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INTRODUCTION 
 
Ovarian cancer (OC) is one of the main causes of female 
death. 70% of patients are in the advanced stage (clinical 
stage III ~ IV), and peritoneal metastasis is the 
characteristic metastasis symptom of patients with 
advanced OC. Although the incidence rate is not high, 
the mortality rate is 2.9%, which is the top ten of female 
malignant tumor mortality. For OC, the current standard 

treatment is not optimistic [1]. One reason is that most 
patients are diagnosed only in the late stage of the 
disease. Standard treatment for OC usually includes 
surgery and platinum chemotherapy. Despite available 
treatments, the recurrence rate of OC is still high, and 
about 75% of advanced patients are incurable [2, 3]. 
Genomics research shows that there is no regulated gene 
mutation, and many clinical trials have failed to bring 
lasting clinical benefits [4]. Molecular typing of OC 
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ABSTRACT 
 
Background: FAM83D (family with sequence similarity 83, member D) is of particular interest in tumorigenesis 
and tumor progression. Ovarian cancer is the leading cause of cancer-related death in women all over the 
world. This study aims to research the association between FAM83D and ovarian cancer (OC). 
Methods: The gene expression data of OC and normal samples (GSE81873 and GSE27651) was downloaded 
from Gene Expression Omnibus (GEO) dataset. The bioinformatics analysis was performed to distinguish two 
differentially expressed genes (DEGs), prognostic candidate genes and functional enrichment pathways. 
Immunohistochemistry (IHC), Quantitative Real-time PCR (qPCR), and luciferase reporter assays were utilized 
for further study. 
Results: There were 56 DEMs and 63 DEGs in cancer tissues compared to normal tissues. According to the km-
plot software, hsa-miR-142-3p and FAM83D were associated with the overall survival of patients with OC. 
Besides, Multivariate analysis included that hsa-miR-142-3p and FAM83D were independent risk factors for OC 
patients. Furthermore, qPCR demonstrated that miRNA-142-3p and FAM83D were differentially expressed in 
normal ovarian tissues (NOTs) and ovarian cancer tissues (OCTs). IHC results indicated that FAM83D was 
overexpressed in OCTs compared with NOTs. Last but not least, luciferase reporter assays verified that FAM83D 
was a direct target of hsa-miRNA-142-3p in OC cells. 
Conclusions: The prognostic model based on the miRNA-mRNA network could provide predictive significance 
for the prognosis of OC patients, which would be worthy of clinical application. Our results concluded that  
miR-142-3p and its targets gene FAM83D may be potential diagnostic and prognostic biomarkers for patients 
with OC. 
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through molecular expression differences, exploring the 
microenvironment characteristics of different molecular 
subtypes of OC, and formulating accurate treatment may 
be a feasible strategy to improve the dilemma of OC 
treatment. 
 
Since the discovery of lin-4 and let-7, the founding 
members of the microRNA (miRNA) family, hundreds of 
miRNAs have been found in viruses, plants, and animals 
by molecular cloning and bioinformatics methods [5]. 
There are more than 1000 known human miRNAs, which 
control more than 50% of mammalian protein-coding 
genes. MiRNAs can be overexpressed or inhibited in 
different diseases. It is a promising therapeutic research 
field to inhibit or replace microRNAs [6]. Although 
microRNA has only 20 nucleotides, it plays a key role in 
biological function by targeting plenty of mRNAs [7]. 
For example, one study found that miRNA-424-5p 
regulated ferroptosis by targeting Acyl-CoA Synthetase 
Long-Chain Family Member 4 in OC cells and indicated 
a potential therapeutic target for OC [8]. Wu et al. found 
that the downregulated microRNA-1301-3p inhabited 
lung carcinoma cell proliferation and migration and has a 
strong negative correlation with Polymerase I and 
transcript release factor [9]. Another study also indicated 
the expression level of miR-200-b control PD-L1 
expression in lung carcinoma cells. Furthermore, it may 
function as a potential biomarker for PD-L1 expression in 
lung cancer patients [10]. These studies indicated that 
microRNAs may be related to the progression of cancer, 
and their mechanisms may take part in the pathogenesis 
of tumors via controlling cancer-associated genes. 
 
In this article, DEGs and DEMs were selected by 
researching 1 OC mRNA microarray dataset and 1 
miRNA dataset. We aimed to study the relationship 
between miR-142-3p, FAM83D (we identified), and the 
development of OC. 
 
