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INTRODUCTION  
 

Lung cancer (LC) is one of the most common 

malignant tumors worldwide [1]. In 2018, there were 

more than 2 million new cases, accounting for the 

incidence of about 11.6% of total diagnosed cancer 

cases [2]. Especially in countries or regions with larger 

tobacco production and consumption, the incidence of 

LC has been increasing rapidly [3]. For example, the 

annual growth percentage of LC cases is 2%-3% in 

recent years in China [3]. In the UK, the overall LC 

incidence rate has increased by 4%, and increased 

rapidly by 18% in females between 2003-2005 and 

2012-2014 [4]. However, the overall survival (OS) rate 

of LC is very poor, and the 5-year OS rate is not more 

than 20% [1]. 
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ABSTRACT 
 

Accumulated evidence shows that tumor microenvironment plays crucial roles in predicting clinical outcomes 
of lung adenocarcinoma (LUAD). The current study aimed to identify some potentially prognostic signatures by 
systematically revealing the transcriptome characteristics in LUADs with differing immune phenotypes. LUAD 
gene expression data were retrieved from the public TCGA and GEO databases, and the transcriptome 
characteristics were systematically revealed using a comprehensive bioinformatics method including single-
sample gene set enrichment analysis, differentially expressed gene (DEG) analysis, protein and protein 
interaction (PPI) network construction, competitive endogenous RNA (ceRNA) network construction, weighted 
gene coexpression network analysis and prognostic model establishment. Finally, 1169 key DEGs associated 
with LUAD immune phenotype, including 88 immune DEGs, were excavated. Five essential and eight immune 
essential DEGs were separately identified by constructing two PPI networks based on the above DEGs. Totals of 
1085 key DElncRNAs and 45 key DEmiRNAs were excavated and one ceRNA network consisting of 26 DEmRNAs, 
3 DEmiRNAs and 57 DElncRNAs were established. The most significant gene coexpression module (cor=0.63 and 
p=3e-55) associated with LUAD immune phenotypes and three genes (FGR, BTK, SPI1) related to the immune 
cell infiltration  were identified. Three robust prognostic signatures including a 9-lncRNA, an 8-lncRNA and an 8-
mRNA were established. The areas under the curves of 5-year correlated with overall survival rate were 
separately 0.7319, 0.7228 and 0.713 in the receiver operating characteristic curve. The findings provide novel 
insights into the immunological mechanism in LUAD biology and in predicting the prognosis of LUAD patients. 
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Non-small cell lung cancer (NSCLC) is the most 

common LC histological type, constituting about 90% of 

all LC cases [5]. Lung adenocarcinoma (LUAD) is the 

major NSCLC subtype, representing more than 50% of 

all NSCLC cases in recent years and causing more than 

six hundred thousand deaths worldwide each year [5, 6]. 

Currently, the prognosis and treatment of LUAD patients 

are assessed mainly based on the tumor node metastasis 

(TNM) staging system [4]. However, the clinical 

outcomes vary greatly among patients within the same 

TNM stage on account of the high heterogeneity in 

LUADs, and the predictive values obtained from the 

pathological characteristics are clinically limited in 

predicting the survival [7]. Recently, some molecular 

features implicated in LUAD have been uncovered, and 

a few genes have been also used to evaluate the 

prognosis as potential predictors and combat LUAD as 

drug targets, such as epidermal growth factor receptor 

(EGFR) gene and tumor protein 53 (TP53) gene [8, 9]. 

In recent years, the accumulated evidence indicates that 

the tumor microenvironment (TME) play a key role in 

tumor initiation and progression, and can better predict 

the clinical outcome and assess the therapeutic efficacy 

than the TNM system [5, 10]. Especially, the distinct 

immune landscape of tumor-infiltrating immune cells in 

the tumoural niche can lead to the different prognoses 

and treatment responses [11], which demonstrates that 

the immunophenotype can be used to estimate the 

prognosis as an independent component in the 

classification system [12]. Presently, the comprehensive 

studies on the immunological characteristics of LUAD 

are still lacking based on the large-scale gene expression 

profiles. 

