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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is the most common 

type of lung cancer, which has the highest morbidity 

and mortality in China and even the world. Current 

medical advances in the treatment of LUAD, including 

surgery, radiotherapy, chemotherapy, and systemic 

therapy, have greatly improved patient survival [1, 2]. 

More and more LUAD genomic studies have 

characterized important targeted therapeutic [3], such as 

EGFR [4], ALK [5] and c-MET [6]. Moreover, more 

and more LUAD patients are also benefiting from PDL1 

immunotherapy [7]. Despite these advances in clinical 

treatment of LUAD, the prognosis of advanced lung 

adenocarcinoma is still poor, and most patients die of 

diagnosis at advanced stage and with distant metastasis. 

 

Although two studies have previously been conducted 

by our team to identify numerous biomarkers associated 

with the survival of LUAD for predicting prognosis, 

including metabolism-related genes [8] and epigenetic-

related prognostic signature [9]. However, since most 

patients with advanced lung adenocarcinoma die of 

tumor recurrence and metastasis, it is particularly 

important to analyze the predictive genes related to 

recurrence and metastasis. In recent years, more and 
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ABSTRACT 
 

Lung adenocarcinoma (LUAD) is a highly invasive and metastatic malignant tumor with high morbidity and 
mortality. This study aimed to construct a prognostic signature for LUAD patients based on metastasis-
associated genes (MAGs). RNA expression profiles were downloaded from the Cancer Genome Atlas (TCGA) 
database. RRA method was applied to identify differentially expressed MAGs. A total of 192 significantly robust 
MAGs were determined among seven GEO datasets. MAGs were initially selected through the Lasso Cox 
regression analysis and 6 MAGs were included to construct a prognostic signature model. Transcriptome 
profile, patient prognosis, correlation between the risk score and clinicopathological features, immune cell 
infiltration characteristics, immunotherapy sensitivity and chemotherapy sensitivity differed between low- and 
high-risk groups after grouping according to median risk score. The reliability and applicability of the signature 
were further validated in the GSE31210, GSE50081 and GSE68465 cohort. CMap predicted 62 small molecule 
drugs on the base of the prognostic MAGs. Targeted drug staurosporine had hydrogen bonding with Gln-172 of 
SLC2A1, which is one of MAGs. Staurosporine could inhibit cell migration in A549 and H1299. We further 
verified mRNA and protein expression of 6 MAGs in A549 and H1299. The signature can serve as a promising 
prognostic tool and may provide a novel personalized therapeutic strategy for LUAD patients. 
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more articles have been reported about the prognosis of 

metastasis-related genes, such as breast cancer [10], 

colon adenocarcinoma [11], glioma [12]. Qing Cao.et. 

al have recently reported 6 metastasis-associated six 

lncRNA signature that had the greatest prognostic value 

for lung cancer [13]. However, the most common 

pathological type of metastasis lung cancer is lung 

adenocarcinoma, which is rising in incidence and 

mortality in recent years. 

 

In this study, the differential mRNA expression data of 

LUAD from the HCMDB and GEO databases were 

analyzed to identify key genes. The integrated 

bioinformatics analysis by investigating the functions 

and pathways of the gene was used to further 

investigated their potentiality of being biomarkers in 

LUAD. A metastasis-associated prognostic signature 

based on six MAGs was constructed by Lasso and 

multiple Cox regression analyses. The prognostic value 

of the genes was evaluated using the ROC curve 

(Receiver Operating Characteristic Curve) and survival 

analysis. The reliability and applicability of the 

signature were further validated in the GSE31210, 

GSE50081 and GSE68465 cohort. Besides, correlation 

between the risk score and clinicopathological features, 

immune microenvironment characteristics, immuno-

therapy sensitivity, chemotherapy sensitivity and 

candidate drugs targeting the risk signature were 

analyzed in LUAD patients. In vitro experiment was 

conducted to confirm the mRNA and protein expression 

6 MAGs in LUAD cell lines. Effect of candidate drug 

staurosporine on cell metastasis was conducted by 

migration experiment. 