RESULTS 
 
Identification of DEGs 
 
We used GEO2R to analysis the DEMs and DEGs from 
the GSE81873 and GSE27651. Based on the cut-off 
criteria, 56 DEMs such as hsa-microRNA-142-3p,  
hsa-microRNA-429, hsa-microRNA-199a-3p, hsa-
microRNA-484, hsa-microRNA-139-5p, hsa-microRNA-
483-5p, hsa-microRNA-423-5p, hsa-microRNA-342-3p, 
hsa-microRNA-885-5p, and 63 DEGs were selected 
(Figure 1). 
 
Gene ontology enrichment analysis 
 
By utilizing FunRich and R software, we performed TF 
enrichment analysis (Figure 2A). 

KEGG and GO function enrichment analyses were 
performed here. As for GO function analysis, three GO 
were selected: molecular function (MF), cellular 
component (CC), and biological process 156 (BP). 
Expression analysis showed that DEGs had the most 
uniquely enriched terms for Cell communication, Signal 
transduction, Regulation of nucleobase, nucleotide and 
nucleic acid metabolism, Cytoplasm, Nucleus, Cytosol, 
Membrane, Transcription factor activity, GTPase activity, 
Receptor signaling complex scaffold activity, Receptor 
signaling protein serine/threonine kinase activity, and 
CAMP-mediated signaling (Figure 2B–2D). Besides, 
DEMs were mainly enriched in 6 pathways: MAPK 
signaling pathway, PI3K-Akt signaling pathway, Wnt 
signaling pathway, TGF-beta signaling pathway, 
Pathways in cancer, and Bacterial invasion of epithelial 
cells (Figure 3A). 
 
miRNA-mRNA regulatory network 
 
According to FunRich software, 1069 potential target 
mRNAs were obtained and only 1 of them showed 
different expression levels in GSE27651 (FAM83D). 
Based on the association between them, 1 essential 
microRNA-mRNA pair (microRNA-142-3p and 
FAM83D) was selected for the next research  
(Figure 3B, 3C). 
 
genes expression and their associations with OC 
overall survival 
 
KM Plot was used to analyze the overall survival of 
patients with OC. According to uploading the miRNA 
and target gene we identified, we downloaded survival 
curves. The pictures showed that microRNA-124-3p 
and FAM83D were associated with the overall survival 
of patients with OC (Figure 4). 
 
Relationship between clinical characteristics and 
genes expression level of OC 
 
Clinical and gene expression information of OC patients 
were downloaded in the TCGA database, such as 
patients’ age, race, FIGO stage, and primary therapy 
outcome (Tables 1, 2). FAM83D and miR-142-3p 
expression of patients with Stage III and Stage IV was 
higher than that of patients with Stage I and Stage II 
(P<0.05) according to the FIGO stage. Furthermore, 
associations between clinical characteristics and overall 
survival in OC were analyzed. According to medium 
FAM83D and miR-142-3p expression, patients were 
divided into two groups. Our results indicated that 
FAM83D mRNA and miR-142-3p expression level 
(P<0.05), FIGO stage (P<0.05), Primary therapy 
outcome (P<0.05), and tumor stage (P<0.05) was 
related to the OS of patients with OC (Tables 3, 4). 
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Validation of the expression with qRT-PCR and 
IHC 
 
To deeply evaluate the expression of miR-142-3p and 
FAM83D, 20 pairs of normal ovarian tissues (NOT) and 
OC tissues (OCT) were enrolled as a validation 
cohort. The qRT-PCR approach was utilized to verify 
the differential expression levels from the patient’s 
tissues. The same as the microarray data, hsa-miR-142-
3p was significantly downregulated (Figure 5A) and 
FAM83D was overexpressed (Figure 5B) between 20 
pairs of NOTs and OCTs which indicated that hsa-miR-
142-3p and FAM83D could be the candidate 

biomarkers for OC. Besides, this expression level of 
genes was detected by IHC. The staining intensity of 
FAM83D was divided into 0, 1, 2, or 3, corresponding 
to colorless, light yellow, light brown, and squid ink. In 
addition, the percentage score is defined as: 0% to 5%, 
0; 6% - 25%, 1 point; 26-50%, 2 points; 50-75%, 3 
points; 76% to 100%, 4 points. The final histochemical 
score was calculated by multiplying the intensity score 
by the percentage score. The final staining scores were 
negative (0), low (6), and strong (≥ 6). Statistically, the 
overall expression of FAM83D was much higher in OC 
tissues than in the adjacent noncancerous tissues (P < 
0.001) (Figure 5C–5F). 

