with similar expression patterns may be  

co-regulated, functionally related or under the same 

signaling pathway. 2 The genes in the network obey 

scaleless network distribution [13]. After removing the 

abnormal samples, the Pearson correlation coefficient 

between any paired genes was calculated. We then build 

the weight adjacency matrix by the power function amn 

= |cmn|β method [14]. A suitable β value is determined 

to remove weak correlations between genes, and 

therefore more conducive to building co-expression 

network. In the next step, we transform the weight 

adjacency matrix into a topological overlap matrix 

(TOM) so that we can measure the connectivity of genes 

in the network. Based on the TOM measurements, 

average linkage hierarchical clustering is used to classify 

genes with similar expression profiles with the same 

module. A minimum size of 50 per group is the criterion 

for gene dendrograms [13]. 

 

Consensus clustering 

 

After finding key genes by WGCNA and mRNAsi, we 

applied consensus clustering analysis to divide TCGA 

patient samples into different subtypes. R package 

ConsensusClusterPlus completed the above analysis. 

Cumulative distribution function (CDF) and consensus 

matrices determine the appropriate number of 

subgroups [15]. 

 

Functional annotation 

 

Gene ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analyses were applied to 

characterize the biological function of genes you are 

interested. And these analyses were carried out by 

applying these doses, clusterProfiler, org.Hs.eg.db, 

enrichplot and ggplot2 R packages [14, 16]. 

 

Construction of risk score models 

 
LASSO (least absolute shrinkage and selection operator) 

regression analysis and Kaplan-Meier survival analysis 

were used to construct risk score model [11, 17, 18]. 

Statistical analysis 

 

Data are presented as mean±standard deviation. A  

P-value of less than 0.05 was considered significantly 

different.(*P< 0.05; **P< 0.01; ***P< 0.001;****P< 

0.0001). 

 

Availability of supporting data 

 

The data generated during this study are included in this 

article and its Supplementary Information files are 

available from the corresponding author on reasonable 

request. 

 

RESULTS 
 

Detection of differences in mRNAsi and 

differentially expressed genes in gastric cancer 

 

The mRNAsi is a widely recognized parameter for 

determining the similarity between tumor cells and 

normal stem cells. We first explored the differences in 

mRNAsi in normal and tumor samples of gastric cancer. 

As shown in Figure 1A, mRNAsi was dramatically 

different between the two groups, with the tumor group 

samples possessing much higher mRNAsi values than 

the normal. Subsequently, we screened differentially 

expressed genes in TCGA gastric cancer RNA 

sequencing data. Limma and pheatmap R packages 

processed the above data and extracted the top 50 DEGs 

to plot as heat map and volcano map (Figure 1B, 1C). In 

total, we obtained 6736 differential genes of which 

1139 expressed down-regulated genes and 5597 up-

regulated genes. 

 

Identification of mRNAsi-related key genes and their 

functional annotation 

 

The above findings demonstrate that there may be 

genes that play a critical role in regulating tumor 

stemness in DEGs. Therefore, we applied WGCNA 

and mRNAsi to search for these genes more deeply. 

After DEGs were processed by the WGCNA 

algorithm, we first removed the samples that did not 

meet the threshold because t of the deflection of their 

gene expression (Figure 2A). We then select β=4 

(scalefree R2=0.9) as a soft threshold to build the 

scaleless network (Figure 2B). After calculating the 

similarity between modules, we merged the modules 

below the red line (Figure 2C) and plotted the gene 

dendrogram (Figure 2D). A total of 8 modules were 

obtained and named with different colors. A heat map 

was plotted to show the relationship between different 
modules and tumor stem cell index (Figure 2E). 

Finally, we chose the brown module as the subject for 

the subsequent study. 
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Figure 1. Differences in mRNAsi and sample gene expression. (A) Differences in mRNAsi between normal and tumor tissues in gastric 

cancer. (B) Volcano map of differentially expressed genes. Green dots represent genes that are down-regulated, red dots represent genes 
that are up-regulated, and black dots represent no significant change. (C) The top 50 differentially expressed genes in GC cancer disease 
presented as a gene expression heat map. P<0.05. GC: gastric cancer. 
 

