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INTRODUCTION 
 

Alzheimer’s disease (AD) is a neurodegenerative 

condition that first presents with issues around memory 

loss and gradually progresses to language difficulties, 

disorientation, behavioral issues, and dementia. The 

etiology of AD is poorly understood, and treatment 
options are limited to disease prevention and slowing of 

symptom progression. Pharmaceutical treatment options 

have had little benefit. Idiopathic AD accounts for 99% of 

cases, with only a small minority attributed to the gene 

mutation associated with early-onset AD [1]. The two 

characteristic pathological findings in the CNS of patients 

with AD are extracellular “amyloid plaques” formed by 

the accumulation of the insoluble protein amyloid-beta 

(Aβ) and intracellular neurofibrillary “tau tangles” formed 

by hyperphosphorylation and subsequent aggregation of 

the cytoskeletal-stabilising tau protein. These two features 

contribute to chronic neuroinflammation states, leading to 

neuronal cell death [2]. 
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ABSTRACT 
 

Alzheimer's disease (AD) accounts for approximately 60% of dementia cases worldwide. Advanced age is the 
most significant risk factor for AD and approximately two-thirds of cases relate to women. While the previous 
meta-analysis suggests that estrogen receptor (ESR) genetic polymorphisms are closely associated with 
dementia, the implications of this observation on a molecular level are not entirely understood. Our study 
explores this intricate molecular puzzle through the use of a variety of bioinformatics tools. Initially, we 
attempted to elucidate mechanisms underlying breast cancer development by identifying the high-throughput 
dataset of ESR1-knockdown breast cancer tissue samples. Surprisingly, KEGG pathway enrichment showed that 
the most frequently occurring proteins were related to axonal guidance and inflammation-related gene 
markers. These observations were supported by an external high throughput dataset of AD inflammatory 
samples in vivo. Our results suggest that ESR1 is modulated by apolipoprotein E (APOE) through CEBPB/ATF4, 
mir-155-5p, or mir-1-3p. Moreover, sea hare-hydrolysates (SHH), as one of the axonal guidance molecules, 
could regulate the STAT3/PRDM1/CEBPB pathway and consequently induce cell death through pyroptosis 
signaling pathways, trigger the secretion of IL1β, leading to neuroinflammation and worsening AD 
pathogenesis. Molecular docking verification demonstrated that the predicted natural products scoulerine and 
genistein displayed strong binding affinities for BACE1 and ESR1, respectively. This strategy can be used to 
design novel, personalized therapeutic approaches to treatment and a first-in-class clinical lead for the 
personalised treatment of AD. 
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The formation of extracellular Aβ plaques is considered 

a neuropathological hallmark of AD and has attracted 

extensive research [3]. In line with the Aβ hypothesis, 

one reasonable way to delay AD pathogenesis is by 

preventing the initial Aβ aggregation of toxic oligomers, 

fibrils, and plaques. Tau tangles are formed by 

abnormal phosphorylation and subsequent aggregation 

of the usually microtubule-related protein, which under 

normal conditions acts to stabilize cell structure-

supporting microtubules, which ensure fast axonal 

transport and normal cognitive performance [4]. There 

has been a lengthy and ongoing scientific debate around 

the causative factors of AD, and the relative importance 

of both senile Aβ plaques and tau tangles has been 

largely informed by postmortem investigations of the 

AD brain. For several decades, the amyloid hypothesis 

has dominated the field, which has brought forth many 

high-profile therapeutic attempts that have produced 

side effects but no real benefits [5]. Thus, a growing 

body of research has started to re-examine alternative 

hypotheses, including tau tangles or neuroinflammation, 

to determine whether they are major pathogenic factors 

in neurodegenerative and neuroinflammatory diseases 

[6]. Amyloid deposits can also be a variable outcome 

and can even present asymptomatically when there is 

extensive accumulation in the brain [7]. In contrast, tau 

protein pathology is concentrated most severely in areas 

related to language and memory [8]. Although the 

hyperphosphorylation of tau is known to induce 

aggregation, the mechanisms underlying tau-associated 

cytotoxicity, cell death, and the phosphorylation site 

critical for the process remain poorly understood [9]. 

 

While there is a long-standing debate regarding the 

precise cause of AD pathology, a growing body of 

evidence agrees that altered axonal transport and 

mitochondrial abnormalities are implicated in the onset 

and progression of this neurodegenerative disease. Most 

notably, the AD brain typically shows signs of axonal 

degeneration, with the signature organelle abnormality 

(including mitochondria) occurring in large swellings of 

degenerated neurites [10]. Axonal guidance molecules 

such as netrins, semaphorins, and ephrins-produced in 

response to neuroinflammation-were deemed a 

causative factor in AD progression [11]. Moreover, 

progressive axonal degeneration was thought to 

contribute to tau deposit formation and early-stage AD 

pathogenesis. Furthermore, the deposition and 

accumulation of tau cause neuroinflammation, which 

induces irreversible neuronal and cognitive dysfunction 

in AD through multiple mechanisms [12]. However, 

exactly how neuroinflammation is linked with 

neurodegenerative disorders remains to be explained 
[11]. Recent pioneering research, which conducted 

positron emission tomography (PET) brain imaging on 

130 patients across the aging/AD clinical spectrum, 

confirmed microglial activation as a critical determinant 

in the linkage of amyloid plague aggregation to tau 

spread and, subsequently, cognitive function impairment. 

The concurrence of Aβ, tau, and microglia activation 

abnormalities (neuroinflammation) was found to be the 

strongest predictor of cognitive impairment [13]. 

Furthermore, the activation of Aβ, tau, and microglia 

synergistically promotes the occurrence of AD. For the 

first time in living patients, this research demonstrated 

that neuroinflammation is the key upstream mechanism 

crucial to AD development, while secondary infections 

and new inflammatory events amplify the brain’s 

immune response and worsen cognition in AD; even in 

respect of secondary infections which occur outside the 

brain [14]. In light of this, it is evident that a fuller 

understanding of the molecular complexity of neuro-

inflammation may help to identify novel therapeutic 

targets against the devastating effects of AD. 

