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INTRODUCTION 
 
The nematode Caenorhabditis elegans (C. elegans) is an 
established model for studying various interventions into 
the aging process, which allowed to find numerous genes 
and drugs interfering with aging. 5 out of 7 Tier 1 and 4 
out of 6 Tier 2 anti-aging drugs considered for human 
trials extend lifespan in the C. elegans model. There are 
many aging pathways conserved among species and the 
worms are expected to be used extensively not only in 
longevity research but also in the appearing anti-aging 
industry [1]. Additionally, humanized worms are now 
used to establish promising models for neurodegeneration 

[2]. However, unlike genetics of longevity, C. elegans 
phenotypes of aging are not well studied yet. Particularly, 
we know little about age-related pathologies and their 
development, as well as, which pathologies determine 
lifespan and how they cause death [3]. Several 
pathologies including gut atrophy, uterine tumours and 
pharyngeal infection were described recently [4–6]. In 
this light, discovering new C. elegans pathologies, 
particularly determining lifespan, is becoming an 
important challenge. Studying pathologies in C. elegans 
might help to get a better understanding of the aging 
process, as well as, the mechanisms and effects of anti-
aging drugs. 
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ABSTRACT 
 
C. elegans is an established model organism for studying genetic and drug effects on aging, many of which are 
conserved in humans. It is also an important model for basic research, and C. elegans pathologies is a new 
emerging field. Here we develop a proof-of-principal convolutional neural network-based platform to segment 
C. elegans and extract features that might be useful for lifespan prediction. We use a dataset of 734 worms 
tracked throughout their lifespan and classify worms into long-lived and short-lived. We designed WormNet - a 
convolutional neural network (CNN) to predict the worm lifespan class based on young adult images (day 1 – 
day 3 old adults) and showed that WormNet, as well as, InceptionV3 CNN can successfully classify lifespan. 
Based on U-Net architecture we develop HydraNet CNNs which allow segmenting worms accurately into 
anterior, mid-body and posterior parts. We combine HydraNet segmentation, WormNet prediction and the 
class activation map approach to determine the segments most important for lifespan classification. Such a 
tandem segmentation-classification approach shows the posterior part of the worm might be more important 
for classifying long-lived worms. Our approach can be useful for the acceleration of anti-aging drug discovery 
and for studying C. elegans pathologies. 
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Recent advances in machine learning (ML) and deep 
learning (DL) [7] may aid aging studies employing 
C. elegans through uncovering and summarizing 
previously unseen behavioral and morphological 
patterns in large experimental datasets. For example, in 
a recent work several physiological parameters were 
measured longitudinally and an application of support 
vector regression allowed to explain different amount of 
variance in C. elegans lifespan by: movement (57%), 
cross-sectional size (5%), texture (42%), 
autofluorescence (52%), oocyte laying rate (28%) [8]. 
Interestingly, it was found that the brood size correlates 
with lifespan in mated hermaphrodite (r = 0.28) [9]. 
Furthermore, independent studies confirm that the 
muscle function is probably the best predicting 
physiological feature: fast pharyngeal pumping span 
(r = 0.49), and pharyngeal pumping span (r = 0.83) were 
found to be highly correlated with the lifespan length 
[10]. Also, maximum velocity at day 9 [11] and the rate 
of speed decay (days 3–9) [12] predict 71% and 91% of 
variability in lifespan accordingly. Cellular and 
molecular predictors of C. elegans lifespan length were 
also discovered. Expression of hsp-16.2 induced by heat 
shock in day 1 adults was found to be correlated with 
lifespan [13]. Free of confounding effects of 
interventions like heat shock, basal expression of sod-3 
at day 9 also correlated with lifespan (r = 0.57), which 
probably reflects response to pathogenic food [14]. 
Mir-71 expression from day 4 onwards can be highly 
predictive and explains 47% of variability in lifespan 
[15]. Strikingly, a strong inverse correlation (r =  
–0.93) between nucleolar size (measured on day 1) 
and longevity indicates deregulated protein synthesis 
as an important component of aging [16]. Noteworthy, 
early on a Machine Vision approach was also applied to 
classify aging phenotypes in C. elegans. Particularly, 
linear discriminant classifier was used to segregate 
images of pharynxes of different ages for subsequent 
molecular characterization [17]. 
 