 
 

Figure 2. Identification of cancer stem cell index-related modules by WGCNA. (A) Samples above the red line were removed 

because they were considered as the deflection of gene expression. (B) This represents the correlation coefficient R2 and mean connectivity 
in the scale-free network. (C) Calculate similarity between modules and merge modules with high similarity. (D) Hierarchical clustering of 
gene modules. (E) Heatmap of the correlationship between gene modules and cancer stemness index. (F) Scatter plot of maximum positive 
correlation with cancer stem cell index (mRNAsi). 
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Gene significance (GS) represents the correlation 

between the gene and the trait of interest. Module 

membership (MM) represents the correlation between 

the module genes and this module. In this study, we set 

gene significance (GS)>0.5, Module membership 

(MM)>0.75 as criteria to screen key genes in brown 

modules (Figure 2F). In total, 54 tumor stemness-

related genes were obtained. Firstly, we performed 

correlation analysis on these 54 genes to demonstrate 

the accuracy of the above parameter settings 

(Supplementary Figure 1). And we subsequently 

extracted the expression data of these genes to map 

them as box line plots and heat maps (Figure 3A, 3B). 

Functional enrichment analysis was likewise performed 

for these genes (Figure 4A, 4B). The results of GO 

analysis showed that these genes are involved in sister 

chromatid segregation and cell nuclear division, etc. 

The results of KEGG are mainly for cell cycle and 

mismatch repair, etc (Figure 4C, 4D). 

 

Molecular subtypes of gastric cancer based on 

mRNAsi-related key genes and identification of key 

modules 

 

To explore novel investigation objectives and horizons, 

we conducted a consensus clustering analysis using the 

obtained tumor stemness-associated key genes. After 

consensus clustering analysis, the 384 gastric cancer 

patient samples would be classified into different 

subtypes. Figure 5A shows the relative change of CDF 

curve of consensus score from k = 2 to 9. Relative 

change in area under the CDF curve for k = 2 to 9 

(Figure 5B). When k = 2 for consensus clustering, it 

proves to be the best choice for dividing the patient 

samples (Figure 5C). Then we performed survival curve 

analysis between the two groups and their relationship 

with clinical characteristics. The K-M survival analysis 

showed that the overall survival rate of the C1 group was 

higher than that of the C2 group (Figure 5D). Clinical 

heatmap for two groups was shown in Figure 5E. 

 

In this part of the study, we likewise performed 

WGCNA analysis on the consensus clustering samples. 

First filter out the outliers and this time we selected β=4 

(scalefree R2=0.9) as the parameter to build the network 

(Figure 6A, 6B). And after merging the high similarity 

modules (Figure 6C, 6D), the heatmap was obtained 

(Figure 6E). Finally, we identified the blue module as 

object due to its maximum positive correlation with 

tumor to study. 

 

Establishment and validation of risk prognostic 

model 

 

A total of 621 genes were obtained. To investigate the 

prognostic role of these genes in gastric cancer, a risk 

prognostic model was constructed. We first perform 

initial screening and obtained 51 genes (Supplementary 

Figure 2 and Table 1). We then applied these 51 genes 

to the LASSO regression algorithm to construct a risk 

 

 
 

Figure 3. Differential expression analysis of key genes. (A) Box plot of the difference in expression of key genes between tumour and 

normal tissue. (B) Key genes differential expression heatmap. 
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Figure 4. Key genes function enrichment analysis. (A, B) GO enrichment analysis of key genes. (C, D) KEGG enrichment analysis of key 
genes. 

 

 
 

Figure 5. The mRNAsi-related key genes could classify GC into two groups by consensus clustering of TCGA dataset.  
(A) Cumulative distribution function (CDF) for k=2 to k=9. (B) Relative change in area under the CDF curve according to different k values.  
(C) Consensus clustering matrix of samples from TCGA dataset for k=2. (D) Survival analysis of patients in the C1 group and C2 group in TCGA 
cohort. (E) Heatmap of two clusters defined by the expression of mRNAsi-related key genes. 
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prognostic model (Figure 7A). As a result, we obtained 

a 16-gene risk model. Six of these genes were positively 

associated with the overall survival of the sample and 

ten were negatively associated (Supplementary Figure 

3). We applied the coefficient of each risk gene to 

calculate the risk score for every gastric cancer patient 

sample. 