 

 
 

Figure 1. Heat map and volcano map of differentially expressed genes of GSE81873 and GSE27651. (A). Heat map of DEGs in 
GSE81873. (B). Volcano map of DEGs in GSE81873. (C). Heat map of DEGs in GSE27651. (D). Volcano map of DEGs in GSE27651. Red dots 
represent up-regulated genes and blue or green dots represent down-regulated genes. 
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Confirmation of the association between miR-142-
3p and FAM83D 
 
The Dual-Luciferase Reporter Assay System was 
utilized to evaluate the association between FAM83D 
and microRNA-142-3p. The FAM83D-WT activity of 
wild-type luciferase was 36.40%, and the FAM83D-
MUT activity of mutant luciferase was 72.80%. These 
outcomes indicated that microRNA-142-3p reduced the 
luciferase activity of the wild-type FAM83D reporter 
gene (Figure 6). 
 
DISCUSSION 
 
In 2020, there were 19.29 million new cancer cases 
worldwide, including 10.06 million males and 9.23 

million females; In 2020, there were 9.96 million cancer 
deaths worldwide, including 5.53 million males and 4.43 
million females [11, 12]. In this research, GSE81873 and 
GSE27651 were obtained in the GEO database. 56 
DEMs and 63 DEGs were identified. For deeply 
understanding the process of the 56 DEMs in OC, 
FunRich and R software were utilized for further study. 
GO and KEGG analysis indicated that these DEMs were 
primarily associated with the Cytoplasm, Nucleus, and 
Transcription factor activity. Previous studies have 
shown that Lysosomes and Nucleus may function as a 
vital role in plenty of human diseases, such as tumors, 
obesity, and infection [13–15]. Furthermore, KEGG 
analysis showed that DEGs were mainly enriched in 6 
pathways such as MAPK signaling pathway, PI3K-Akt 
signaling pathway, Wnt signaling pathway, TGF-beta 

 

 
 

Figure 2. Gene ontology enrichment. (A). Identification of the potential transcription factors of DEMs by FunRich software. (B) biological 
process, (C) cellular component, and (D) molecular function enrichment analysis of the DEMs. 
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signaling pathway, Pathways in cancer, and Bacterial 
invasion of epithelial cells, which were indicated to 
influence migration and proliferation [16]. The MAPK 
signaling pathway is a common signaling pathway 
closely associated with carcinoma, which will not be 

discussed here. Phosphatidylinositol-4,5-diphosphate-3-
kinase (PI3K) is activated by many genes. In PI3K / Akt 
signal transduction pathway, phospholipid dependent 
kinase promotes the binding of protein kinase B (Akt) to 
the cell membrane. The phosphorylation of threonine 

 

 
 

Figure 3. (A). KEGG pathway enrichment analysis of potential target mRNAs. (B). Venn Diagram of GSE81873 and GSE27651. (C). Identified 
target mRNAs and miRNA-mRNA regulatory network. 
 

 
 

Figure 4. The association between the expression level of selected genes and overall survival of OC patients. 
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Table 1. Relationship between the expression level of FAM83D and clinical characteristics in OC. 

Characteristic Low expression of FAM83D High expression of FAM83D p 
n 189 190  
FIGO stage, n (%)   0.007 

Stage I 0 (0%) 1 (0.3%)  
Stage II 53 (13.9%) 10 (2.7%)  
Stage III 100 (26.3%) 155 (41.2%)  
Stage IV 35 (9.3%) 22 (5.9%)  

Primary therapy outcome, n (%)   0.484 
PD 12 (3.9%) 15 (4.9%)  
SD 14 (4.5%) 8 (2.6%)  
PR 22 (7.1%) 21 (6.8%)  
CR 102 (33.1%) 114 (37%)  

Race, n (%)   0.840 
Asian 5 (1.4%) 7 (1.9%)  
Black or African American 13 (3.6%) 12 (3.3%)  
White 161 (44.1%) 167 (45.8%)  

Age, n (%)   0.383 
<=60 99 (26.1%) 109 (28.8%)  
>60 90 (23.7%) 81 (21.4%)  
Age, median (IQR) 60 (52, 68) 58 (50, 68) 0.390 

 

Table 2. Relationship between the expression level of hsa-miR-142-3p and clinical characteristics in OC. 

