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SUPPLEMENTARY METHODS

Supplementary Method 1: DNA methylation data 

pre-processing, quality control and the 13 epigenetic 

clocks: 

Data pre-processing and quality control 

The minfi package in R software was used for data 

preprocessing, and quality control. 3.4% of the 

methylation probes (n = 29,431 out of 866,091) were 

removed from the final dataset due to suboptimal 

performance (using a detection P-value threshold of 

0.01). Analysis for detection P-value failed samples was 

done after removal of detection P-value failed probes. 

Using a 5% cut-off (minfi) we remove 58 samples. We 

also removed sex mismatched samples and any controls 

(cell lines, blinded duplicates). High quality methylation 

data is available for 97.9% samples (n = 4,018). Prior to 

the estimation of the 13 clocks missing beta methylation 

values were imputed with the mean beta methylation 

value of the given probe across all samples. 

Epigenetic clocks 

The thirteen epigenetic clocks were the following: 

1. Horvath 1, the first multi-tissue epigenetic clock, was

developed using 8,000 samples from 82 Illumina

DNA methylation array datasets, incorporating 51

healthy tissues and cell types in order to estimate the

DNA methylation age of most tissues and cell types.

The clock is defined based on DNA methylation at

353 CpGs that form an aging clock, and shows strong

correlation with age (r = 0.96–0.97). Horvath et al.

(2013) found DNAm age acceleration was related to

multiple types of cancer [1].

2. Hannum: Hannum’s epigenetic clock is a blood-based

age estimator, based on DNA methylation at 71 CpGs

selected from the Illumina 450,000 array (Hannum

2013). Hannum et al. developed this clock based on

the whole blood of 656 humans at ages 19 to 101.

They reported a strong correlation with age for this

clock (r = 0.96) and that the rate of DNAm ageing is

influenced by gender and genetic variants [2].

3. Levine: DNAm PhenoAge was developed using

composite clinical biomarkers combined into a

multi-system measure of biological age, called

phenotypic age, which was developed to estimate an

individual’s mortality risk using 9 markers of tissue

and immune function (albumin, creatinine, serum

glucose, CRP, lymphocyte percent, mean (red) cell

volume, red cell distribution width, alkaline

phosphatase, white blood cell count) and age.
Phenotypic age was predicted by DNAm PhenoAge

based on 513 CpGs in whole blood from the same

sample. Levine et al. (2018) found that while this

clock was developed using whole blood data, values 

from all tested tissues and cells are correlated with 

age and predict mortality better than chronological 

age-based clocks. DNAm PhenoAge has been shown 

to predict multiple aging outcomes such as mortality, 

cancer, healthspan, physical function and 

Alzheimer’s disease; the rate of DNAmPhenoAge 

acceleration was related to biomarkers such as high 

CRP, glucose, triglycerides waist-to-hip ratio and 

low HDL cholesterol [3]. 

4. Horvath 2: This epigenetic clock, based on 391

CpGs, was developed to better measure the age of

human fibroblasts and other skin cells such as

keratinocytes, buccal cells, endothelial cells,

lymphoblastoid cells, skin, blood, and saliva samples

(Horvath et al. 2018). This clock has high age

correlations in sorted neurons, glia, brain, liver and

bone samples, to predict lifespan and to relate to

many age-related conditions. This skin and blood

clock shares 45 CpGs with the blood-based clock

from Hannum (2013) and 60 CpGs with the pan

tissue clock from Horvath (2013). However,

epigenetic age acceleration in the skin and blood

clock shows only moderate correlations with that of

Hannum’s and Horvath’s 2013 clock [4].

5. Lin: This 99 CpG model was originally derived from

the HumanMethylation27K BeadChip data and

subsequently modified for the 450,000 BeadChip. It

was developed on DNAm profiles of normal blood

samples and trained on life expectancy [5–7].

6. Weidner: Weidner et al. (2014) developed a simple

DNAm age based on 3 age-related CpGs

(cg02228185 in ASPA, cg25809905 in ITGA2B,

and cg17861230 in PDE4C), to estimate epigenetic

aging in blood. They selected these three CpGs

based on recursive feature elimination and

pyrosequencing analysis. This clock produced age

predictions with average accuracy of 5.4 years [6].

7. Vidal−Bralo: Vidal-Bralo et al. (2016) developed a

DNAm age predictor based on 8 CpGs, which were

selected as the most informative CpGs in a training

set of 390 healthy persons. This clock was

developed specifically targeting adults who show

slower rates of change compared to pre-adolescents

in order to more accurately calibrate DNAm age for

adults [8].

8. GrimAge: GrimAge was developed based on the 7

DNAm surrogates of plasma proteins and smoking

pack years in a two-stage procedure (Lu et al. 2019).

First, they defined surrogate DNAm biomarkers of

physiological risk and stress factors with plasma

proteins (including adrenomedullin, CRP,

plasminogen activation inhibitor 1 (PAI-1) and
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growth differentiation factor 15 (GDF15)) and 

DNAm-based estimator of smoking pack-years. 