 

RESULTS 
 

Identification of differentially expressed MAGs 
 

A simplified protocol flow chart of this study was 

presented in Figure 1. 1938 MAGs were obtained from 

the HCMDB database. Seven GEO datasets were used 

to screen differentially expressed MAGs (Table 1). 

Based on the cutoff criteria as before, 147 differentially 

expressed MAGs (84 downregulated and 63 upregulated 

MAGs) were identified in GSE10072 dataset, 369 

differentially expressed MAGs (193 downregulated and 

176 upregulated MAGs) were identified in GSE18842 

dataset, 308 differentially expressed MAGs (172 

downregulated and 136 upregulated MAGs) were 

identified in GSE31210 dataset, 199 differentially 

expressed MAGs (113 downregulated and 86 

upregulated MAGs) were identified in GSE32863 

dataset, 199 differentially expressed MAGs (113 

downregulated and 86 upregulated MAGs) were 

identified in GSE40791 dataset, 179 differentially 

expressed MAGs (109 downregulated and 70 

upregulated MAGs) were identified in GSE43458 

dataset, 426 differentially expressed MAGs (220 

downregulated and 206 upregulated MAGs) were 

identified in GSE75037 dataset (Figure 2A). Due to 

only 48 common MAGs were found between the seven 

GEO datasets (Figure 2B), RRA method was used to 

identify MAGs and finally 192 significantly robust 

MAGs were determined, including 109 downregulated 

and 83 upregulated MAGs (Figure 2C). 

 

Functional enrichment analysis 

 

GO analysis were carried out to investigate the potential 

biological function of the 192 MAGs and KEGG 

pathway enrichment analyses were carried out to found 

the promising signaling pathways. We found that 192 

MAGs were mainly enriched in leukocyte migration, 

response to peptide, epithelial cell proliferation, 

extracellular matrix, receptor regulator activity and et al. 

(Figure 3A). Also, these MAGs were mainly enriched in 

transcriptional misregulation in cancer, proteoglycans in 

cancer, IL-17 signaling pathway and et al. (Figure 3B). 

 

Construction of metastasis-associated prognostic 

signature 

 

Samples from TCGA-LUAD were classified as the 

training cohort. Univariate cox regression analysis was 

conducted on 192 differentially expressed MAGs. A 

total of 47 genes associated with prognosis were 

identified with adjusted P value < 0.05 (Figure 4A). 

After Lasso and multiple Cox regression analyses, a 

metastasis-associated prognostic signature based on six 

MAGs (TIMP1, S100P, HMMR, F2RL1, KRT6A, and 

SLC2A1) was constructed (Figure 4B–4D). The 

coefficients of these genes were displayed in Figure 4E, 

and the signature risk score was defined as the sum of 

the expression levels of the coefficients-weighted genes. 

LUAD patients were stratified into the high- and low-

risk groups by the mean risk score. The risk score, 

survival status and survival time of patients were 

respectively shown in Figure 5A–5C. Low-risk group 

patients have significantly better OS than high-risk 

group, indicating that the risk score had a prognostic 

value (Figure 5C). The AUCs for 1-, 3-, 5-year OS rate 

were 0.762, 0.723, and 0.741, respectively (Figure 5D, 

P < 0.001). 

 

Correlation between the risk score and 

clinicopathological features 

 

Furthermore, as shown in the heatmap, the expression 

levels of TIMP1, S100P, HMMR, F2RL1, KRT6A, and 
SLC2A1 were increased in high risk score group, 

(Figure 6A). The higher pathological stage was 

concomitant with a higher risk score. Moreover,
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Table 1. Characteristics of GEO datasets included in the study. 