Characteristic Low expression of hsa-miR-142-3p High expression of hsa-miR-142-3p p 
n 248 248  
FIGO stage, n (%)   0.009 

Stage I 0 (0%) 1 (0.2%)  
Stage II 13 (2.6%) 76 (15.3%)  
Stage III 199 (40.4%) 123 (24.8%)  
Stage IV 35 (7.1%) 45 (9.1%)  

Primary therapy outcome, n (%)   0.210 
PD 21 (5.1%) 15 (3.7%)  
SD 16 (3.9%) 9 (2.2%)  
PR 24 (5.9%) 32 (7.8%)  
CR 139 (34.1%) 152 (37.3%)  

Race, n (%)   0.472 
Asian 10 (2.1%) 6 (1.3%)  
Black or African American 14 (2.9%) 18 (3.8%)  
White 215 (44.9%) 216 (45.1%)  

Age, n (%)   0.786 
<=60 139 (28%) 135 (27.2%)  
>60 109 (22%) 113 (22.8%)  
Age, median (IQR) 58.5 (51, 69) 59 (51.75, 68.25) 0.873 
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Table 3. Relationship between overall survival and the expression level of FAM83D researched by univariate 
and multivariate Cox regression. 

Characteristics Total(N) 
Univariate analysis 

 
Multivariate analysis 

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 
FIGO stage 374      

Stage I & Stage II 24 Reference     
Stage III 293 2.045 (0.905-4.621) 0.085  1.850 (0.670-5.108) 0.235 
Stage IV 57 2.495 (1.057-5.889) 0.037  2.563 (1.541-4.517) 0.041 

Primary therapy outcome 307      
PD 27 Reference     
SD 22 0.441 (0.217-0.895) 0.023  0.463 (0.222-0.967) 0.040 
PR 42 0.652 (0.384-1.107) 0.113  0.637 (0.360-1.126) 0.121 
CR 216 0.152 (0.093-0.247) <0.001  0.203 (0.120-0.344) <0.001 

Race 364      
Asian & Black or 
African American 37 Reference     

White 327 0.637 (0.405-1.004) 0.052  0.738 (0.434-1.255) 0.262 
FAM83D 377 1.645 (1.916-3.192) 0.011    

Tumor status 336      
Tumor free 72 Reference     
With tumor 264 9.576 (4.476-20.486) <0.001  9.616 (3.875-23.866) <0.001 

 

Table 4. Relationship between overall survival and the expression level of hsa-miR-142-3p researched by 
univariate and multivariate Cox regression. 

Characteristics Total(N) 
Univariate analysis 

 
Multivariate analysis 

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 
FIGO stage 490      

Stage I & Stage II 30 Reference     
Stage III 380 2.179 (1.076-4.411) 0.031  1.513 (1.664-3.446) 0.004 
Stage IV 80 2.785 (1.331-5.829) 0.007  1.333 (1.563-3.155) 0.013 

Primary therapy outcome 407      
PD 36 Reference     
SD 25 0.453 (0.241-0.854) 0.014  0.452 (0.237-0.862) 0.016 
PR 55 0.668 (0.426-1.047) 0.079  0.635 (0.400-1.010) 0.055 
CR 291 0.168 (0.112-0.251) <0.001  0.211 (0.139-0.319) <0.001 

Race 478      
Asian & Black or 
African American 48 Reference     

White 430 0.764 (0.513-1.138) 0.186    
hsa-miR-342-3p 494 0.835 (0.738-0.946) 0.005  1.910 (1.783-2.458) 0.019 

Tumor status 442      
Tumor free 95 Reference     
With tumor 347 8.796 (4.784-16.170) <0.001  8.362 (4.057-17.236) <0.001 