Then, time-to-death was regressed on these 

biomarkers and an estimator of smoking years to 

estimate a composite biomarker of lifespan, 

GrimAge. They named it “DNAm GrimAge” 

because high values of this measure means grim 

news in terms of mortality and morbidity risk. Lu et 

al. (2019) report that the rate of GrimAge-based 

aging has predictive ability for time to death, 

coronary heart disease, cancer and age-related 

conditions [9]. 

9. Yang et al. (2016) developed a mitotic-like clock

using 385 PCGT promoter CpGs. This is based on

the DNAm-based age-correlated model called

epiTOC (Epigenetic Timer Of Cancer) that features

three properties including being constitutively

unmethylated across 11 different fetal tissue types,

showing age-associated hypermethylation, and

targeting the promoters marked by the PRC2

complex in human embryonic stem cells (ESCs).

This mitotic-like clock was shown to be universally

accelerated in cancer and pre-cancerous lesions [10].

10. Zhang: Zhang et al. (2017) developed a DNAm age

based on 10 CpGs that showed a strong association

with all-cause mortality, which was selected from

replicated results (58 out of 11,063 CpGs with

FDR<0.05) from an epigenome-wide association

study (EWAS) for all-cause mortality. This

epigenetic clock is said to predict disease and

mortality better than the original chronological

DNAm clocks. This clock specifically identifies

those with increased risk of death by cancer and

cardiovascular disease [11].

11. Bocklandt: The Bocklandt clock was developed in

2011 using saliva from twin pairs ages 21 to 55

years. The methylation in three sites, EEDARADD,

TOM1LI, and NPTX2 genes, was linear with age,

and a predictor including two CpGs in the promoter

region of EDARADD and NPTX2 explained 73% of

the variance in age and predicted age with an

average accuracy of 5.2 years [12].

12. Garagnani: Garagnani et al. (2012) used the

Illumina Infinium Human Methylation450

BeadChip on whole blood DNA to identify

methylation levels of 3 regions, the CpG islands of

ELOVL2, FHL2 and PENK genes, strongly

correlated with age. This was confirmed using

whole blood from 501 persons ages 9 to 99 years

and they identified one CpG (cg16867657) in

ELOVL2 as a promising biomarker of aging (r =

0.92) [13].

13. A recent blood DNA methylation measure,

DunedinPoAm38, was developed to represent

individual variation in the pace of biological aging.

Based on data from the Illumina 450k Array run on 

samples from the Dunedin cohort, estimates were 

derived by using elastic-net regression models to 

calculate a methylation Pace of Aging (mPoA) score 

(Belsky et al. 2020). The pace of aging was 

calculated with composited slopes across the 18 

biomarkers that measure the rate of aging in the 

cardiovascular, metabolic, renal, hepatic, pulmonary, 

periodontal, and immune systems. Then, the pace of 

aging composite was scaled to represent the mean 

trend in the cohort among Dunedin Study members 

with methylation data at age 38. The Pace of Aging 

methylation algorithm was trained on 3 waves of 

biomarker data from participants, including data 

collected at ages 26, 32, and 38. DunedinPoAm is 

estimated in years per chronological year 

(years/chron year) [14]. 

Supplementary Method 2: CES-D and EOD scales 

CES-D scale, 8-items: 2010, 2012 and 2014 waves 

C150 During the last 12 months, was there ever a time 

when you felt sad, blue, or depressed for two weeks or 

more in a row? 1. YES 3. [VOL] DID NOT FEEL 

DEPRESSED BECAUSE ON ANTI-DEPRESSANT 

MEDICATION 5. NO 8. DK 9. RF GO TO C167 

BRANCHPOINT 

C151 Please think of the two-week period during the 

last 12 months when these feelings were worst. During 

that time did the feelings of being sad, blue, or 

depressed usually last all day long, most of the day, 

about half the day, or less than half the day? 1. ALL 

DAY LONG 2. MOST OF THE DAY 3. ABOUT 

HALF THE DAY 4. LESS THAN HALF THE DAY 8. 

DK 9. RF GO TO C167 BRANCHPOINT. 

C152 During those two weeks, did you feel this way 

every day, almost every day, or less often than that? 

1. EVERY DAY 2. ALMOST EVERY DAY 3.

LESS OFTEN 8. DK 9. RF GO TO C167

BRANCHPOINT.

C153 During those two weeks, did you lose interest in

most things? [IWER: IF R SAYS USUALLY NO

INTEREST IN THINGS: REPEAT Q ADDING: "…

more than is usual for you."] 1. YES 5. NO 8. DK 9. RF

C154 Thinking about those same two weeks, did you

ever feel more tired out or low in energy than is usual

for you? 1. YES 5. NO 8. DK 9. RF

C155 During those same two weeks, did you lose your

appetite? 1. YES 5. NO 8. DK 9. RF GO TO C157

C156 Did your appetite increase during those same two

weeks? 1. YES 5. NO 8. DK 9. RF C157 Did you have

more trouble falling asleep than you usually do during

those two weeks? 1. YES 5. NO 8. DK 9. RF GO TO
C159

C158 Did that happen every night, nearly every night,

or less often during those two weeks? 1. EVERY
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NIGHT 2. NEARLY EVERY NIGHT 3. LESS OFTEN 

8. DK 9. RF

C159 During that same two-week period, did you have

a lot more trouble concentrating than usual? 1. YES 5.