 

This study explores the potential relationship between 

the estrogen receptor-α gene (ESR1) and 

neuroinflammation. Previous epidemiologic studies 

have shown that AD cases are less common in men than 

women: a risk significantly enhanced in post-

menopausal women. Almost two-thirds of AD patients 

in the US are female has been attributed to estradiol 

levels after menopause, which decline to lower levels 

than those in men [15]. Studies have shown that 

hormone therapy with estrogen was not associated with 

an increased risk of developing dementia but a slightly 

decreased risk [16]. While recent research has further 

concluded that the more rapid spread (and 75% greater 

accumulation rate) of tau pathology renders women 

more prone to AD than men, the precise reason behind 

this finding was not elucidated [17]. A meta-analysis of 

regional European differences showed that the Pvull 

and Xbal variants in the ESR1 gene might influence the 

risk for AD by affecting the estrogen receptor 

expression, and available data have established a clear 

relationship between estrogens and apolipoprotein E 

(APOE), which represents the foremost genetic risk 

factor for late-onset AD [18]. We initially attempted to 

understand the mechanisms underlying breast cancer by 

identifying the high-throughput dataset of ESR1 

knockdown breast cancer samples [19]. The Kyoto 

Encyclopedia of Genes and Genome (KEGG) pathway 

enrichment showed that the most frequently occurring 

proteins were enriched in axonal guidance and 

inflammation-related gene hallmarks. However, 

although a previous study showed that BARHL1-ESR1 
network possibly regulates β-amyloid metabolism and 

memory, the interaction mechanism between ESR1 and 

APOE is still unclear [20]. AD is characterized by three 
major questions: Why is age the primary risk factor? 

Why are women more sensitive to the onset of this form 

of dementia? And why are neurons in areas of the brain 
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that are essential for memory selectively targeted? By 

identifying gene expression levels that are common 

between ESR1 knockdown breast cancer cells and AD-

related neuroinflammation, it may be possible to 

speculate on the molecular mechanisms underlying the 

increased risk of AD in postmenopausal women. As 

such, it is hoped our research may provide increased 

mechanistic insight at the molecular level associated 

with the pressing issues of AD and may inform small 

molecule drug discovery programs to this end. 

 

RESULTS 
 

The logFC correction and differentially expressed 

genes (DEGs) 

 

The principal component analysis (PCA) and signature 

gene plot confirmed the data qualification. The PCA 

plots found that the fragments per kilo base per million 

mapped reads (FPKM) and differentially expressed 

genes were reliable for the following DEGs analysis. 

The result of logFC correction is shown in 

Supplementary Figure 1. The plots of ESR1, AGR3, 

ALPP, GREB1, SLC4A10, and VSIR demonstrated 

differences in expression following ESR1 knockdown 

(Supplementary Figure 2). As expected, the knockdown 

resulted in reduced ESR1 expression. At the same time, 

the heatmap of the hierarchical clustering of DEGs 

showed a clear separation between the control and the 

treatment (Figure 1A). Finally, the volcano plot 

confirmed the number of upregulated genes as 383 and 

the number of down-regulated genes as 405, with the 

cutoff for LogFC at 2. The top 30 genes among DEGs 

were labeled in the plot (Figure 1B). Finally, the 

volcano plot confirmed the number of upregulated 

genes as 383 and the number of down-regulated genes 

as 405, with the cutoff for LogFC at 2. 

 

KEGG enrichment, KEGG pathway 

 

The results of KEGG pathway enrichment analysis 

showed that DEGs were mainly involved in PI3K-Akt 

 

 
 

Figure 1. The bioinformatics analysis of the dataset GSE153250. (A) Heatmap of hierarchical clustering analysis of DEGs between 
the control (GSM4636683, GSM4636687, GSM4636691, GSM4636695, GSM4636699, and GSM4636703) and treatment (GSM4636684, 
GSM4636688, GSM4636692, GSM4636696, GSM4636700, and GSM4636704) of siESR1; (B) Volcano displays the effect sizes of the control 
and treatments of GSE153250 with log2 fold change on the x-axis and -log10 adj p-values on the y-axis; (C) TF enrichment in Hallmark 
analysis on the activated and suppressed genes; (D) KEGG enrichment analysis of DEGs; (E) Hallmark enrichment analysis on the activated 
and suppressed pathways; (F) GSEA analysis of activated pathways in the dataset; (G) GSEA analysis of suppressed pathways after ESR1 
depletion in the dataset. 
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signaling, pathway in cancer, cAMP signaling, focal 

adhesion, estrogen signaling, axon guidance, leukocyte 

trans-endothelial migration, gap junction, GABAergic 

synapse, AGE/RAGE signaling pathway in diabetic 

complications, ErbB signaling pathway, mucin-type O-

glycan biosynthesis, and aldosterone synthesis and 

secretion (Figure 1C). These specific signaling 

pathways include estrogen, PI3K-Akt, AGE-RAGE, and 

ErbB, which can regulate inflammatory, neuro-

protective, and oxidative effects. The axon guidance 

(hsa04360) pathway mainly included BMPR1B, 

EPHA2, EPHB1, EPHB6, PLXNA2, PRKCA, SHH, 

SLIT1, SEMA7A, SEMA5A, PAK4, GDF7, and 

SEMA3D. In addition, the axonal guidance pathway 

interacted with the Wnt signaling pathway, which is 

involved in cell-fate determination, survival, and 

proliferation. Their interaction and balance might be 

disrupted in aging and aging-related diseases 

(Supplementary Figure 3). The GABAergic synapse 

pathway consisted of ADCY1, HSD3B1, LIPE, NPR1, 

PRKCA, PRKCG, CACNA1G, and CAMK1G. 

AGE/RAGE signaling pathways included BCL2, 

COL4A5, COL4A6, EGR1, CXCL8, PRKCA, RNASE1, 

SELE, and TNF. The upregulated genes involved in 

KEGG maps are highlighted in red, while the down-

regulated ones are highlighted in green (Supplementary 

Figure 3). 