 

The calculation formula is as follows. :(expression of 

RNF43 x -0.155+expression of INCENP x -0.127+ 

expression of KIF24 x -0.056+expression of PGAM5 x 

-0.055+expression of SASS6 x -0.04+expression of 

SAC3D1 x -0.037+expression of TTF2 x -0.034+ 

expression of MASTL x -0.023+expression of E2F2 x -

0.021+expression of GAD1 x -0.018+expression of 

HBB x 0.07+expression of UPK1B x 0.08+expression 

of MAGE-A3 x 0.09+expression of ADH4 x 

0.1+expression of BST1 x 0.17+expression of GRB14 x 

0.25). The TCGA cohorts and the externally validated 

cohorts (GSE88437) can be divided into high and low 

risk groups. The distribution of patient survival status 

and risk scores from the TCGA database and external 

validation database were presented in Figure 7C–7F. 

The scatter plot show that as the patient risk score 

increases the proportion of patient deaths also increases. 

Kaplan-Meier survival analysis displayed that overall 

survival of the high-risk group compared to that of the 

low-risk group was lower. 

 

Then, we applied Cox regression analyses to evaluate 

the risk model. The results in Figure 8A, 8B and Table 2 

were from the TCGA database, which demonstrates that 

age, TNM, and risk score were all significantly 

associated with OS. And results in Figure 8C, 8D and 

Table 3 were from the external validation dataset and 

the obtained results again indicated that the risk score is 

significantly associated with OS. Clinical heat maps of 

risk scores and other clinical characteristics are shown 

in Figure 9A, 9B. Then, we evaluated this model with a 

time-dependent ROC curve. The AUC values for 1, 2, 

and 3 years in the TCGA cohort were 0.7, 0.69, and 

0.693, respectively (Figure 9C). The AUC values for 1, 

2, and 3 years in the external validation cohort were 

0.498, 0.531, and 0.581, respectively (Figure 9D). 

 

MAGE-A3 possess the property to regulate tumor 

stemness and proliferation through PI3K/AKT 

signaling pathway 

 

After considering the expression of these OS positive-

related risk genes and role of prognosis, we selected 

MAGE-A3 and GRB14 as the subsequent study 

subjects (Figure 10). As shown in Figure 11A, MAGE-

A3 was significantly highly expressed in gastric cancer 

cell lines MGC803 and SGC7901, while the difference 

in GRB14 expression was not significant. Subsequently, 

we detected the expression of MAGE-A3 in cancer and 

normal tissues from gastric cancer samples, and the 

results showed that MAGE-A3 is highly expressed in 

tumor tissues (Figure 11B). In order to verify the 

relationship between MAGE-A3 and tumor stemness 

regulation, we also detected the expression of tumor 

 

 
 

Figure 6. WGCNA analysis on the consensus clustering samples. (A) Samples above the red line were removed because they were 
considered as the deflection of gene expression. (B) This represents the correlation coefficient R2 and mean connectivity in the scale-free 
network. (C) Calculate similarity between modules and merge modules with high similarity. (D) Hierarchical clustering of gene modules.  
(E) Heatmap of the correlationship between gene modules and normal or cancer tissue. 
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Table 1. Results of the consensus clustering analysis key genes in the 
univariate Cox regression analysis. 