 

and serine promotes the transfer of Akt from the 
cytoplasm to the nucleus and further mediates the 
biological effects of enzymes, including cell 
proliferation, inhibition of apoptosis, cell migration, 
vesicle transport, and cell carcinogenesis [17]. Besides, 
it can influence the epithelial-mesenchymal transition in 

plenty of methods to affect tumor aggressiveness [18]. 
As for OC, a previous study reported that it took an 
important part in OC tumorigenesis, proliferation and 
progression, and pre-clinical and clinical experience 
with several PI3K/AKT/mTOR pathway inhibitors [19]. 
Neurotrophins are produced by target tissues innervated 
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by developing neurons, so these factors act on the end of 
axons and produce signals that must be transmitted back 
to the cell body [20]. It can activate the PI3K/Akt signal 
transduction pathway and other oncogenic signaling 
pathways [21]. For example, it has been confirmed that 
in the early stage of cancer, the increase of nerve density 
is parallel to the increase of neurotrophin level, but it 
remains to be clarified which cells in TME are the 
source of neurotrophin and the nature of the stimulants 
that initiate the production of neurotrophin [22]. Besides, 
a previous study reported that Neurotrophin Receptor 

TrkB (NTRK2) and Wnt β-Estradiol and MAPK 
signaling pathways are closely related to the worse 
prognosis of neuroblastoma [23]. Besides, the changes in 
neurotrophin signals are related to neurodegenerative 
diseases and mental diseases [24]. 
 
The regulated network was performed according to 
Cytoscape. 56 miRNAs (hsa-microRNA-142-3p, hsa-
microRNA-429, hsa-microRNA-199a-3p, and hsa-
microRNA-484) were selected for further research. After 
that, 1069 target genes were achieved and 1 of them 

 

 
 

Figure 5. The expression level of hsa-miR-142-3p and FAM83D in normal ovarian tissues (NOTs) and OC tissues (OCTs).  
(A). Validation of hsa-miR-142-3p ((***, p < 0.001). (B). Validation of FAM83D (***, p < 0.001). (C, D). The expression level of FAM83D in 
human OCTs. (E, F). The expression level of FAM83D in human NOTs (scale bar: 200×). 
 

 
 

Figure 6. FAM83D is a direct target of miR-142-3p in OC cells. (A) Putative binding sites in FAM83D 3’UTR for miR-142-3p were 
predicted by bioinformatics analysis (microRNA.org). (B). Validation of luc2/hRluc-neo between miR-142-3p and FAM83D. 
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showed a different expression level in GSE27651 
(FAM83D). MicroRNA-142-3p encoding human 
chromosome 17q22 is a new tumor suppressor factor, 
which is observed in many tumors including breast 
carcinoma, hepatocellular carcinoma, bladder carcinoma, 
and ovarian carcinoma [25–30]. The downregulation of 
microRNA-142-3p is related to tumorigenesis via 
regulation, cell migration, cell apoptosis, and invasion 
through various signaling pathways. Besides, microRNA-
142-3p has been found as a carcinogenic microRNA  
in human T-cell acute lymphoblastic leukemia by  
acting on glucocorticoid receptors and cyclic adenosine 
monophosphate/protein kinase A pathway [31]. 
Upregulated microRNA-142-3p also monitors the 
characteristics of breast carcinoma stem cells, at least in 
section by sensitizing the WNT signaling pathway and 
microRNA-150 expression [32]. A previous study 
reported that upregulated microRNA-142-3p inhibited 
colorectal cancer cell migration and invasion, indicating 
that microRNA-142-3p may act as an oncogene during 
colorectal cancer tumorigenesis [33]. As for OC, another 
study concluded that microRNA-142-3p suppressed the 
proliferation and chemoresistance of OC cells by 
targeting SIRT1. This indicates that microRNA-142-3p 
may be a therapeutic target for the cure of OC [27]. 
 