NO 8. DK 9. RF

C160 People sometimes feel down on themselves, and

no good or worthless. During that two-week period, did

you feel this way? 1. YES 5. NO 8. DK 9. RF

C161 Did you think a lot about death  either your own,

someone else’s, or death in general  during those two

weeks? 1. YES 5. NO 8. DK 9. RF

Experience of Discrimination, EOD scale: 2010, 2012 

and 2014 waves 

Q30 – Q31. Perceived Everyday Discrimination (2006, 

2008, 2010, 2012; Q29 in 2014 and 2016) This 6-item 

scale assesses the experience of hassles and chronic 

stress associated with perceived everyday 

discrimination. Q31 (Q30 in 2014 and 2016) is a 

follow-up question which asks about this reason 

attributed to the experienced discrimination. Similar 

questions are in MIDUS. The item Q30f was added in 

2008 to include a context relevant for older adults.  

Source: Williams, D. R., Yu, Y., Jackson, J. S., and 

Anderson, N. B. (1997). Racial differences in physical 

and mental health: socio-economic status, stress and 

discrimination. Journal of Health Psychology, 2, 335-

351. 2012: 6 items

(Q30a-Q30f) (In your day-to-day life how often have

any of the following things happened to you?)

Q30a You are treated with less courtesy or respect than

other people.

Q30b You receive poorer service than other people at

restaurants or stores.

Q30c People act as if they think you are not smart.

Q30d People act as if they are afraid of you.

Q30e You are threatened or harassed.

Q30f You receive poorer service or treatment than other

people from doctors or hospitals.

Coding: 1 = Almost every day, 2 = At least once a

week, 3 = A few times a month, 4 = A few times a

year, 5 = Less than once a year, 6 = Never;

Scaling:Create an index of discrimination by reverse-

coding all items and averaging the scores across all six

items. Set the final score to missing if there are more

than three items with missing values. Psychometrics:

2014 Alpha = .83, 2012 Alpha = .83, 2010 Alpha =

.80, 2008 Alpha = .82

Background:

Sutin, A. R., Stephan, Y., and Terracciano, A. (2016).

Perceived discrimination and personality development

in adulthood. Developmental Psychology, 52(1), 155–

163
Rogers, S. E., Thrasher, A. D., Miao, Y., Boscardin, W.

J., and Smith, A. K. (2015). Discrimination in

healthcare settings is associated with disability in older

adults: health and retirement study, 2008–2012. Journal 

of General Internal Medicine, 30(10), 1413. 

Williams, D.R., Neighbors, H.W., and Jackson, J.S. 

(2003). Racial/ethnic discrimination and health: 

Findings from community studies. American Journal of 

Public Health, 93, 200-208. 

EOD scale: Reasons for Perceived discrimination: 

2010, 2012 and 2014 waves 

Q31. Reasons Attributed for Discrimination (2006, 

2008, 2010, 2012; Q30 in2014 and 2016) From 2008 

onwards, religion and financial status were added to the 

attribution categories. 

 Source: Kessler, R. C., Mickelson, K. D., and 

Williams, D. R. (1999). The prevalence, distribution, 

and mental health correlates of perceived discrimination 

in the United States. Journal of Health and Social 

Behavior, 40(3), 208-230. 2012: 11 categories (Q31M1 

- Q31M11)

(If any of the above (Q30) have happened to you, what

do you think were the reasons why these experiences

happened to you? (Mark (X) all that apply.)

1 Your ancestry or national origin, 2 Your gender, 3

Your race, 4 Your age, 5 Religion, 6 Your weight, 7 A

physical disability, 8 Other aspect of your physical

appearance, 9 Your sexual orientation, 10 Your

financial status 11 Other Coding: Q31 allows for

multiple responses which are delivered in several

variables (Q31M1 through Q31M11).

When combined, these variables indicate which

attributions and how many attributions were checked.

Q31M1 gives the code (1 to 11) for the first attribution a

participant checked in the order 1 to 11 as listed above:

Q31M2 is the code for the second attribution the

participant checked. For example, if the first box a

participant checked was age their response on Q31M1

would be coded 4. If this participant also checked

financial status, they would have the code 10 for Q31M2.

2008-2016 Coding: 1 = ancestry or national origin, 2 =

gender, 3 = race, 4 = age, 5 = religion, 6 = weight, 7 =

physical disability, 8 = Other aspect of your physical

appearance, 9 = sexual orientation, 10 = financial status,

1 = Other 2006 Coding: 1 = ancestry or national origin, 2

= gender, 3 = race, 4 = age, 5 = weight, 6 = A physical

disability, 7 = Other aspect of your physical appearance,

8 = sexual orientation, 9 = Other).
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