GEO ID Tissue Platform ID 
Number of samples 

Normal Tumor 

GSE10072 Lung GPL96 49 58 

GSE18842 Lung GPL570 45 46 

GSE31210 Lung GPL570 20 226 

GSE32863 Lung GPL6884 58 58 

GSE40791 Lung GPL570 100 94 

GSE43458 Lung GPL6244 30 80 

GSE75037 Lung GPL6884 83 83 

Abbreviations: GPL: Gene Expression Omnibus Platform; GSE: Gene Expression Omnibus Series. 

 

patients with higher risk factor scores had higher T-

stages (Figure 6B). Univariate (Figure 6D) and 

multivariate (Figure 6C) Cox analyses showed that both 

the risk score and pathological stage were independent 

risk factors. The prognostic value of the signature was 

analyzed via stratification analysis. We also combined 

the signature model with clinical risk factors (including 

age, sex, clinical stage, and TNM stage) to better exploit 

its prognostic predictive efficiency in lung 

adenocarcinoma patients, and the results showed that 

when patients were exposed to the same clinical risk 

factors (such as age >65, Female, Stage I–II, T-stage 

(T1/2, or T3/4), N-stage (N0), and M-stage (M0)), the 

high risk group had a significantly worse prognosis 

(Figure 7). 

Validation of metastasis-associated prognostic 

signature 

 

For validating whether the signature showed robust 

prognostic value, we also validated the metastasis-

associated prognostic signature in other three 

independent cohorts (GSE31210, GSE50081, and 

GSE68465 cohort). In line with results in TCGA cohort, 

patients with high-risk scores exhibited significantly 

poorer OS relative to those with low-risk scores (Figure 

8A–8C). 

 

Next, we used ROC Curves to test the accurately of the 

prognostic signature for predicting patients' 1-, 3-, and 

5-year OS. The analysis results showed that AUC 

 

 
 

Figure 1. Flow chart of this study.  
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values in all three independent cohorts have statistically 

significant (Figure 8A–8C). These results suggested that 

the signature was capable of general application and had 

a robust performance in predicting LUAD patients’ 

prognosis. 

 

Construction of a nomogram based on the prognostic 

signature 

 

A nomogram based on metastasis-associated prognostic 

signature was constructed to provide clinicians  

 

a quantitative method, which could individually 

predict 1-, 3- and 5-year OS of each LUAD patients 

(Figure 9A). The calibration curve of the nomogram 

demonstrated good consistency with the predictions 

for 1-, 3- and 5-year OS in four cohorts (Figure 9B–

9E). In addition, results from the HPA database 

showed that protein expression of F2RL1, HMMR, 

KRT6A, S100P, and SLC2A1 were significantly 

increased in LUAD tissues (Figure 10A). The 

prognostic value of 6 genes was analyzed using 

TCGA-LUAD dataset, the results illustrated that high 

 

 

Figure 2. Identification of differentially expressed metastasis-associated genes (MAGs). (A) The volcano plots of differentially 

expressed MAGs in each GEO cohort, (B) Intersection plot of the MAGs in these cohorts, (C) The expression heatmap of the top 20 
differentially expressed MAGs. 
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expression of these genes suggested a worse prognosis 

for patients (Figure 10B). 

 

Characteristics of immune microenvironment and 

immunotherapy sensitivity in two risk factor groups 

 

The immune responses between high- and low-risk  

groups were evaluated by using TIMER, CIBERSORT, 

QUANTISEQ, MCPcounter, xCELL and EPIC algorithms 

(Figure 11A). Single-sample gene set enrichment analysis 

(ssGSEA) was applied to quantify the infiltrating score of 

tumor-infiltrating immune cells and immune-related 

pathways between the two groups, as shown in Figure 11B, 

the high-risk group exhibited higher levels of infiltration of 

immune cells, especially of macrophages, natural killer 

(NK) cells, T helper (Th) cells (Th1, and Th2 cells). 