FAM83D (family with sequence similarity 83, member 
D) is a mitosis-related gene located on chromosome 
20q11 [34]. Previous studies have indicated that 
FAM83D may be amplified and upregulated in a variety 
of tumors, including hepatocellular tumors [35], ovarian 
carcinoma [36], colorectal carcinoma [37], and lung 
adenocarcinoma [38]. In addition, researches have 
demonstrated that FAM83D may act as a carcinogenic 
role by suppressing the invasion and proliferation of 
hepatocellular carcinoma and inhibiting the cell cycle of 
lung adenocarcinoma by suppressing FBXW7 in breast 
carcinoma [39–41]. These outcomes indicated that 
FAM83D may be widely taken part in process of 
tumors. Besides, FAM83D can advance epithelial-
mesenchymal transition and metastasis of non-small cell 
lung carcinoma cells through the AKT/mTOR signal 
pathway, also improve the sensitivity of NSCLC cells to 
cisplatin [42]. Furthermore, FAM83D is highly 
expressed in invasive epithelial ovarian cancer and is 
related to tumor stage and grade [43]. Last but not least, 
FAM83D can also promote ovarian carcinoma cell 
invasion and proliferation, while suppressing autophagy 
through the PI3K/AKT/mTOR signaling pathway [44]. 
Therefore, we selected and tested whether microRNA-
142-3p and FAM83D were differently expressed 
between NOTs and OCT.s qPCR results indicated that 
microRNA-142-3p and FAM83D were differentially 
expressed in NOTs and OCTs. Besides, IHC results 
indicated that FAM83D had a significant difference in 
OCTs compared with NOTs. 

Many studies have shown that the abnormal expression 
of miRNAs is caused by gene aberrations (including 
genetic and epigenetic changes) of many cancer types, 
and plays a role in the occurrence and development of 
cancer through the imbalance of target gene expression. 
Therefore, many miRNAs and their target genes are 
closely related to the pathogenesis of tumors, including 
cell proliferation, cell survival, and cell invasion. Our 
study indicated that plenty of DEGs and DEMs were 
taken part in the process of OC by some pathways and 
had prognostic value. Therefore, suppression of 
FAM83D and upregulated miR-142-3p may have latent 
remedy worth in OC patients. 
 
CONCLUSIONS 
 
Our study indicated some reasons for the procession of 
OC. Plenty of DEMs and DEGs were selected between 
OC tissues and normal ovarian tissues. Besides, miR-
142-3p and FAM83D were selected as latent 
biomarkers of OC. qPCR and IHC results indicated that 
microRNA-142-3p and FAM83D were differentially 
expressed in OC tissues. Besides, luciferase reporter 
assays verified that FAM83D was a direct target of 
miR-142-3p in OC cells. However, we need more cell 
experiments to prove it. 
 
MATERIALS AND METHODS 
 
Microarray data 
 
The RNA-seq data of OC samples and corresponding 
normal ovarian tissues were retrieved from the  
GEO dataset (https://www.ncbi.nlm.nih.gov/geo/). The 
datasets of GSE81873 and GSE27651 were downloaded 
and divided into two groups. 
 
Differently expressed miRNAs research 
 
GEO2R is software for differential analysis of 
expression microarray based on the GEO database. 
 
Limma R package was used to identify DEGs in the 
construction cohort. The screening standards of DEGs 
for functional enrichment analysis were |log2FC|> 1 and 
FDR<0.05. 
 
Gene ontology and pathway enrichment analysis 
 
Transcription factors (TF), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and Gene Ontology (GO) 
enrichment analyses of the DEGs were performed by 
using R clusterProfiler package, including the package 
of "GOplot”, “ggplot2”, “stringi”, “colorspace” and 
“digest”. Then, the pathway and process enrichment 
analyses were carried out by using Cytoscape. 

https://www.ncbi.nlm.nih.gov/geo/


www.aging-us.com 3396 AGING 

MicroRNA-mRNA regulatory network 
 
At present, there are two generally recognized miRNA 
mechanisms: miRNA-mediated mRNA translation 
inhibition and miRNA-mediated mRNA-specific 
cleavage. In addition, researchers also found that 
miRNA may have other regulatory mechanisms, such as 
regulating the localization or stability of target mRNA, 
or acting on target molecules other than mRNAs, such as 
complementary binding with regulatory non-coding 
RNA or even miRNA, or competing with other RNAs to 
bind proteins to achieve its regulatory function. DEMs 
were uploaded to the FunRich software to achieve target 
mRNAs. Furthermore, GSE27651 was researched by 
utilizing R software. Based on the prediction conclusions 
of target mRNAs in FunRich software and the 
differentially expressed mRNAs of GSE27651, the 
microRNA-mRNA network was constructed. 
 
The association between the expression level of 
identified genes and overall survival of patients with 
OC 
 
Kaplan Meier plotter can assess the impact of 54K 
(mRNA, miRNA, protein) on the survival rate of 21 
types of cancer (including breast cancer (n = 6234), 
ovarian cancer (n = 2190), lung cancer (n = 3452) and 
gastric cancer (n = 1440). The sources of the Kaplan 
Meier plotter database include GEO, EGA, and TCGA. 
The main purpose of the tool is the discovery and 
validation of survival biomarkers based on a meta-
analysis. In this study, patients with OC were divided 
into two groups. By uploading the DEGs we identified, 
corresponding survival curves were obtained. 
 