 

In the current study, a large number of LUAD-related 

gene expression profiles were retrieved from the 

public TCGA database, and the molecular features in 

LUAD with differing immunity were systematically 

analyzed using a comprehensive bioinformatics 

method, including the evaluation for the abundance of 

immune cells by single sample gene set enrichment 

analysis (ssGSEA), the screening of key differentially 

expressed gene (DEG) via differentially expressed 

gene analysis (DEGA), the investigation of key  

gene function by functional enrichment analysis,  

the identification of gene coexpression module  

by weighted gene coexpression network analysis 

(WGCNA), the elucidation of interactive relationships 

among genes via protein and protein interaction (PPI) 

network, the revelation of regulatory relationships 

among ceRNAs through competitive endogenous RNA 

network (ceRNA) and the prediction of prognostic 

model on the basis of univariate and multivariate Cox 
regression models. Finally, we systematically revealed 

the transcriptome characteristics of LUADs with 

differing immune phenotypes and built three robust 

prognostic signatures to predict the prognoses of 

LUAD patients. 

 

RESULTS 
 

The flow chart of systematic bioinformatics analysis is 

displayed in Figure 1 in the current study. The basic 

steps are outlined as follows. (1) LUAD gene 

expression datasets including mRNA, lncRNA and 

miRNA and normal lung tissue samples were retrieved 

from the TCGA database. (2) LUAD patients were 

clustered into two subgroups or three subgroups 

according to the infiltration levels of immune cells 

using the ssGSEA method and the rationality of 

grouping patients was evaluated. (3) Two subgroups 

were separately the high and low immune infiltration 

subgroups and DEGs were identified between two 

immune infiltration subgroups. Further, DEGs were 

identified between the LUAD and normal lung tissues. 

The key DEGs were identified by an overlap analysis. 

(4) Three subgroups were separately the high, 

intermediate and low immune infiltration subgroups, 

and gene coexpression modules associated with immune 

phenotype were identified. (5) Three PPI networks were 

separately constructed on the basis of key DEGs, 

immune DEGs and genes in the most significant 

correlation module with immune phenotype. The 

essential genes were respectively identified using the 

molecular complex detection algorithm and centrality 

method in three PPI networks. (6) On the basis of  

the ceRNA hypothesis, one ceRNA network was 

constructed, and key ceRNAs were identified according 

to the degrees of all nodes in the ceRNA network. (7) 

The pivotal genes identified in each step were 

performed the survival analysis on the basis of 

univariate and multivariate Cox regression models. (8) 

The predictive performances of two prognostic 

signatures were evaluated using two independent 

datasets, respectively. 
 

Immune phenotype landscape in the TME of LUAD 
 

To assess the diverse immune responses in LUAD, the 

infiltration levels of 29 immune-related terms were 

assessed using the ssGSEA approach. The LUAD 

samples were divided into 2 immune infiltration 

subgroups (high immune infiltration: 418; low immune 

infiltration: 79) according to the immune infiltration 

(Figure 2A). The immune score, estimate score and 

stromal score in the high immune infiltration subgroup 

were significantly higher than those in the low immune 

infiltration subgroup (Kruskal-Wallis test, all p<0.001) 

(Figure 2B). Oppositely, the tumor purity score in the 
high immune infiltration subgroup was significantly 

lower than that in the low immune infiltration subgroup 

(Kruskal-Wallis test, p<0.001) (Figure 2B). This result 
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Figure 1. The flow chart of systematic bioinformatics analysis. In this study, a comprehensive bioinformatics method was used to 

reveal the transcriptome characteristics related to the LUADs with differing immune phenotypes and identify the prognostic signatures 
predicting the OS of LUAD patients, including ssGSEA, PPI network, WGCNA, ceRNA network, and survival analysis on the basis of univariate 
and multivariate Cox models. The predictive performances of two prognostic signatures were evaluated using two independent datasets. 
LUAD, lung adenocarcinoma; TCGA, the cancer genome atlas; ssGSEA, single-sample gene set enrichment analysis; PPI, protein and protein 
interaction; WGCNA, weighted gene coexpression network analysis; ceRNA, competitive endogenous RNA; GO, gene ontology; DO, disease 
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene; LASSO, least absolute shrinkage and 
selection operator; OS, overall survival; ROC, receiver operating characteristic. 
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Figure 2. Immune landscape of LUAD and the TME characteristics. (A) Unsupervised clustering of LUAD patients from the TCGA 