Univariate analysis 

ID HR HR.95L HR.95H Pvalue 

TFDP1 0.735124 0.55663 0.970856 0.03013 

LMNB2 0.719488 0.576068 0.898614 0.003703 

FEN1 0.7427 0.5878 0.93842 0.012684 

GRB14 1.327029 1.047293 1.681484 0.019153 

SAC3D1 0.733009 0.57856 0.928689 0.010089 

CHEK1 0.797379 0.637004 0.998131 0.048122 

DNAJC9 0.660751 0.473493 0.922065 0.014802 

MASTL 0.7034 0.511674 0.966967 0.030247 

KIF24 0.605495 0.42476 0.863132 0.005542 

UPK1B 1.242177 1.086956 1.419564 0.001451 

KIF15 0.803923 0.654898 0.986858 0.03694 

HBB 1.148409 1.027815 1.283152 0.0145 

CHAF1A 0.645577 0.488588 0.85301 0.002082 

CKAP2 0.796454 0.634945 0.999046 0.049042 

UHRF1 0.759047 0.618619 0.931354 0.008259 

THOP1 0.701354 0.538906 0.912771 0.008317 

BRIP1 0.612228 0.409319 0.915724 0.016915 

MTBP 0.692778 0.489908 0.979657 0.037874 

INCENP 0.615693 0.458523 0.826738 0.001259 

BST1 1.477932 1.116774 1.955887 0.006285 

TTF2 0.677727 0.500876 0.91702 0.011687 

GINS4 0.722585 0.546858 0.95478 0.022286 

GPSM2 0.686969 0.525703 0.897706 0.005951 

E2F2 0.74841 0.618022 0.906307 0.003005 

ZNF367 0.643423 0.459573 0.900821 0.010219 

ASF1B 0.813848 0.683304 0.969331 0.020935 

USP1 0.635607 0.452134 0.893531 0.009114 

ADH4 1.149445 1.03336 1.27857 0.010344 

EZH2 0.741219 0.580489 0.946453 0.016339 

GTPBP3 0.628953 0.427261 0.925856 0.01875 

TMEM201 0.668543 0.465236 0.960696 0.029501 

GAD1 0.762423 0.615481 0.944445 0.01302 

POLQ 0.774836 0.624203 0.961821 0.020729 

PGAM5 0.733225 0.552097 0.973775 0.03207 

L2HGDH 0.708646 0.504273 0.995849 0.047264 

RAD54L 0.760861 0.605462 0.956145 0.019043 

ZNF74 0.664294 0.450144 0.980325 0.039394 

PKMYT1 0.797294 0.646888 0.98267 0.033681 

CLSPN 0.708654 0.518482 0.968579 0.030756 

DCLRE1B 0.613154 0.398937 0.9424 0.025715 

VSNL1 0.869914 0.764511 0.98985 0.034449 

KIF18B 0.747912 0.568393 0.984129 0.03806 

DNMT1 0.692752 0.506058 0.948322 0.021955 

SPC24 0.786286 0.625723 0.98805 0.039101 

RNF43 0.778565 0.659917 0.918544 0.003005 

SLC5A6 0.788416 0.624576 0.995235 0.045484 
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SASS6 0.670237 0.465455 0.965116 0.03149 

ERCC6L 0.679181 0.49137 0.938775 0.019154 

MAGE-A3 1.106608 1.001073 1.223269 0.047599 

CDC25A 0.775959 0.621335 0.969063 0.025278 

SMC1A 0.647933 0.456543 0.919556 0.015121 

Bold words mean P value is less than 0.05; HR, hazard ratio; L, low; H, high. 

 

stem cell markers CD44 and EpCAM in these tissues. 

As shown in the Figure 11C, the expression of CD44 

and EpCAM increased with the expression of MAGE-

A3. Therefore, MAGE-A3 was selected as the final 

target of the study. We constructed MAGE-A3 

knockdown stable transgenic cell in gastric cancer cell 

lines. Subsequently, cancer stem cell biomarkers were 

detected after MAGE-A3 knockdown. As shown in 

Figure 11D, 11E, knockdown of MAGE-A3 resulted in 

a significant decrease in protein expression of these 

biomarkers. We also examined the effect of MAGE-A3 

on cell proliferation. The thymidine analog EDU can be 

incorporated into newly synthesized DNA in place of 

thymidine during the S phase of the cell cycle. The 

results of the EDU experiments were similar to those 

described above. Knockdown of MAGE-A3 reduced the 

ability of the cells to synthesize DNA (Figure 11F). The 

results of CCK-8 experiments showed that the knockout 

of MAGE-A3 decreased the proliferation ability of 

SGC7901 cells by 25.6% and MGC803 by 24.1% 

(Figure 11G). 

 

To verify through which signaling pathway MAGE-A3 

exerts its ability to regulate tumor stemness and 

proliferation. We applied Western Blot technique  

to detect PI3K/AKT signaling pathway and applied 

740Y-P, an activator of this signaling pathway, to 

MAGE-A3 knockdown cells. The results as shown  

in Figure 12A showed that the expression of PI3K  

and AKT decreased significantly after knockdown  

of MAGE-A3, but their expression rebounded 

significantly after treatment with activator 740Y-P. 