Moreover, high-risk group patients showed higher scores 

of antigen presenting cell (APC)-co-inhibition, APC-co- 

 

 
 

Figure 3. Gene functional enrichment analysis of differentially expressed MAGs. (A) GO and (B) KEGG analyses. 

 

 
 

Figure 4. Prognostic signature for LUAD patients based on differentially expressed MAGs. (A) Univariate Cox regression analysis 

showed that theses MAGs significantly correlated with clinical prognosis, (B) Partial likelihood deviance for the Lasso regression, (C) Lasso 
regression analysis, (D) Multivariate Cox regression analysis revealed six independent prognostic MAGs, (E) Coefficients of these genes. 
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stimulation, chemokine receptor (CCR), inflammation-

promoting, and parainflammation, the lower score of 

type II IFN response (Figure 11C). Immune checkpoint 

blockade therapy has become an effective strategy for 

the treatment of LUAD patients [14]. Therefore, the 

expression levels of immune checkpoints between the 

two groups were explored, results demonstrated that 

high-risk group patients showed higher expression of 

CD274 (PD-L1), PDCD1LG2 (PD-L2), TNFSF4/7/9, 

TNFRSF9 and IDO1(Figure 11D). 

 

To verify the prognostic value of the signature for 

immunotherapy sensitivity, GSE135222 dataset from 

LUAD patients with immunotherapy was selected. 

Based on the signature formulate, the risk score of 

each patient in the GSE135222 cohort was calculated. 

The high risk group undergoing anti-PD-1/PD-L1 

therapy had a better progression-free survival (PFS) 

than low risk group, implying that the signature 

reflects sensitivity to immunotherapy (Figure 11E), 

and the AUC value for predicting the 3-month PFS 

was 0.627 (Figure 11F). As shown in Figure 11G, 

high-risk group had a lower TIDE score, suggesting 

that these patients might have a higher efficacy and 

better outcome after receiving the immunotherapy. 

(Figure 11G). 

Chemotherapy sensitivity and candidate drugs 

targeting the risk signature 

 

Combination chemotherapy has achieved partial 

efficacy in patients with advanced lung cancer [15]. 

Therefore, the sensitivity of chemotherapy drugs 

between the two groups was evaluated. The estimated 

IC50 values of Bleomycin, Cisplatin, Docetaxel, 

Gefitinib, Gemcitabine, Paclitaxel, Vinblastine, and 

Vinorelbine were all significantly lower in patients in 

high-risk group (Figure 12), which suggested that the 

signature could be used as a potential predictor of 

chemotherapy sensitivity. According to CMap database 

analysis, a total of 62 compounds indicated 21 

mechanisms of action were predicted to target 47 

prognostic MAGs (Figure 13A). Furthermore, the 

correlation between SLC2A1 expression and predicted 

drug (Staurosporine) response was shown in Figure 

13B, and high expression of SLC2A1 required more 

targeted staurosporine (Figure 13C). 2D molecular 

structure diagram of staurosporine was shown in Figure 

13D. Molecular docking studies were used to explore 

the possibility of interaction between staurosporine and 

SLC2A1, staurosporine was most likely to function 

through the combination of GLN-172 of SLC2A1 

(Figure 13E). 

 

 
 

Figure 5. Prognostic value of the prognostic signature in the TCGA cohort. (A) the risk score and (B) the survival status of LUAD 
patients, (C) Kaplan-Meier survival analysis, (D) ROC analysis. 
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Experimental verification 
 

In order to further validate 6 MAGs expression in the 

lab, qRT-PCR in normal respiratory epithelial cells 

(16HBE) and 2 lung adenocarcinoma cell lines (A549 

and H1299) were carried out. As illustrated in Figure 

14A, mRNA expression levels of TIMP1, S100P, 

HMMR, F2RL1, KRT6A, and SLC2A1 were 

significantly increased in lung adenocarcinoma cell 

lines compared to16HBE, which were consistent with 

our bioinformatics analysis results. Besides, the protein 

expression of SLC2A1, F2RL1 and KRT6A were also 

significantly increased in A549 and H1299 compare to 

16HBE (Figure 14B). Furthermore, we validated effect 

of SLC2A1 predicted drug (staurosporine) on cell 

metastasis by migration experiment (Figure 14C), as 

shown that staurosporine could significantly inhibit 

A549 and H1299 migration. 