 

Hallmark enrichment, GSEA analysis, TF enrichment 

 

Hallmark gene sets in the Molecular Signatures 

Database (MSigDB) collections represent specific and 

well-defined biological states or processes and offer a 

coherent expression of the gene sets. The hallmark 

enrichment analysis found that the activated pathway 

included TNFα signaling via NF-κB, P53 pathway, 

IL6 JAK STAT3 signaling, inflammatory response, 

Notch signaling, hypoxia, and apoptosis. In contrast, 

the suppressed pathway included mTORC1 signaling, 

G2M checkpoint, E2F targets, glycolysis, and 

late/early estrogen response (Figure 1D). The TF 

enrichment of DEGs from GSE153250 was grouped 

by the family of the corresponding transcription 

factors (TF), including both activated (SUPT20H, 

TEAD4, NR3C1, NFIC, RXRA, FOSL2, SUZ12, and 

REST) and suppressed (FOXM1, ESR1, and EP300) 

(Figure 1E). GSEA revealed significant differences 

(|NES|>1, false discovery rate, FDR < 0.05; NOM p < 

0.05) in the enrichment of the MsigDB collections. 

Therefore, the most significantly enriched signaling 

pathways based on NES were selected to generate the 

GSEA plots (Figure 1F and 1G). The GSEA plots 

sorted the genes according to the degree of differential 
expression of two samples compared with predefined 

gene sets (green line indicates activated while red 

indicates suppressed). 

Validation dataset of AD-related pyroptosis 

 

7,249 (2,950 upregulated and 4,299 downregulated) 

DEGs were screened according to an analysis of the 

gene expression of samples and data matrix of 

GSE139549 (p < 0.05 and a minimum 2-fold change) 

(Figure 2A). These DEGs derived from GSE139549 

were intersected with genes enriched in the 

HALLMARK pathway, including Notch signaling, 

inflammation response, apoptosis, IL6 JAK STAT3 

signaling, TNF signaling via NFkB, P53 pathway, 

hypoxia, glycolysis, and mTORC1 signaling. The Venn 

diagram confirmed two distinct clusters: 1) suppressed 

pathway including glycolysis and mTORC1 signaling; 

and 2) activated pathway that connected closely (Figure 

2B). The interaction of HALLMARK genes and genes 

derived from GSE139549 yielded 2,311 common genes 

used in the following analysis. The search for 

pyroptosis-related genes from Genecards was conducted 

to verify the newly discovered caspase-1-dependent 

programmed cell death process involved in AD. The 

intersection of 162 pyroptosis-related genes shared with 

common genes from the above step was also analyzed. 

The intersection results found that 25 genes mainly 

include APOE, CASP5, IL18, GBP5, GSDMA, GBP1, 

NLRP1, IL1B, NEK7, CEBPB, GJA1, and CD274. 

 

Protein-protein interaction network (PPI), target 

genes-TF-miRNA network, co-expression 

 

Based on the STRING database, the PPI analysis of key 

genes was performed and visualized by Cytoscape. The 

top 10 genes, including IL18, IL1β, P2RX7, CASP4, 

CASP5, NLRC4, NLRP1, GSDMD, GSDMA, and NEK7, 

were deemed hub genes in line with the node degree 

score in Cytoscape. According to topological analysis, 

such hub genes are highly connected genes in the 

network and may play an important role in 

neuroinflammation. PPI analysis showed that IL1β, 

LI18, NLRP1, CASP4, and GSDMD were the top 5 

targets with a high degree. The data with a confidence 

score >0.4 were introduced into Cytoscape to construct 

clustering subnetworks using the MCODE algorithm 

and resulted in 4 cluster networks. The cluster with a 

higher score was held to be a more meaningful module 

in the PPI network. The biggest clustering involved 

IL1β, APOE, GSDMA, CEBPB, NFE2L2, GBP5, GBP1, 

and SQSTM1, followed by the clustering of pyroptosis 

signature genes including NLRC4, CASP5, CASP4, 

GSDMD, NLRP1, and NEK7. Twenty-five key genes 

were imported into the miRNet database to construct the 

regulatory network of the TF-miRNA-target gene to 

determine the novel TF-miRNA-target gene feed-
forward loop (FFL) model of AD (Figure 2C). The key 

regulatory network modules included ESR1-CEBPB-

ATF4-APOE, ESR1-CEBPB-mir-155-5p-APOE, ESR1-
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CEBPB-PRDM1-STAT3-SHH, ESR1-CEBPB-mir-124-

3p-PAK4, GSDMD-mir-1-3p-APOE. The key TF 

included SIRT1, ETS1, SP1, JUN, RELA, TP53, 

CEBPB, ATF4, E2F1, YY1, and FOXM1. The key 

miRNA included has-mir-24-3p, has-mir-124-3p, has-

mir-155-5p and has-mir-1-3p (Figure 2C). The co-

expression of these key TFs performed in the CHIPbase 

database showed that there was a negative regulatory 

relationship between ESR1 and CEBPB, or ESR1 and 

ATF4, in both 278 samples of GTEX nerve and 1146 

samples of GTEX brain (with significant p values), 

while there was a positive regulatory relationship 

between ESR1 and SP1, or ESR1 and FOXM1, in both 

1,146 samples of GTEX brain and 278 samples of 

GTEX nerve. Positive regulatory relationships were 

observed between APOE and CEBPB, APOE and ATF4 

(Figure 2D). 

 

Drug prediction 

 

The top-scoring 21 natural products with the highest 

relevance score from Connectivity Map (CMap) results 

were selected to query their target genes in the SymMap 

platform or predict their targets in PharmMapper Server 

or SEA Server (Similarity ensemble approaches) based 

on their 3D structures downloaded from PubChem 

database. The targets of these 8 viable natural products 

were intersected with the biomarker genes of each cell 

type (5 clusters of scRNA-seq AD dataset). The 

intersected results were used to build a Sankey diagram 

to show the combined therapy of these 8 natural 

products (quercetin, emodic acid, dioscin, pterostilbene, 

berberine, luteolin, genistein, and scoulerine) on 5 

different AD cell types, including excitatory neurons 

(total 208 genes targeted by these natural products); 

inhibitory neurons (174 genes); oligodendrocytes (51 

genes); oligodendrocyte progenitor cells (OPCs) (48 

genes); and astrocytes (12 genes) (Figure 3A). In 

addition, both scoulerine and genistein have the 

highest drug-likeness scores, indicating good   (Table 

1). The molecular docking validation showed that the 

predicted natural products scoulerine and genistein 

strongly bind with BACE1 (Amyloid Precursor Protein 

Lyase 1) and ESR1, respectively (Figure 3B and 3C).  