Meanwhile, the expression of CD44 and EpCAM 

varied with the expression of PI3K and AKT  

(Figure 12B). The results of CCK-8 and EDU 

experiments also showed that the proliferation ability 

of cells significantly increased when 740Y-P was 

added (Figure 12C–12F). These results demonstrate 

 

 
 

Figure 7. Establishment of risk prognostic model. (A) Partial likelihood deviance was plotted versus log (Lambda). The vertical dotted 
line indicates the lambda value with the minimum error and the largest lambda value. (B) LASSO coefficient profiles of the genes screening by 
univariate Cox regression analysis. (C, D) The distributions of risk scores and OS status in TCGA. (E, F) The distributions of risk scores and OS 
status in GEO. (G) The patient samples from TCGA were divided into high and low risk groups based on risk score and the OS of the groups 
were analyzed using Kaplan-Meier. (H) OS analysis of high and low risk groups from the GEO samples. Red represents the high risk group and 
blue represents the low risk group. LASSO: least absolute shrinkage and selection operator. OS: overall survival. 
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that MAGE-A3 may achieve its role in regulating 

tumour stemness and proliferation through the 

PI3K/AKT signalling pathway. Finally, we performed 

in vivo experiments that were used to verify the effect 

of MAGE-A3 on tumor growth. The constructed 

knockdown and control cells were injected 

simultaneously into different groups of nude mice 

subcutaneously. The volume size of the xenograft 

tumors in mice was measured at different time points 

after injection, respectively. Finally, at day 18, The 

mice were imaged and then sacrificed to remove the 

tumor and measure their weight. As shown in  

Figure 13A, 13B, the mean reduction in the knockdown 

group compared to the control group was 405 and 285 

cubic millimeters, respectively. In terms of tumor 

weight, the knockdown group injected with MGC803 

cells was reduced by 0.5 g and SGC7901 by 0.334 g 

(Figure 13C). The results obtained from the animal 

imaging technique showed that the bioluminescence of 

knockdown groups significantly lower than the control 

groups (Figure 13D, 13E). 
 

DISCUSSION 
 

Despite the great contribution of new therapies to the 

treatment of cancer, some patients still own poor 

outcomes, prompting us to search for potential molecular 

mechanisms to address this issue. Tumor heterogeneity 

has always been a challenge for oncology treatment. The 

study of tumor stem cells, a special class of stem cell-

like tumor cells, has been recently springing up 

vigorously. With the property of stem cell-like and 

resistant to chemotherapy and radiotherapy, tumor stem 

cells are involved in tumor multiple processes such as 

tumorigenesis, progression, metastasis, and recurrence 

after therapy [19–22]. Therefore, this study focuses on 

the molecular mechanisms regulating the properties of 

cancer stem cells. 

 

 
 

Figure 8. Evaluation of risk model. (A) Univariate Cox analysis of risk score and clinical characteristics in TCGA. (B) Univariate Cox analysis 

in GEO. (C) Multivariate Cox analysis of risk score and clinical characteristics in TCGA. (D) Multivariate Cox analysis in GEO. 
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Table 2. Results of the risk score and clinical characteristics in the univariate and multivariate Cox regression 
analysis. 

Univariate analysis Multivariate analysis 

Parameter HR HR.95L HR.95H Pvalue HR HR.95L HR.95H Pvalue 

Age 1.024932 1.007256 1.042918 0.005528 1.038105 1.019845 1.056692 3.62E-05 

Gender 1.445034 0.989755 2.109736 0.056568     
Grade 1.31705 0.936361 1.852513 0.113605     
T 1.258574 1.008851 1.570111 0.041545 1.314296 1.028257 1.679904 0.029074 

M 1.937808 1.067767 3.516777 0.029585 1.926676 1.02064 3.637013 0.043075 

N 1.33078 1.137148 1.557382 0.000368 1.202353 1.016749 1.421838 0.03123 

riskScore 3.372834 2.189648 5.195361 3.47E-08 3.681065 2.320963 5.838198 3.06E-08 

Bold words mean P value is less than 0.05; HR, hazard ratio; L, low; H, high. 