 
DISCUSSION 

 
Metastasis is the most important reason affecting  

patient prognosis in LUAD patients, and analyzing 

 

 
 

Figure 6. Correlation between the risk score and clinicopathological features. (A) Heatmap and clinicopathological features of 

patients classified by signature. (B) Boxplots showed the risk score with different pathological_stage and T_stage. Univariate (C) and 
multivariate (D) Cox regression analyses. 
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Figure 7. Kaplan-Meier survival analysis of the risk score for LUAD patients grouped by clinicopathological features. 

 

 
 

Figure 8. Validation of the prognostic signature in the GSE31210, GSE50081 and GSE68465 cohort. (A–C) the risk score and the 

survival status of LUAD patients, Kaplan-Meier survival analysis, ROC analysis. 
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transcriptome differences of metastatic tumors will help 

to identify factors affecting metastasis and predict 

clinical outcomes. The present study sought to address 

these gaps in knowledge by comparing transcriptome 

profiles between metastatic and primary tumors, and 

192 genes were identified as metastasis-associated 

genes. Furthermore, 47 genes associated with the 

prognosis of LUAD patients were screened. In a 

prognostic model of MRGs based on Lasso Cox 

regression analysis, we found a shorter survival time in 

the high-risk score group. Clinically, patient's age, 

gender and TNM stage were often used to assess the 

prognosis. We combined the signature model with 

clinical risk factors, found that when patients were 

exposed to the same clinical risk factors, the high risk 

group had a significantly worse prognosis, which may 

provide a more accurate prognosis for each patient with 

advanced lung adenocarcinoma. 

 

The metastasis-associated prognostic signature was 

constructed basing on six MAGs. Six MRGs have been 

found to be involved in the progression of tumor 

metastasis in many tumors. TIMP1 is a member of the 

tissue inhibitor of metalloproteinase (TIMP) family, 

 

 
 

Figure 9. Construction of a nomogram based on the prognostic signature. (A) The nomogram based on the signature. (B–E) 

Calibration curves of nomogram for the signature. *P < 0.05; **P < 0.01; ***P < 0.001. 
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which is prominently appreciated as natural inhibitors 

of cancer-promoting metalloproteinases [16]. TIMP-1 

expression was found to correlate positively with cancer 

progression, such as myeloma [17], non-small cell lung 

cancer [18] and endometrial carcinoma [19]. This study 

explored that TIMP-1 mRNA expression was increased 

in A549 and H1299, and high expression of TIMP-1 

was closely related to the metastasis of lung 

adenocarcinoma. S100 calcium-binding protein P 

(S100P) is a small calcium-binding protein of S100 

family, involving in promoting a number of pathways 

for proliferation, migration, and invasion [20]. Mingdao 

Lin et al. reported that S100P contributed to promoter 

demethylation to promote metastasis in colorectal 

cancer [21]. Small molecule inhibitors of S100P were 

found have anti-metastatic effects on pancreatic cancer 

cells [22]. Hsu YL et al. reported that S100P interacted 

with integrin α7 and increased cancer cell migration and 

invasion in lung cancer [23]. In agreement with these 

findings, S100P mRNA expression was increased in 

 

 
 