ŎƻƘƻǊǘ ǳǎƛƴƎ ǎǎD{9! ǎŎƻǊŜǎ ŦǊƻƳ ƛƳƳǳƴŜ ŎŜƭƭ ǘȅǇŜǎΦ ¢ƘŜ ά{ǘǊƻƳŀƭ{ŎƻǊŜέ ƛǎ ǘƘŜ ǎǘǊƻƳŀƭ ǎƛƎƴŀǘǳǊŜ ǘƘŀǘ ǿŀǎ ŘŜǎƛƎƴŜŘ ǘƻ ŎŀǇǘǳǊŜ ǘhe presence 
ƻŦ ǎǘǊƻƳŀ ƛƴ ǘƘŜ ǘǳƳƻǊ ǘƛǎǎǳŜΦ ¢ƘŜ άLƳƳǳƴŜ{ŎƻǊŜέ ƛǎ ǘƘŜ ƛƳƳǳƴŜ ǎƛƎƴŀǘǳǊŜ ǘƘŀǘ ŀƛƳŜŘ ǘƻ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ƛƴŦƛƭǘǊŀǘƛƻƴ ƻŦ ƛƳƳǳƴŜ ŎŜƭƭǎ ƛƴ ǘƘŜ 
ǘǳƳƻǊ ǘƛǎǎǳŜΦ ¢ƘŜ ά9{¢La!¢9{ŎƻǊŜέ ƛǎ ǘƘŜ ǎŎƻǊŜ ŎƻƳōƛƴŜŘ ōȅ ǘƘŜ ǎǘǊƻƳŀƭ ŀƴŘ ƛƳƳǳƴŜ ǎŎƻǊŜǎΦ ¢ƘŜ ά¢ǳƳƻǊtǳǊƛǘȅέ ƛǎ ǘƘŜ ǘǳƳƻǊ ǇǳǊƛty 
calculated by the nonlinear lŜŀǎǘ ǎǉǳŀǊŜǎ ƳŜǘƘƻŘ ōŀǎŜŘ ƻƴ ǘƘŜ 9{¢La!¢9{ŎƻǊŜΦ ¢ƘŜ ά{ǳōǘȅǇŜέ ƛǎ ǘƘŜ ǘǿƻ ŎƭǳǎǘŜǊǎ ǘƘŀǘ ǿŜǊŜ ŘƛǾƛŘŜŘ ƛƴ ǘƘŜ 



ǿǿǿΦŀƎƛƴƎ-ǳǎΦŎƻƳ птфл !DLbD 

terms of the immune infiltration. The Immunity_H and Immunity_L subtypes showed the high and low immune infiltration, separately.  
(B) The ssGSEA scores in the differing TME immune phenotypes. The high immune infiltration group (Immunity_H) means the high 
StromalScore, ImmuneScore, ESTIMATEScore and low TumorPurity (all p<0.001). (C) Interaction of the TME immune cell types. The immune-
related terms were clustered into 4 clusters according to the correlations among different immune-related terms. (D) The expressions of HLA 
genes in differing TME immune phenotypes. All HLA genes had significant differences in expression level between the high and low immune 
infiltration groups. (E) The expressions of CD274 gene in differing TME immune phenotypes. The expression of CD274 gene in the high 
immune infiltration group was significantly higher than that in the low immune infiltration group. (F) The fractions of the TME immune cells. 
The fractions of 8 immune cells had significant differences in two immune infiltration subgroups. (G) The associations of four immune cell 
types with overall survival. The high infiltration of aDCs, HLA, Mast_cells and T_cell_co.inhibition resulted in a higher OS of LUAD patients, 
respectively. (H) The relationships of immune infiltration status and survival status. The LUAD patients in the high immune infiltration group 
had a higher survival rate. (I) Responses of LUAD patients with differing TME immune phenotypes to immune therapy. The LUAD patients in 
the high immune infiltration group had significant response to anti-PD1-R. LUAD, lung adenocarcinoma; TME, tumor microenvironment; 
TCGA, the cancer genome atlas; ssGSEA, single-sample gene set enrichment analysis; OS, overall survival. 
 

indicates that the high infiltration subgroup has a higher 

proportion of immune and stromal cells, while the low 

infiltration subgroup has a higher proportion of tumor 

cells. Using the K-means cluster and hierarchical cluster 

methods, a 29-immune-related term network was 

constructed, depicting a comprehensive landscape of 

immune-related term interactions. The immune-related 

terms were clustered into 4 clusters in the immune-

related term network, and the correlations were showed 

in Figure 2C among different immune-related terms. 