In order to verify the stability of the docking structures, 

we selected ESR1-Genistein, IL1B-Piperline, and 

BACE1-Scoulerine complex for dynamic simulation 

analysis. The Root Mean Square Deviation (RMSD) 

 

 
 

Figure 2. The bioinformatics analysis of the dataset GSE139549. (A) The heatmap and volcano plots representation of DEGs; (B) The 

interaction of DEGs between GSE139549 and HALLMARK enrichment derived from GSE153250; (C) Target gene-TF-miRNA network of the 
intersected DEGs between HALLMARK enrichment and GSE139549; (D) Co-expression of TF or genes in tissues of brain and nerve. 
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Table 1. The characteristics of natural products from CMap. 

Name MOA Score Druglikeness weight Druglikeness grading 

Scoulerine GABA receptor antagonis −1.57 0.886 Good 

Emodic acid Laxative −1.44 NA NA 

Dioscin Anticancer −1.41 NA NA 

Quercetin Polar auxin transport inhibitor −1.40 0.506 Moderate 

Pterostilbene Cyclooxygenase inhibitor −1.38 NA NA 

Berberine LDL receptor activator −1.37 0.664 Moderate 

Luteolin Glucosidase inhibitor −1.36 0.598 Moderate 

Quercetagetin PIM inhibitor −1.33 0.432 Weak 

Genistein Tyrosine kinase inhibitor −1.32 0.739 Good 

 

of proteins and small molecules in the complex 

structures remained relatively stable during the 

simulation, especially ESR1-Genistein and BACE1-

Scoulerine complex (Figure 3D). However, the RMSD 

of IL1B-Piperline varied greatly. The average 

interaction energy of ESR1-Genistein, IL1B-Piperline 

and BACE1-Scoulerine complex was-224.54 kJ/mol, -

149.92 kJ/mol and -202.53 kJ/mol. The MOA  

of scoulerine and genistein was shown in the 

graphical overview (Figure 4). The literature validation 

of these two predicted natural products is shown in 

Table 2. 

 

 
 

Figure 3. The identification of candidate drugs and validation of identified drugs. (A) Sankey plot showcasing the association of 
8 natural products from CMap with their target subtype cells of single-cell RNA-seq dataset of 81,271 genes. The dot plot showed the gene 
ratio of each subtype cell targeted by natural products (p < 0.05); Natural products (B) Scoulerine; (C) Genistein) with the highest drug-likeness 
scores (Table 1) with docking patterns of target proteins (B) BACE1, (C) ESR1, respectively) according to the lowest binding affinities. The 
binding affinities (−8.9 kcal/mol and -10.2 kcal/mol, respectively) and binding residues are presented in the Figure. The binding affinity of less 
than −7 kcal/mol represents a strong binding between the bioactive product and the target protein. (D) The molecular dynamics results 
included RMSD of protein and small molecular and the interaction energy between the protein and small molecular. 
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Table 2. The literature validation of predicted natural products. 

Natural products Origin Results References 

Scoulerine 
Folk medicine 
Corydalis cava 

FRET assay, inhibitors at a concentration of 5 μM (24.34 ± 
0.36%), IMER assay, 19.02 ± 1.59% inhibition (5 μM) 

[52] 

Genistein 
Soybeans and 
soy-derived foods 

High concentration (25 M) Genistein induces apoptosis pathways 
by upregulating ESR1 on MCF-7 BC Cells 

[54, 73, 74]  

 

DISCUSSION 
 

ESR dysfunction likely plays a role in AD pathology - 

especially in women - although the specific mechanisms 

remain unclear. In vivo and ex vivo studies demonstrate 

that neuroinflammatory brain states overlap with ESR 

signaling pathways and that these two systems interact 

closely. The majority of neurons and astrocytes in an 

IGF1R-expressing rat brain also express either ERα or 

ERβ [21]. Both ERα and ERβ are broadly distributed in 

the central nervous system. ERα is thought to play a 

vital neuroprotective role in the context of AD. A 

reduction in ERα expression has been identified in 

hippocampal neurons of AD patients (especially 

females), which has been linked to inflammasome 

activation triggered by mitochondrial dysfunction and 

oxidative stress [22]. A growing body of research points 

to the vital role of ER in maintaining cognitive function

 

 
 

Figure 4. The schematic diagram of the proposed mechanism of two inhibitors of AD pathology (scoulerine and genistein). 
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across multiple species and paradigms. This is 

especially true for aging females in the absence of 

ovarian (or exogenously administered) estrogens. Meta-

analysis and clinical studies have also revealed that the 

variability in ESR expression in older women (and men) 

is associated with variability in the risk of cognitive 

impairment [15]. Around 80% of postmenopausal 

females display difficulty with concentration, 

overreaction, and forgetfulness due to neuronal 

degeneration caused by estrogen reduction [20]. 

However, the regulatory mechanisms between the genes 

involved in estrogen metabolism and the onset of AD 

are still unclear. Nonetheless, much of the published 

meta-analysis implies a positive association between the 

polymorphisms of the gene encoding for ESR1 and the 

risk of AD in postmenopausal females across such 

geographically distinct populations as Europe, China, 

and the USA, suggesting that hormone replacement 

therapy could alleviate the situation [23]. A growing 

body of evidence points towards AD development being 

driven by factors including brain development and 

distinct gender biochemistry [24]. However, since the 

regulatory mechanisms underlying sex disparity in AD 

are still poorly understood, efforts to differentiate AD 

by sex, rather than pooling data for both sexes, could be 

an important stepping stone to devising new therapeutic 

directions for personalised treatment and disease 

management [25]. 