Figure 10. The expression and survival analyses of the six MAGs. (A) The representative protein expression of MAGs in lung 

adenocarcinoma tissue and normal tissue. (B) Kaplan-Meier survival analysis. 
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Figure 11. Characteristics of immune microenvironment and immunotherapy sensitivity in two risk factor groups. (A) The 

heatmap of immune responses. (B) The scores of immune cells and (C) immune-related functions in high and low risk groups. (D) The 
expression of immune checkpoints among high and low risk groups. (E) Kaplan-Meier survival curve of GSE135222 cohort for PFS. (F) ROC 
analysis in the GSE135222. (G) Compared the score of TIDE between high and low risk groups. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not 
significant. 
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Figure 12. The relationship of risk signature with chemotherapy response. Difference of IC50 value between high- and low-risk 
groups for common chemotherapeutics drugs including Bleomycin, Cisplatin, Docetaxel, Gefitinib, Gemcitabine, Paclitaxel, Vinblastine, and 
Vinorelbine. 

 

 
 

Figure 13. Identification of candidate drugs targeting the risk signature. (A) Results of CMap analysis. (B–C) Correlation between 

SLC2A1 expression and predicted drug response. (D) 2D molecular structure diagram of staurosporine. (E) The 3D interaction diagrams of 
Staurosporine and SLC2A1. *P < 0.05; **P < 0.01; ***P < 0.001. 
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A549 and H1299, the same as result from the HPA 

database. HMMR (hyaluronan-mediated motility receptor) 

has been revealed to be associated with reduced overall 

survival in lung cancer patients [24]. HCG18/miR-34a-

5p/HMMR axis were found could accelerate the 

progression of lung adenocarcinoma [25]. HMMR was 

found could serve as a novel biomarker associated with 

progression and prognosis of bladder cancer [26]. High 

levels of HMMΔexon 8-16 could accelerate pancreatic 

cancer progression by collaborating with dysfunctional 

p53 [27]. Also in line with this research, HMMR 

mRNA expression was increased in A549 and H1299, 

the same as result from the HPA database, which was 

significantly negatively associated with the prognosis. 

F2RL1 was found could be one of thirteen immune-

related genes as prognostic signatures in colorectal 

cancer [28]. We further explored F2RL1 mRNA and 

protein expression were increased in A549 and H1299. 

Keratin 6A (KRT6A) is a critical component of 

cytoskeleton in mammalian cells. KRT6A was reported 

 

 
 

Figure 14. Experimental verification. (A) Results of TIMP1, S100P, HMMR, F2RL1, KRT6A, and SLC2A1 mRNA expression in A549, H1299 

and 16HBE by RT-PCR. (B) Results of F2RL1, KRT6A, and SLC2A1 protein expression in A549, H1299 and 16HBE by western blot. (C) 
Staurosporine could inhibit cell migration in A549 and H1299 cells. *p < 0.05, **p < 0.01, ***p < 0.001. 
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could promote lung cancer cell growth and invasion 

[29], it also could serve as invasion-related gene 

signature predicts prognostic features of LUAD [30]. 

Consistent with the above studies, we also found that 

KRT6A could be used as prognostic markers of lung 

adenocarcinoma metastasis related genes, and on this 

basis, we further confirmed its mRNA and protein 

expression were increased in A549 and H1299. 

SLC2A1 gene encodes GLUT1, which is a glucose 

transporter that mediates glucose metabolism in cancer 

cells [31]. SLC2A1 is identification to be differentially 

expressed genes in non-small cell lung cancer [32]. 

SLC2A1 can be used as a biomarker for the diagnosis 

and treatment of esophageal carcinoma [33], pancreatic 

carcinoma patients [34]. Consistent with the above 

studies, we not only found that SLC2A1 could be used 

as a prognostic gene for lung adenocarcinoma 

metastasis, but confirmed its mRNA and protein 

expression were increased in A549 and H1299. 

Furthermore, this study showed that staurosporine could 

be anchored to SLC2A1 as a targeted drug through 

GLN-172, its effect on inhibition of cell migration was 

confirmed in A549 and H1299. 