 

Table 3. Results of the risk score and clinical characteristics in the univariate and multivariate Cox regression 
analysis. 

Univariate analysis Multivariate analysis 

Parameter HR HR.95L HR.95H Pvalue HR HR.95L HR.95H Pvalue 

Age 1.019603 1.006985 1.032379 0.002246 1.024352 1.011999 1.036856 0.000102 

Gender 1.255635 0.927537 1.699792 0.140707     
T 1.740416 1.37793 2.19826 3.31E-06 1.566935 1.228577 1.998479 0.000296 

N 1.676345 1.428609 1.967042 2.42E-10 1.535546 1.305359 1.806324 2.27E-07 

riskScore 3.098135 1.49706 6.411528 0.002309 2.875592 1.343156 6.156421 0.006537 

Bold words mean P value is less than 0.05; HR, hazard ratio; L, low; H, high. 

 

In 2018 Malta and his colleagues introduced the concept 

of cancer stemness index, a concept used to describe the 

degree of tumor differentiation. The cancer stemness 

index was rapidly applied to study cancer stem cells in 

different cancer, such as lung adenocarcinoma, breast 

cancer, pancreatic cancer, etc. [23–27]. In this study, we 

first applied WGCNA and mRNAsi to construct a co-

expression network based on differentially expressed 

genes to obtain modules with different degrees of 

correlation with mRNAsi. We select the brown module 

and then determine the stemness-related key genes. The 

results of functional annotation of key genes show that 

they are mainly responsible for cell cycle, chromosome 

segregation, etc. [24, 28]. This finding is consistent with 

the results of previous studies. Compared with the early 

research, our study performed consensus clustering 

analysis on gastric cancer samples based on stemness -

related key genes and identified two molecular subtypes 

of gastric cancer (C1 and C2 groups). Then, we again 

construct the co-expression network after consensus 

clustering and select the blue module as the subject 

study target. 

 

We then construct the stemness subtype-related risk 
prognostic model with the LASSO regression analysis 

after Univariate COX regression analysis preliminarily 

screening the genes within the blue module. The results 

of Kaplan Meier analysis showed that the OS of patients 

in the high-risk group was significantly lower than that 

in the low-risk group, and this result was validated by 

the GES88437 dataset. COX regression analyses 

demonstrate that this risk-prognostic model can be used 

as an independent prognostic factor to predict the 

outcomes of gastric cancer patients, providing a new 

basis and possibility for precise treatment and 

management of patients. 

 

This risk prognostic model contains 16 risk genes, 6 of 

which are positively associated with OS. UPK1B is a 

member of the four-transmembrane superfamily, and 

most members of this family are characterized by four 

hydrophobic structural domains. This protein is found in 

asymmetric unit membranes and can interact with other 

family members to form complexes. And this complex 

may function in normal bladder epithelial physiology to 

regulate membrane permeability of superficial umbrella 

cells or stabilize the apical membrane through AUM/ 

cytoskeleton interactions [29]. High expression of 

UPK1B in clinical samples of bladder cancer was highly 

correlated with lymph node metastasis, distant metastasis 

and advanced stage of tumor. And in vitro experiments, 

UPK1B knockdown affects cell proliferation, migration 
and invasion through Wnt/β-catenin signaling pathway 

[30]. The melanoma-associated antigen A (MAGE-A) 

subfamily is one of the most thoroughly studied members 

of the cancer/testis antigens (CTA) family, whose 
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expression is characterized by specific expression in 

various tumor tissues but not in normal tissues, except for 

germline cells [31]. Therefore, based on their expression 

characteristics, members of the MAGE-A subfamily have 

been developed as targets for immunotherapy such as 

vaccines and CAR-T cells [32]. MAGE-A3 plays 

prognostic role in many cancers and promotes cancer 

proliferation, migration, invasion and drug resistance 

 

 
 

Figure 9. Clinical heatmap of risk scores and time-dependent ROC curve analysis. (A) Heatmap of risk scores under different clinical 

characteristics. (B) Distribution of high and low risk groups under different clinicopathological stages. (C) ROC curve analysis in TCGA. (D) ROC 
curve analysis in GEO. 
 