 

The current study initially analysed the relationship 

between ESR1 knockdown models and breast cancer 

pathogenesis at a systematic level. Interestingly, the 

results showed that ESR1 knockdown influenced axonal 

guidance processes, inflammatory activation, and Notch 

signaling pathways. However, no studies reporting a 

relationship between ESR1 and axonal guidance have 

yet been reported. Furthermore, KEGG pathway 

enrichment showed that the affected axonal guidance 

processes are implicated in the proper functioning of the 

Wnt paracrine and autocrine cell signaling pathways, 

which are integral for neurodevelopment and the 

formation and function of intricate neural circuits [26]. 

Axonal guidance processes allow neurons to determine 

the optimal direction of growth for their axons to reach 

desired targets. Axons are vulnerable to decay when 

excess tau binding to cytoskeletal microtubules impairs 

axonal transport traffic by impeding motor proteins, 

which causes synaptic decay even for stable 

microtubules [27]. The cleaving of BACE1 is essential to 

maintain the connectivity of olfactory sensory neurons 

[28, 29]. Although the causes of AD are still a matter of 

debate, many mechanisms have been put forward. 

Axonal guidance molecules have been proposed as 
participating in different mechanisms underlying the 

occurrence and development of AD [30]. Neurons 

depend on efficient axonal transport systems to deliver 

lipids, proteins, and organelles to the axon and synapse 

[31]. To function appropriately, axonal transport systems 

rely on correctly assembling all subcomponents, such as 

microtubules and motor proteins [12]. Alterations to 

axonal transport systems may make neurons vulnerable 

to synapse loss and axonal degeneration [31]. Abnormal 

axonal morphology and alterations to transport have been 

found in the early stages of AD. They can be detected up 

to a year prior to classic AD neuronal pathology, such as 

amyloid plaques [31]. As such, the axonal transport 

defects seen in AD have been speculated to be a 

causative factor in neurodegeneration and have been 

extensively studied [12]. Tau is a pivotal protein 

stabilising the microtubule cytoskeleton that functions as 

an axonal transport track. An imbalance in intracellular 

signaling leads to excessive tau phosphorylation and, 

ultimately, tau detachment from microtubules. This,  

in turn, may trigger microtubule destabilization and 

axonal transport impairment [31]. As seen in AD, many 

axonal guidance molecules are upregulated during  

pro-inflammatory states, including beta-amyloid 

accumulation, as seen in AD [32]. Axonal guidance 

molecules can play protective or destructive roles in these 

states, in line with their receptor-ligand combinations 

[33]. The over-expression of genes for axonal guidance 

has decreased neuroinflammation in neurodegenerative 

disease models [11]. In short, the mechanism underlying 

these phenomena remains elusive and may implicate 

various types of programmed cell death, such as 

apoptosis, pyroptosis, or ferroptosis. Consequently, it 

remains to be seen whether ESR1 dysfunction is involved 

in the newly observed pyroptosis seen in AD. There is 

evidence that axons have remained intact (one of the 

characteristics of pyroptosis) even in the final stages of 

the AD process, despite significant cytoskeletal 

abnormalities [34]. Since these abnormalities do not 

change in size, shift in direction, or show signs of re-

absorption or degradation, they are likely due to insoluble 

inclusions of inert and highly aggregated forms of 

irreversibly hyperphosphorylated tau proteins [35]. 
 

The hallmarked pathways related to Notch signaling, 

TNFα signaling via NFKB, IL6 STAT3 signaling, 

coagulation, apoptosis, hypoxia, and inflammation, were 

all activated after ESR1 knockdown, while those 

pathways which were found to be suppressed were 

related to estrogen response late/early, mTORC1 

signaling and glycolysis. This result suggests that the 

ESR1 knockdown may upregulate a series of pro-

inflammatory and pro-coagulation factors, which 

ultimately promotes adhesion and migration of peripheral 

leukocytes, activation of the coagulation cascade and 

disruption to the integrity of the blood-brain barrier [35]. 
The hyperactivation of Notch signaling may cause 

neuronal degradation, suggesting a potential role in β-

secretase dysfunction in sporadic AD cases. 
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Overexpression of Notch genes in the Notch signaling 

pathway was reported in AD patients, potentially due to 

enhanced APP cleavage in AD. Moreover, the Notch 

pathway can interact with the Wnt pathway, which plays 

a crucial role in vascular sprouting and regression in 

angiogenesis that contributes to the pathogenesis of AD 

[36]. Understanding the molecular cascade related to 

Notch activation during AD progression may elucidate 

the complicated signaling network that contributes to the 

progression of AD. Other studies have found that neural 

excitotoxicity also upregulates Notch signaling 

components and thus the severity of AD, which supports 

the possibility of Notch signaling involvement in post-

excitotoxic neuronal demise [37]. Classically, microglial 

activation induces the expression of toll-like receptor 

(TLR) and triggers NF-kB-dependent inflammation, and 

subsequently upregulates inflammatory pathways 

through cytokines such as IL6, IL12, TNFα, and IL23 

[38]. IL23 mediates inflammatory responses by inducing 

IL17 production and the secretion of pro-inflammatory 

cytokines. Upregulation of hypoxia-inducible-1α 

(HIF1α), a protein induced by hypoxia during 

inflammation, may facilitate AD pathogenesis by 

upregulating BACE1 gene expression [38]. Hypoxia and 

inflammation are intimately linked because hypoxia 

induces inflammation, while inflamed tissue can become 

hypoxic [39]. 

 

Therefore, neuroinflammation has emerged as a crucial 

factor in AD pathogenesis [38]. However, the process by 

which neuroinflammation contributes to the progression 

of neurodegenerative disorders in aging people, 

especially in women, remains poorly understood. In 

particular, the molecular complexity of ESR1 dysfunction 

associated with neuroinflammation remains unanswered. 

Understanding the molecular mechanisms of ESR1- 

associated neuroinflammation and subsequent neuro-

toxicity may aid in identifying therapeutic targets and 

provide new windows of opportunity for AD treatment. 