DEGs expression and clinical characteristics in the 
cancer genome atlas 
 
The associated statistics offered by The Cancer Genome 
Atlas. The data of 1037 patients with ovarian cancer were 
downloaded in the TCGA database. The expression level 
of mRNAs, clinicopathological information, and general 
information of patients with OC were achieved. 
 
Immunohistochemical staining 
 
20 pairs of OC tissues were prepared by buffering with 
10% formalin for 24 hours. The study was approved by 
the Ethics Committee of the Second Affiliated Hospital 
of Soochow University and informed consent was 
obtained from all patients. 2 consecutive 5-m sections 
were taken from each formalin-fixed paraffin-embedded 
block and mounted on the glass slide treated with 
aminoalkyl silane, dewaxing with xylene, passing 
through graded alcohol, and then continue rinsing in 
deionized water and phosphate-buffered saline. It was 

blocked by 3% non-immune horse serum. The sections 
were incubated with broad-spectrum anti-cytokeratin 
AE1 / 3 (Dako, Santa Barbara, CA, USA) in 1:50 
dilution overnight at room temperature. After washing 
twice in buffer, an appropriate biotinylated secondary 
antibody was applied for 30 minutes. After two more 
washes in the buffer, appropriate biotinylated secondary 
antibodies were applied for 30 minutes. The sections 
were developed under the microscope in Tris HCl 
buffer (pH 7.4) and 0.03% hydrogen peroxide for  
20 minutes. Application of light Mayer hematoxylin. 
The expressions of FAM83D and β - Catenin were 
detected by the Chi-square test or Fisher exact test. 
GraphPad Prism 9 software was utilized for statistical 
analysis. P-value < 0.05 was considered statistically 
significant. 
 
Real-time quantitative polymerase chain reaction 
 
Total RNA was extracted from OC tissues and normal 
tissues by utilizing TRIzol reagents (Invitrogen, 
Carlsbad, CA, USA) as per the manufacturer’s 
instructions. The total RNA was reverse-transcribed 
into cDNA by utilizing a PrimeScript™RT kit  
with gDNA Eraser (TaKaRa, China). We also 
constructed Quantitative Real-time PCR (qRT-PCR) 
by using SYBR Select Master Mix for CFX 
(Invitrogen) and the CFX Connect Real-Time PCR 
System (BioRad). The amplification conditions are 
95° C for 15s, then 40 cycles, 95° C for 5S, 60° C for 
the 30s. Primer sequences of FAM83D were as 
follows: primer F, 5’- GCACTTCCCTTTGTTGTA 
GTC −3’, primer R, 5’-AGCACTTCCCTTAGG 
TTACTC −3’. Using glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) as endogenous control, the 
recorded data were analyzed and processed by 
2−ΔΔCt. 
 
Luciferase reporter assay 
 
The relationship between miR-142-3p and FAM83D 
was verified by performing a luciferase reporter assay. 
To construct a luciferase ratio vector, we amplified the 
wild or mutant fragment FAM83D 3 ‘- UTR 
containing the hypothetical binding site miR-142-3p 
and subcloned it into luciferase pLUC vector (Wuhan, 
Ruibo, China). OC cells were co-transfected with 
pLUC-FAM83D 3 ‘- UTR wild (WT) or pLUC-
FAM83D 3’ - UTR (MU) mutants and miR-142-3p or 
NC analogues using Lipofectamine 2000 according to 
the manufacturer’s instructions. After 48 hours of 
transfection, the relative activities of luciferase and 
double luciferase were detected by the analytical 
system (Promega, Madison, WI, USA). The luciferase 
activity of fireflies was normalized to Renilla 
luciferase activity. 
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Statistical methods 
 
The data were expressed as mean ± standard error. All 
data analyses were performed using R software (version 
3.6.6) and GraphPad Prism 9 software package 
(GraphPad Software, Inc., La Jolla, California, USA). 
The differences between the two addiction groups were 
compared by student’s t-test. All the experiments were 
made in triplicate. 
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