Among other methods, one of the most powerful 
machine learning approaches, particularly for image 
analyses, is the use of convolutional neural networks 
(CNN) [18], which are inspired by the visual cortex 
neural network organization. CNN allowed to achieve 
impressive results in image recognition, with near 
human performance on MNIST dataset and 
outperformed humans on traffic sign recognition by a 
factor of two [19]. CNN repeatedly showed best 
performance during “The ImageNet Large Scale Visual 
Recognition Challenge” in image classification [20, 21]. 
Introduction of skipped connections to CNN 
dramatically improved their speed and accuracy, and 
such residual CNNs are now state-of-the-art for image 
classification [22, 23]. Encoder-decoder residual 
networks like U-Net [24], V-Net and Tiramisu also 

outperform the classical boundary extraction, threshold 
and region-based methods used in the medical image 
segmentation field [25]. Despite the impressive results 
with DL approaches, one of the main drawbacks is that 
DL networks are black boxes so it is difficult to get the 
features important for decision making by the network 
[26]. To circumvent this shortcoming, several saliency 
techniques have been proposed [27–29]. One such 
technique is using the global average pooling layer to 
produce a so-called class activation map (CAM) and 
localize class-specific image regions in an unsupervised 
manner [30]. The produced generic localizable deep 
features can aid researchers in understanding the basis 
of discrimination used by CNNs for their tasks. 
However, thus far, no approaches to combine 
biologically meaningful image segmentation and 
classification saliency to facilitate phenotype discovery 
through interpretation have been developed. 
 
Remarkably, CNN were recently used to predict 
lifespan in worms. In the first paper, a dataset of 913 
images of C. elegans were used. Each time point (day) 
has at least 30 worms, and all of them were 
anaesthetized before imaging. InceptionResNetV2-
based architecture achieved a mean absolute error 
(MAE) of 0.96 day in the regression mode, and an 
accuracy of 57.6% in classification mode [31]. In 
another work, the authors used an automatic imaging 
system capable of tracking the same worm during the 
whole lifespan, so they had data for 734 worms for 
which images were taken every 3.5 hours. They used 
U-Net to segment worms from the background and then 
performed the worm body coordinate regression to 
create straightened worm representations. Then they 
used a modified ResNet34 and managed to regress 
worm age with minimal MAE of 0.6 days for raw 
images [32]. 
 
Here we used the same dataset as in [8, 32], however 
instead of predicting age of each worm, we develop a 
CNN-based platform we called WormNet capable of 
classifying young adults (day 1–3) into short-lived and 
long-lived, and also design an approach for extracting 
features important for such classification. Similarly, we 
have applied WormNet to classify C. elegans 
movement. To interpret classification results in a 
by-design fashion, we have accompanied classification 
CNN with a tandem segmentation CNN. For this, we 
devised a new U-Net-based architecture (HydraNet) for 
segmenting worms from the background and also 
segmenting the worm's body into anterior, mid-body 
and posterior parts. Interpretation of the classification 
results was achieved through the union of HydraNet 
segmentation and class activation maps generated using 
WormNet. The class activation maps analyses 
combined with body part segmentation in such tandem 
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fashion allowed us to extract features responsible for 
lifespan prediction. Finally, using higher resolution 
segmented version of the C. elegans images, we verified 
our results in a higher expressive capacity residual CNN 
InceptionV3 accompanied by manual interpretation. 
 
RESULTS 
 
The time-lapse data for 734 C. elegans captured from 
day 1 of adulthood till death were used to develop our 
prototype platform [8, 15]. To develop an approach 
for automated interpretability of these images we 
addressed a problem of segmenting the worms from 
their background, as well as distinguishing worms’ 
morphological parts (Figure 1). For this, we have 
manually annotated 130 images of adult worms with 
masks for anterior, mid-body, posterior parts of the 
worm and summing up to a total worm mask (Figure 
1F–1H). This dataset was then split into the train (90) 
and test (40) fractions based on the dataset ID of an 
individual worm to ensure that individual worm features 
would not leak to the test hold-out. First, to address the 
total worm segmentation problem we have constructed 
a relatively shallow architecture akin to U-Net [24] 
accompanied with a sigmoid head for binary classification. 
For clarity, the encoding and decoding parts of U-Net 
are shown on Figure 1A as α and β. The raw images 
were scaled to 96 × 96 pixels for computational 
efficiency. We used the Dice loss function and 
monitored Jaccard index to assess the segmentation 
quality. On this relatively simple segmentation problem 
Jaccard index reached 0.97 on both train and test 
fractions (Figure 1A, 1B, see Materials and Methods for 
detailed hyperparameters). Next, to extend this 
approach to segmentation of individual body parts of C. 
elegans we have reformulated the problem as a multi-
class segmentation with one-hot encoded masks and 
similar U-Net-like architecture (Figure 1C, 1I). 
Unsurprisingly, since a multi-class classification is a 
harder problem, this led to a worse performance of 0.92 
and 0.91 Jaccard index on train and test fraction 
respectively suggesting a mild overfit. 
 