An independent dataset from high-throughput RNA-seq 

on AD inflammatory samples was reprocessed as a 

validation gene set to elucidate critical cellular and 

molecular mechanisms underlying the ESR1 dysfunction 

in AD. The intersection between ESR1-related 

hallmarked genes and AD inflammatory-related genes 

resulted in essential regulatory genes related to ESR1-

associated neuroinflammation. ESR1 and SP1 are known 

to transactivate genes that modulate their target genes 

together [40], such as Slc2a4/GLUT4 expression, which 

might alter glycemic homeostasis. At the same time, the 

decrease in ESR1 activity, failing to counterbalance the 

ESR2 action, will also be deleterious to glycemic 

homeostasis [40]. 
 

Caspase-1 is activated upstream in inflammasome 

NLRP3, which contributes to the maturation of IL1β 

and IL18 and cleavage and activation of gasdermin D 

(GSDMD). This acts as the pyroptosis executor to 

release the N-terminal domain, which can cause 

membrane pores [41] to release intracellular contents, 

such as IL18, IL1β, and LDH, into the extracellular 

environment. This release will eventually lead to the 

occurrence of pyroptosis [42]. Activating transcription 

factor 4 (ATF4) is an Endoplasmic Reticulum (ER) 

stress biomarker, the accumulation of which can 

activate JNK and retrain Akt phosphorylation. This, in 

turn, can suppress the phosphorylation of glycogen 

synthase kinase-3 beta (GSK3β) and activate 

NOX4/ROS signaling [43]. For the purposes of the 

present research, ATF4 was activated in the pyroptosis-

induced transcriptional response, and the ESR1-

knockdown neurons were shown to have an 

upregulation of ATF4. This triggered APOE via 

CEBPB. Consequently, the oxide-metabolic driver 

ATF4 increased the expression of APOE and activated 

CASP4 to promote apoptosis and reduce neuronal 

survival rates. A recent study revealed that CCAAT 

enhancer-binding protein β (C/EBPβ) plays a key role in 

the pathogenesis of AD by increasing the expression of 

asparagine endopeptidase (AEP), and further proposed 

to activate C/EBPβ/ AEP signaling pathway can 

mediate AD [44]. In the gene-TF-miRNA co-regulatory 

network analysis, ESR1 also mediated the axon 

guidance molecules (SHH and PAK) through signal 

transducers and activators of transcription 3 (STAT3) 

via PRDM1 and mir-124-3p, respectively. STAT3 is a 

critical survival signaling factor that enhances the 

expression of the proapoptotic protein Bax, thereby 

promoting caspase-dependent apoptosis [45]. The SHH-

induced STAT3 inhibition caused non-apoptotic cell 

death and, similarly, pyroptosis and necroptosis [46]. 

The secondary inflammatory challenge of microglia in 

APP/PS1 mice produces acutely elevated IL1β, which is 

sufficient to trigger excessive levels of chemokines and 

IL6 in astrocytes that activate the transcript directly 

downstream of IL6 signaling (STAT3) [14]. Therefore, 

the notion that the JAK/STAT3 pathway is central in 

the initiation of astrocyte reactivity is supported by the 

detection of JAK/STAT3 activation, which is a standard 

feature of reactive astrocytes [47]. It is also noteworthy 

that multiple pathways crosstalk to fine-tune the 

phenotype of reactive astrocytes. For example, STAT3 

and NF-kB can physically interact to control target 

genes synergistically [48]. Nuclear factor erythroid  

2-related factor 2 (NFE2L2) is a major TF orchestrating 

the antioxidant response [49]. The ESR1 dysfunction 

also downregulated the E2F target genes, including 

FOXM1, which mediated the APOE expression directly 

[50]. Finally, the target gene-TF-miRNA feed-forward 
loop demonstrated that the critical regulatory network 

modules include has-mir-24-3p, has-mir-124-3p, has-

mir-155-5p and has-mir-1-3p, which advances our 
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understanding of the molecular complexity of ESR1 

dysfunction induced neuroinflammation as a causative 

factor of the AD process. 

 

The present study’s application of several bioinformatics 

methodologies available across different Gene 

Expression Omnibus (GEO) datasets indicates ESR1 

dysfunction induced neuroinflammation or pyroptosis in 

the brain and subsequent worsening of the AD 

conditions. The molecular complexities of AD and 

potentially diverse research avenues offer a fascinating 

frontier in biomedical research. In one sense, AD and 

other neurodegenerative conditions have long been 

viewed with intense therapeutic nihilism. Currently, there 

is no cure for AD. Now available therapies can briefly 

and modestly alleviate symptoms. However, the potential 

therapeutic molecules and inducer molecules predicted 

by CMap (L1000) include histamine receptor antagonists, 

mannosidase inhibitors, progestogen hormones, mTOR 

inhibitors, retinoid receptor agonists, and cyclooxygenase 

inhibitors. Interestingly, Ribavirin is an antiviral that can 

be used as a drug to treat neuroinflammation in AD, 

targeting IMPDH1, ADK, ENPP1, IMPDH2, and NT5C2. 

As such, these drugs should be considered for further 

verification in vitro or in vivo. The natural products 

predicted by CMap were quercetin, emodic acid, dioscin, 

pterostilbene, berberine, luteolin, genistein, and 

scoulerine. Among them, quercetin displayed a protective 

effect against mitochondrial dysfunction and progressive 

dopaminergic neurodegeneration in cell culture and 

MitoPark transgenic mouse models of Parkinson’s 

disease [51] and a protective effect against oxidative 

stress and brain edema in an experimental rat model of 

subarachnoid hemorrhage [52]. Both scoulerine and 

genistein, with the highest drug-likeness scores, 

demonstrate good druggability. Scoulerine is an effective 

antimitotic compound and an inhibitor of BACE1 [53]. 