Notably, all HLA genes were significantly highly 

expressed in the high immune infiltration subgroup 

(unpaired t-test, all p<0.001) (Figure 2D). Moreover, 

the common immunotherapeutic target gene CD274 

(PD-L1) was also found to significantly highly 

expressed in the high infiltration subgroup (unpaired t-

test, p<0.001) (Figure 2E). The comparison of immune 

cell subsets showed that dendritic cells resting 

(p<0.001), macrophages M1 (p<0.001), mast cells 

activated (p<0.01), mast cells resting (p<0.01), T cells 

CD4 memory activated (p<0.001) and T cells CD8 

(p<0.001) had higher proportions in the high immune 

infiltration subgroup, while B cells naive (p<0.001) and 

dendritic cells activated (p<0.05) had lower proportions 

(Figure 2F). Survival analysis showed that aDCs 

(p=0.04099), HLA (p=0.02187), Mast_cell (p=0.01491) 

and T_cell_co.inhibition (p=0.02161) were significantly 

related to the overall survival (OS) of LUAD patients, 

and the higher immune score resulted in a higher OS 

rate (Figure 2G). Survival status showed that the alive 

patients in the high immune infiltration subgroup had a 

higher percentage than those in the low immune 

infiltration subgroup (67.67% vs 58.97%, Figure 2H). 

 

To predict the clinical responses of LUAD patients with 

differing immune phenotypes to immune checkpoint 

blockade, we compared the expression profiles of 

LUAD patients that responded to immunotherapies 

between two immune infiltration subgroups. The result 
was observed that the patients in the high immune 

infiltration subgroup were more promising to respond to 

antiïPD-1 therapy (high immune infiltration subgroup: 

Bonferroni corrected p=0.008; low immune infiltration 

subgroup: Bonferroni corrected p=1.000) (Figure 2I), 

while the responds of patients to anti-CTLA4 therapy in 

two immune infiltration subgroups had no significant 

difference (both immune infiltration subgroups: 

Bonferroni corrected p=1.000). 

 

Gene alteration landscape of LUADs with differing 

TME  immune phenotypes 
 

To investigate the gene alteration between the high and 

low immune infiltration subgroups, a gene alteration 

landscape was analyzed. The alteration landscapes of top 

20 genes with higher alterations were showed in Figure 

3A, 3B in two immune infiltration subgroups. Top 5 

genes with the high alteration rate were TP53, TTN, 

CSMD3, MUC16 and RYR2 in two immune infiltration 

subgroups, and the missense mutation was the most 

important alteration type (Figure 3A, 3B). TP53 and TTN 

ranked separately first in the high and low immune 

infiltration subgroups, constituting 48% and 55% of 

alteration rates. The 4 (TP53, TTN, MUC16, CSMD3) 
and 1 (RYR2) of 5 genes were significantly upregulated 

and downregulated in LUAD tissues (p<0.001 or 0.01, 

Figure 3C). There were lower correlations in expression 

among five genes between LUAD and normal lung 

tissues (Figure 3D). Except the significant high 

expression of RYR2 gene (p<0.001), the expressions of 

the remaining four genes had no significant differences 

between two immune infiltration subgroups (Figure 3E). 

The expressions of five genes had lower correlations 

between two immune infiltration subgroups (Figure 3F). 

The expressions of five genes were significantly related 

to the age (p<0.05) and T stage (p<0.01) (Figure 3G). 

 

Key differentially expressed gene screening in  

LUAD s with differing TME immune phenotypes and 

functional analysis 
 

To identify key genes between the high and low immune 

infiltration subgroups, a DEGA was implemented. 

According to the statistical significance thresholds of 
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Figure 3. Mutation landscape of the TME immune phenotype. (A) Main mutant genes in the high immune infiltration group. TP53, 
TTN, MUC16, CSMD3 and RYR2 are the main mutant genes. (B) Main mutant genes in the low immune infiltration group. TTN, TP53, 
CSMD3, MUC16 and RYR2 are the main mutant genes. (C) The expressions of the top five mutant genes between LUAD and normal tissues. 
The expressions of five genes had significant differences between LUAD and normal tissues. (D) The expression correlations among the  
top five mutant genes. The correlations among the top five mutant genes were low in expressions. (E) The expressions of the top five 
mutant genes between the high and low immune infiltration groups. The expression of RYR2 gene had significant difference between two 
groups. (F) The expression correlations of the top five mutant genes in two immune infiltration groups. The correlations among the top five 
mutant genes were low in expressions. (G) The associations of the top five mutant genes with clinical features in the TME immune 
phenotype. The expressions of these genes were significantly associated with T stage and age. TME, tumor microenvironment; LUAD, lung 
adenocarcinoma. 