Remarkably, one aspect multi-class U-Net did not 
perform well was distinguishing anterior and posterior 
parts of the worm which led to generating overlapping 
masks (Figure 1I). To circumvent this limitation, we 
have designed an alternative architecture using U-Net 
α and β parts, with multiple β parts dedicated each for 
its own binary segmentation problem (Figure 1D, 1E), 
which we called HydraNet. Such approach creates a 
jointly trained architecture with common input layers 
and layers dedicated for each of the morphological parts 
of the worm, allowing to have an end-to-end model, 
while solving a simpler binary classification problem. 
HydraNet3 was equipped with 3 β parts dedicated to the 

anterior, mid-body, and posterior parts of the worm 
body. HydraNet4, in turn, was equipped with 4 β parts 
dedicated to the anterior, mid-body, posterior parts as 
well as the whole worm body. To estimate joint 
performance of HydraNet we measured Jaccard index 
for each β part individually and finally evaluated the 
average Jaccard index. Remarkably, both HydraNet3 
and HydraNet4 achieved the average Jaccard index 0.97 
on both the train and test fractions demonstrating good 
generalization (Figure 1D, 1E, 1J, 1K). Noteworthy, 
HydraNet4 achieved conversion earlier than HydraNet3 
(Figure 1D, 1E insets) suggesting a potential positive 
effect from accompanying the architecture with a more 
general semantic class. 
 
Next, to obtain classifiers for C. elegans movement or 
lifespan, we split all 734 worms into 2 total movement 
amount classes: low or high movement estimated as 
motility above or below average distance crawled 
during the life-time; and 2 lifespan classes: ‘short-lived’ 
with lifespan 7 days or less, and ‘long-lived’ with 
lifespan 8 days and more. The task was to predict 
classes based on day 1, day 2 or day 3 images. As the 
dataset is relatively small, the use of high expressive 
capacity architectures could lead to overfitting. 
Therefore, we designed a relatively shallow CNN we 
called WormNet. This architecture consisted of 5 
convolutional layers, each followed by a max pooling 
layer. Dropout and batch normalization were implemented 
for each convolutional layer in the neural network to 
improve generalization. The last max pooling layer was 
flattened and attached to a fully connected layer 
followed by a softmax layer. We used binary cross-
entropy as a loss function. All the layers, except the 
latter one, used a rectified linear unit (ReLU) as an 
activation function (Figure 2A, see Materials and 
Methods for detailed hyperparameters). WormNet was 
used to obtain both movement and lifespan classifiers 
(Figures 2 and 3). To further alleviate potential 
overfitting, we performed a 30-fold data augmentation 
using Keras image generators. Specifically, images are 
subject to random horizontal and vertical flipping, 
horizontal and vertical shift within 10% range, as well 
as random rotations within 90 degrees range of the 
original. Blanks in the transformed images were filled 
using the nearest value strategy. 
 