The inhibition of BACE1 can decrease Aβ generation and 

amyloid deposition; thus, the small molecules with the 

inhibition effect on BACE1 are a current focus for AD 

therapy. After the inhibition of BACE1 cleavage that is 

inducible by Sema3A, the CHL1-ntf and CHL1-ctf 

cannot be released. The CHL1-ctf appears to induce 

growth cone collapse in thalamic neurons, while soluble 

CHL1-ntf may interact with neuropilin-1 axon guidance 

[28]. At the same time, genistein as a soy isoflavone  

has exhibited numerous health benefits, including 

suppression of inflammatory responses and anti-

carcinogenic properties through the modulation of 

AMPK and COX2 and possibly various MAPKs [54]. 

Genistein has a dual role in women’s health, which may 

exhibit a litany of possible biological effects while 

circulating. Many of its effects stem from its status as 
isoflavone and, therefore, an estrogen mimic. It primarily 

acts on estrogen receptors (ERs) via the classical 

genomic mechanism. Another study reported that 

genistein downregulates presenilin levels by attenuating 

ubiquitin 1 expression, reducing Aβ peptide generation 

and aggregation [55]. As the most common 

phytoestrogen, genistein showed a strong capacity to bind 

ESR1 and subsequently can activate or block estrogen 

receptor ligand-binding domains, thus exhibiting 

estrogenic or antiestrogenic effects (dual-directional 

regulation), respectively [40]. The molecular docking 

verification and molecular dynamics simulation 

demonstrated that the predicted natural products 

scoulerine and genistein displayed strong binding 

affinities with BACE1 and ESR1, respectively, indicating 

these two natural products (with high druggability) are 

potential AD drugs. This comprehensive approach has 

proved a beneficial route to explore various candidate 

databases such as CMap (L1000) to repurpose existing 

therapies. More importantly, these findings indicate that 

anticholinergic drugs might increase the risk of 

accelerated cognitive decline, especially in older adults at 

high risk of developing AD. In short, these drug 

databases can provide essential insights that potentially 

help deconvolute unknown drug targets, predict inducer 

molecules, and repurpose therapeutic agents based on the 

analysis of the dynamic complex network using systems 

biology approaches. 
 

In conclusion, AD is a biomedical puzzle that continues 

to attract the interest and curiosity of scientific 

researchers worldwide. The molecular complexity of  

AD pathology and the diverse research avenues to 

approach it present fascinating possibilities for 

biomedical exploration. Unfortunately, despite enormous 

efforts, there remains no cure for this terrible illness, and 

current treatments merely alleviate its devastating 

symptoms for a short time. This study performed several 

bioinformatics-based analyses, concluding that ESR1 

dysfunction might mediate axonal guidance, induce 

neuroinflammation or pyroptosis in the brain, and 

subsequently worsen AD conditions. Cross-validation 

demonstrated that ESR1 dysfunction could trigger 

neuroinflammation or pyroptosis as a causative factor in 

the AD process. The research also leveraged the 

advantage of CMap as a valuable complementary tool to 

the phenotype-based new natural compound screening 

for therapeutic molecules at a systematic level. 

 

MATERIALS AND METHODS 
 

RNA-sequencing ESR1-knockdown breast cancer 

dataset and bioinformatics analysis 
 

High throughput analytical techniques and 

computational analyses enable researchers to conduct 
large-scale gene expression with high precision. This 

study was initially devised to identify DEGs for the 

RNA-seq dataset of the ESR1-knockdown breast cancer 
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cells [19]. The raw dataset GSE153250 was selected 

from the GEO database. The knockdown and control 

samples were extracted from the siESR and siNT MCF7 

cell line in the GSE153250 dataset and analyzed by 

using the R package Deseq2. Following a normalization 

and standardization process (PCA examination), the R 

package was used to correct logFC (log fold change) 

and collect DEGs between the control (GSM4636683, 

GSM4636687, GSM4636691, GSM4636695, 

GSM4636699, and GSM4636703) and treatment 

(GSM4636684, GSM4636688, GSM4636692, 

GSM4636696, GSM4636700 and GSM4636704) of 

siESR1 of GSE153250. LogFC correction is a critical 

step for the subsequent analysis: especially for GSEA. 

There are two criteria for screening DEGs by logFC: 1) 

the threshold of logFC and 2) corrected p-value 

(multiple tests may lead to high false positives). 

However, genes with small counts but a significant 

change in expression can skew the logFC. Therefore, 

the function of lfcShrink was used to correct logFC. The 

signature gene plot was used to confirm the success of 

the knockdown experiment. These up-and-down-

regulated genes were identified according to logFC and 

p < 0.05. The DEGs matrix was used to perform the 

following analysis in the study after tidying the data 

matrix using the R package dplyr [56]. After cleaning 

the dataset, the signature genes were plotted to test the 

expression using the R package ggplot2. The heatmap 

was produced by performing the R package pheatmap. 

The resulting volcano plot displayed the variation of 

gene sets in different groups. The ggplot2/ggrepel 

packages were used to assess the relationship between 

the p-value of a statistical test of each gene. 

 

Gene ontology (GO) analysis and KEGG pathway 

enrichment 

 

Based on the general analysis of DEGs, further 

research, including gene set enrichment, pathway 

enrichment, and defined group gene set, was carried out 

to elicit a deeper understanding of genome-based 

expression. Identifying hub genes and key pathways 

from common DEGs is essential since finding drug 

targets frequently depends on such hub genes. Since 

gene ontology (GO) analysis of DEGs can effectively 

identify the characteristics of differential gene subsets, 

GO analysis was performed using EnrichGO in the R 

package clusterProfiler [57]. In addition, KEGG 

pathway enrichment was carried out using the function 

EnrichKEGG in R package clusterProfiler. 

 

Hallmark enrichment analysis, enrichment analysis 

of GSEA, TF enrichment 

 

Gene Set Enrichment Analysis (GSEA) was performed 

using the gseGO, gseKEGG, and gsePathway functions 

of the R package clusterProfiler. The GSEA method can 

be applied for analysis and calculations to ascertain 

whether a priori-defined group of genes has a consistent 

and statistically significant difference between two 

biological statuses [58]. As such, GSEA can detect the 

expression change of gene sets rather than individual 

genes. Moreover, subtle enrichment detection renders 

the result more reliable and flexible than the traditional 

pathways enrichment analyses of GO and KEGG [58]. 