 

The metastasis-associated signature can not only be used 

to evaluate the prognosis of patients with advanced 

LUAD, but also be useful in guiding treatment. Patients 

with advanced lung adenocarcinoma often have lost the 

opportunity for surgery, comprehensive treatment 

methods including chemotherapy, radiotherapy, targeted 

therapy, and immunotherapy. This study found that the 

high-risk group have high sensitivity of chemotherapy 

drugs. A total of 62 compounds indicated 21 mechanisms 

of action were predicted to target 47 prognostic MAGs. 

The high-risk group patients showed higher expression of 

CD274 (PD-L1), PDCD1LG2 (PD-L2), TNFSF4/7/9, 

TNFRSF9 and IDO1. The high risk group undergoing 

anti-PD-1/PD-L1 therapy had a better progression-free 

survival (PFS) than low risk group. 

 

However, we have to admit that there are some 

limitations to be improved. Firstly, we validated our 

metastasis-associated prognostic signature in other three 

independent cohorts (GSE31210, GSE50081, and 

GSE68465 cohort). There are 164 patients with 

advanced lung adenocarcinoma in GSE68465 cohort, 

but GSE31210, GSE50081 do only includes early stage 

lung cancer, in the future we need collect more patient's 

information to validate the constructed prognostic 

signature. Secondly, how those findings can be used as 

a translational research needs further research. For 

example, combine clinical cases and patient' s tissue 

samples to further confirm the validity of this signature. 
Thirdly, more experiment data to further explore the 

effect of 6 hub genes on metastasis of advanced lung 

adenocarcinoma were needed. 

In conclusion, this study found six MAGs can be used 

as a prognostic factor of lung adenocarcinoma 

metastasis, and constructed a new signature model 

basing six genes for prognosis of LUAD patients. The 

high risk group had a significantly worse prognosis. For 

first time, this study found that the high-risk group have 

high sensitivity of chemotherapy drugs, higher 

expression of CD274 (PD-L1), PDCD1LG2 (PD-L2), 

TNFSF4/7/9, TNFRSF9 and IDO1 and is more effective 

for PD-L1immunotherapy. Finally, 62 targeted drugs 

were found, and staurosporine was identified as a 

targeted drug for SLC2A1, which could inhibit cell 

migration in A549 and H1299. 

 

METHODS 
 

Data sources and processes 

 

Clinical and gene expression data for LUAD samples 

were available from the GEO 

(https://www.ncbi.nlm.nih.gov/geo/) and TCGA 

(https://portal.gdc.cancer.gov/) database. The gene 

expression datasets (GSE10072 [35], GSE18842 [36], 

GSE31320 [37], GSE32863 [38], GSE40791 [39], 

GSE43458 [40], GSE75037 [41] and TCGA-LUAD) 

were obtained from these databases. A list of 

metastasis-associated genes (MAGs) were retrieved 

from the HCMDB database (http://hcmdb.i-

sanger.com/). Log2 conversion and normalization were 

conducted for the expression profiles of each dataset. 

The “ComBat” algorithm in R package sva was 

employed to remove batch effects. 

 

Identification and enrichment analysis of 

differentially expressed MAGs 

 

To investigate differentially expressed MAGs among 

each GEO dataset, |logFC|>1 and corrected P < 0.05 

was considered to be significant by using R package 

limma. RobustRankAggreg (RRA) method was used to 

obtain robust MAGs that were ranked consistently 

better than expected by chance with the R package RRA 

[42]. To further identify function of these genes, GO 

and KEGG enrichment analyses were performed with R 

package clusterProfiler for exploring biological process, 

molecular function and pathway [43]. 