 
 

Figure 10. Expression and prognostic role of OS positive-related genes. (A) Analysis of expression differences of OS positive-related 
genes. (B) Kaplan-Meier analysis of OS positive-related genes. OS: overall survival. 
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[33–35]. In hepatocellular carcinoma, MAGE-A3 is 

highly expressed in cancerous tissues and is associated 

with poor patient prognosis. Knockdown of this protein, 

which is regulated by LINC01234 and miR-31-5p, 

affects tumor proliferation, invasion and cisplatin-

induced apoptosis [36]. In line with previous findings, we 

also found that MAGE-A3 is associated with poor 

prognosis in gastric cancer patients and plays an integral 

role in the progression of the tumor. However, it is 

noteworthy that our study appears to be the first to 

suggest that MAGE-A3 is involved in the regulation of 

tumour stemness after constructing a stemness subtype- 

related risk prognostic model. And subsequent in vitro 

and in vivo experiments provided favorable evidences 

 

 
 

Figure 11. Validation of MAGE-A3’s regulation of tumor stemness and proliferative capacity in vitro. (A) Application of QPCR to 
compare MAGE-A3 and GRB14 mRNA expression in tumour cells and normal epithelial cells. (B) The expression of MAGE-A3 in cancer and 
adjacent tissues was detected by QPCR. (C) Relationship between the expression of CD44 and EpCAM and the expression of MAGE-A3. (D, E) 
Validation of protein expression levels of cancer stem cell biomarkers by western blot and immunofluorescence. (F, G) The effect of knocking 
down MAGE-A3 on cell proliferation ability was examined by CCK-8, EDU. (*P< 0.05; **P< 0.01; ***P< 0.001;****P< 0.0001). 
 

 
 

Figure 12. MAGE-A3 regulates tumour stemness and proliferation through the PI3K/AKT pathway. (A, B) Western blot and 

cellular immunofluorescence techniques were used to detect the expression of PI3K/AKT and tumour stem cell protein biomarkers under 
different grouping treatments. (C, D) EDU assays were used to detect the proliferation ability of cells under different grouping treatments.  
(E, F) CCK-8 assays were used to detect the proliferation ability of cells under different grouping treatments. 
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Figure 13. Verifying the ability of MAGE-A3 to regulate tumors in vivo. (A) Tumor volume growth curves of control group and 
knockdown group. (B) Xenograft tumors of sacrificed mice at the experimental endpoint. (C) Tumor weights in control and knockdown 
groups. (D, E) Animal imaging technology to detect differences between control and knockdown groups. (*P< 0.05; **P< 0.01;  
***P< 0.001;****P< 0.0001). 

 

support for this finding. And our experimental results 

observed that MAGE-A3 may regulate tumor 

stemness and proliferation by PI3K/AKT signaling 

pathway. And in recent years, this signaling pathway 

has been frequently reported to be involved in the 

regulation of tumor stemness in many tumors [37–41] 

However, our study also has some limitations. First, 

we only conducted studies at the mRNA level, and the 

exploration at the protein level is relatively limited. 

Second, we have not yet investigated the mechanism 

of how MAGE-A3 specifically regulates tumor 

stemness. And this will also be the focus of our next 

work. Further studies on the molecular mechanisms of 

MAGE-A3 will deepen our understanding of the 

pathological mechanisms of gastric cancer, and this 

will provide new directions for the treatment. 

 

In summary, we have obtained a 16-gene risk-

prognosis model based on WGCNA, consensus 

clustering analysis and LASSO analysis. This model 

was validated and can be used to predict disease 

progression or treatment progression in patients. 

Finally, we screened these 16 genes and found that 

MAGE-A3 possesses the ability to regulate tumour 

stemness, and these findings suggest that MAGE-A3 

may be an effective potential target for gastric  

cancer cure. 
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Supplementary Figure 1. Correlation between key genes. 
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Supplementary Figure 2. Univariate Cox analysis of the prognostic value of key genes. 
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Supplementary Figure 3. The 16 genes were selected by least absolute shrinkage and selection operator. (LASSO) Cox analysis 

in TCGA dataset and histogram of coefficient. 