Gene sets with a normal p-value < 0.05 and FDR (false 

discovery rate) <0.05 were significantly enriched. 

GSEA enrichment of differential expression signatures 

of the identified group was carried out for the gene 

signatures of samples. Positive scores indicate strong 

consistency [59]. The HALLMARK collection of gene 

sets downloaded from the Molecular Signature 

Database (MSigDB) was used for this analysis [60]. 

Therefore, GSEA revealed significant differences 

(|NES|>1, false discovery rate, FDR < 0.05; NOM p < 

0.05) in the enrichment of the MsigDB collections. 

 

Validation using an independent external dataset of 

AD neuroinflammation 

 

An independent test set validation was obtained from 

RNA-seq (smart-seq) on AD inflammation samples and 

Genecards [61]. The AD-related inflammation data 

acquired from GEO was generated by reprocessing the 

dataset of GSE139549 via the same approach used in 

GSE153250. Combining the RNA-seq and Genecards 

could effectively expand the sample size and improve 

the statistical power of detecting DEGs for AD-related 

pyroptosis. The intersection of the ESR1-knockdown 

HALLMARK dataset (GSE153250) and AD’s 

inflammation dataset (GSE139549 plus Genecards) 

yielded the intersecting genes related to AD’s 

pyroptosis. These essential intersecting genes were used 

in the following steps to perform protein-protein 

network analysis and Gene-TF-miRNA regulatory 

network construction. 

 

PPI, GENE-TF-miRNA network, co-expression of 

TF or genes in tissues of brain and nerve 

 

A protein-protein interaction (PPI) network was built 

based on DEGs using the STRING 11.5 database and 

visualized by the Cytoscape software [62]. Briefly, the 

intersecting genes were imported into the STRING 

database, and the PPI network was constructed with 

default conditions. The cutoff value was defined as an 

interaction score of 0.4 (median confidence). The 

interaction result was imported into Cytoscape to 

identify gene clusters in the MCODE plug-in unit. The 
clusters with the greatest number of imported genes 

were extracted from the results of Cytoscape for further 

analysis. A target genes-TF-miRNA regulatory network 



www.aging-us.com 8606 AGING 

was built in the miRWalk 2.0 database [63]. The 

selected genes targeting miRNAs were predicted using 

miRWalk, miRbase [64], and the TargetScan database 

[65]. The miRNAs validated in these databases were 

chosen as the predicted results. The selected parameters 

were set to p-value < 0.05, the length of the minimum 

seed sequence: 7mer and the binding region of the 

target gene: 3′UTR. According to the website tutorials, 

the selected miRNA and genes were imported into the 

miRNet 2.0 database to predict the interactions between 

miRNA, TF, and genes [66]. The co-regulatory network 

of Target genes-TF-miRNA was constructed to 

elucidate the complex regulatory mechanism of 

pyroptosis-related neuroinflammation in AD. The co-

expression of key TFs derived from the Target genes-

TF-miRNA regulatory network was analyzed in 

CHIPbase [67]. 

 

Identification of candidate drugs and validation of 

identified drugs 

 

The hub genes were used to predict the potential 

therapeutic and inducer molecules in CMap L1000. This 

online platform for finding disease-gene-drug 

relationships is the most comprehensive transcriptome 

database for potential drug exploration [68]. In this 

case, a negative connectivity score represents a 

therapeutic drug. As such, FDR < 0.05 was used to 

screen molecular compounds, which could potentially 

reverse the altered expression of DEGs in MCF7 cell 

lines [69]. The top-scoring 20 natural products with the 

highest relevance score from CMap results were 

selected to query their targets in the SymMap platform 

or predict their targets in PharmMapper Server or SEA 

Server (Similarity ensemble approaches) based on their 

3D structures downloaded from PubChem. The targets 

of these natural products were intersected with the 

biomarkers of each cell type, including excitatory 

neurons, inhibitory neurons, oligodendrocytes, oligo-

dendrocyte progenitor cells (OPCs), and astrocytes. 

These 5 clusters of the scRNA-seq dataset were 

downloaded from the SC2disease database about AD 

early vs. lately onset (81,271 upregulated- and 

downregulated genes). The drug-likeness was predicted 

by an Encyclopedia of Traditional Chinese Medicine 

(ETCM) which has thorough information about 

bioactive components [70]. Furthermore, two drug 

molecules with a significant p-value were selected to 

verify by molecular docking software (Autodock vina 

1.2.0) [71]. The docking patterns were visualized by 

LIGPLOT v.4.5.3 [72]. 

 

Molecular dynamics simulation 

 

The molecular dynamics simulations of these 

complexes were performed using Gromacs 2020.1, in 

which the charm36-jul2020 force field was chosen. The 

complex was solved in TIP3P water and immersed in a 

dodecahedron box extending to at least 1 nm of the 

solvent on all sides. The system was neutralized by  

Na+ and Cl-, then added 0.15 M NaCl. The system  

was minimized by using the steepest descent algorithm 

for 5000 steps and made a maximum force of less  

than 1000 kJ/mol/nm. Then, it was equilibrated in a 

constrained NVT (number of particles, volume, 

temperature) and NPT (number of particles, pressure, 

temperature) running for 100 ps. The system was well-

equilibrated through NVT and NPT equilibration at 

300 K and 1 bar. Finally, MD simulations of the 

complex were carried out for 100 ns. The Verlet cut-off 

scheme and a Leap-frog integrator with a step size of 

2 fs were applied. The final analysis of molecular 

dynamics included RMSD of protein and small 

molecular and the interaction energy between the 

protein and small molecular, which were calculated by 

GROMACS 2020.1. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. LogFC correction of DEGs from the dataset siESR1 of GSE153250. 
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Supplementary Figure 2. The expression of selected DEGs from the dataset siESR1 of GSE153250. 
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Supplementary Figure 3. KEGG pathways of hsa04360 based on the analysis on GSE153250. 

 