 

Construction and validation of metastasis-associated 

prognostic signature 

 

TCGA cohort samples were classified as the training 

cohort and three GEO cohort samples were classified 

as the test cohort. Firstly, univariate Cox regression 

analysis was conducted to find survival-related 

MAGs. Next, Lasso and multiple Cox regression 

analyses were performed to screen prognostic MAGs 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://hcmdb.i-sanger.com/
http://hcmdb.i-sanger.com/
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for constructing the prognostic model. The risk score 

of LUAD patients was calculated as the following 

formula: 

 
n

g 1
Risk score coef (g) x(g)

=
=   

 

where coef (g) was the coefficient of candidate 

MAGs and x(g) was the standardized expression 

levels of each MAGs, respectively. On the basis of 

the median risk score, patients were classified into 

the high and low risk groups. Univariate and 

multivariate Cox regression analyses were used to 

identify independent prognostic factors affecting the 

prognosis of LUAD patients. Kaplan-Meier (K-M) 

survival analysis and time-dependent receptor 

operating characteristic (ROC) curve was utilized to 

assess the predictive performance of the metastasis-

associated prognostic signature [44]. Finally, the 

reliability and applicability of the prognostic 

signature was further validated in the GEO cohorts 

(GSE31210, GSE50081 [45] and GSE68465 cohort). 

For providing an intuitive visualization of the 

prognostic signature, the nomogram was constructed 

using R package rms. Meanwhile, calibration curves 

were generated to estimate the accuracy of the 

nomogram. The hub genes protein expression level 

was determined using HPA database 

(https://www.proteinatlas.org/). 

 

Correlation between the risk score and immune 

microenvironment characteristics 

 

TIMER [46], CIBERSORT [47], QUANTISEQ [48], 

MCPcounter [49], xCELL [50] and EPIC [51] 

algorithms were applied to evaluate the relative 

abundance of infiltrating immune cell subsets among 

high- and low-risk groups. To investigate the activity of 

immune cells and immune-related pathways of each 

LUAD sample, Single sample gene set enrichment 

analysis (ssGSEA) was then employed using R package 

GSVA [44]. Immune checkpoint blockade key genes 

were collected from previous research. 

 

To understand whether the signature was more effective 

for immunotherapy, the predictive value of the signature 

was assessed on the GSE135222 [52] and GSE126044 

[53] datasets treated with immunotherapy. In addition, 

The Tumor Immune Dysfunction and Exclusion (TIDE) 

(http://tide.Dfci.harvard.edu/) was leveraged to evaluate 

the potential clinical efficacy of immunotherapy for the 

signature based on the gene expression profile of 

TCGA-LUAD samples. Lower TIDE scores indicated a 

lower potential for immune evasion, suggesting that 

patients were more likely to benefit from immuno-

therapy [54]. 

Exploration of the significance of the signature in the 

clinical treatment 
 

To evaluate the prognostic signature in the clinic for 

LUAD patient treatment, we calculated the half 

maximal inhibitory concentration (IC50) of common 

administrating chemotherapeutic drugs. The IC50 

values of drugs in cancer cell lines were downloaded 

from the Genomics of Drug Sensitivity in Cancer 

(GDSC) database [55]. According to the GDSC 

database, the chemotherapy response for Bleomycin, 

Cisplatin, Docetaxel, Gefitinib, Gemcitabine, Paclitaxel, 

Vinblastine, and Vinorelbine of each LUAD patient was 

implemented using R package pRRophetic [55]. 

 

Identification of candidate drugs 
 

To present potential candidate drugs, the CMap database 

was conducted to predict small molecule drugs on the 

base of the prognostic MAGs as previously described [9]. 

The correlation between hub MAGs expression and drug 

response was predicted by CellMiner database 

(https://discover.nci.nih.gov/cellminer/) [56]. The 

structure of staurosporine and SLC2A1 were acquired 

from PubChem Compound (https://www.ncbi. 

nlm.nih.gov/pccompound, PubChem CID: 44259) and 

AlphaFold Protein Structure Database 

(https://www.alphafold.ebi.ac.uk/entry/P11166), respec-

tively [57]. The molecular docking was conducted via 

AutoDockTools 1.5.6, Vina and Genetic Algorithm, and 

the docking result was displayed by PyMoL. 

 

Statistical analyses 
 

Data Analyses were conducted in the same way as in 

the previous article [9]. 
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