The WormNet showed good performance on total 
movement classification reaching 88% accuracy 
(precision 0.86, recall 0.86, area under curve for 
receiver operating characteristic - AUC ROC - was 
0.56) on the test dataset for the day 3 adults fraction. 
The performance for the day 1 and day 2 images were 
slightly lower (Figure 2B–2D) with ROC AUC of 
0.51 and 0.55 respectively. To ensure our prediction is 
influenced mostly by the worm morphology rather than 
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Figure 1. Devising worm body parts segmentation strategy. (A) Schematic depiction of the U-Net architecture adopted from [24]. 
Here, the transmission light micrograph of C. elegans used as input is depicted on the left-hand side. The reference size of the field-of-view 
is 580.5 µm by 580.5 µm sized to 96 × 96 pixels. A schematic depiction of a binary mask used as output is depicted on the right-hand side. 
The displayed numbers correspond to the number of filters in convolutional (Conv), batch normalization (BN) and activation (Act) layers. 
Max pooling layers were combined with spatial dropout (SDO). Arrows correspond to skip connections from encoder to the mirroring 
decoder layer where a new layer is a result of concatenation (Concat) of a layer from the encoder part to the transposed convolutional 
layer (Transp) from the decoder part. For illustration purposes, parts of architecture were grouped into left (α) and right (β) parts. (B) 
Schematic depiction of the binary classification U-Net architecture variant. (C) Schematic depiction of the multi-class classification U-Net 
architecture variant. (D) Schematic depiction of the HydraNet 3 architecture variant (E) Schematic depiction of the HydraNet 4 architecture 
variant (B–E) Here α is the left and β is the right part of the architecture in (A). Graphs below show training and validation segmentation 
performance of the network measured as Jaccard Index for each training epoch. (F) Test set input data example. (G) Ground truth of 
C. elegans body parts segmentation example. (H) Output example of binary classification U-Net on the test data. (I) Output example of 
multi-class U-Net on the test data. Here, red and blue colored masks overlap making anterior and posterior parts appear magenta. (J) Output 
example of HydraNet 3 on the test data. (K) Output example of HydraNet 4 on the test data. 
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Figure 2. Classification of movement from end-point C. elegans micrographs accompanied by the by-design-interpretation 
based on segmentation and saliency union. (A) Schematic depiction of the WormNet architecture. Numbers correspond to the 
number of filters in convolutional (Conv), fully connected (FC), batch normalization (BN) and activation (Act) layers. Max pooling layers 
were combined with spatial dropout (SDO). (B–D) End-point day 1, 2 and 3 (respectively) micrographs classification loss (cost function), 
accuracy, receiver operating characteristic (ROC) curve, and confusion matrix. Training and test (validation) holdouts are depicted as black 
and light-grey lines respectively. (E) Low movement test micrograph example. (F) Upper quartile of saliency through class activation map 
(CAM) from image in E accompanied by the quantified by-design-interpretation using HydraNet 4 and CAM union (% saliency overlap). One-
way ANOVA with Tukey’s HSD correction. Mean ± SEM, p-value <0.0001. (G) High movement test micrograph example. (H) Upper quartile 
of saliency through class activation map (CAM) from image in G accompanied by the quantified by-design-interpretation using HydraNet 4 
and CAM union (% saliency overlap). One-way ANOVA with Tukey’s HSD correction. Mean ± SEM, p-value <0.0001. Here, the reference size 
of the field-of-view is 580.5 µm by 580.5 µm. 
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its surroundings, we have generated a dataset of 
synthetic background images where C. elegans were 
removed through segmentation. To alleviate worm 
silhouette influence on the training, we have filled the 
remaining zero pixels with random noise 
(Supplementary Figure 1). Our results suggested that 
the model performance is predominantly attributed to 
the C. elegans morphology rather than the background 
of the images. To assess which body part might be 
responsible for the WormNet decision making, using 
our tandem segmentation-classification approach we 
have obtained CAMs for a low movement class worm 
(Figure 2E, 2F) and a high movement worm (Figure 2G, 
2H) from WormNet. Next, each image was segmented 
using HydraNet4 and the union of WormNet upper 
quartile CAM with morphological part segmentation 
from HydraNet4 was obtained. For interpretation 
purposes we have computed the percentage of CAMs 
belonging to a respective morphological segment for 
each respective worm belonging to high or low 
movement class. Furthermore, we assessed the 
significance of this by-design interpretation using 
one-way ANOVA with Tukey’s honest significant 
difference (HSD) correction (Figure 2F – low movement 
worms, Figure 2H – high movement worms). The 
comparison suggested that the anterior part was covered 
significantly less (31%) than mid-body (34%) and 
posterior parts (34%) for both low and high movement 
worms. There was no significant difference between the 
mid-body and the posterior part of the body. 
 
Next, we used WormNet to classify long and short-lived 
worms. Similarly to movement classification, the 
WormNet performed better on day 3 adults sample 
reaching accuracy of 72% (precision 0.73, recall 0.71, 
AUC ROC 0.61) on the test dataset, as compared to 
AUC ROC of 0.53 and 0.52 for day 2 and 1 
respectively. The confusion matrix analysis suggested 
that the CNN underperformed in short-lived worms 
classifying (Figure 3A–3C). Next, we have interpreted 
the classifier using the tandem of HydraNet4 and 
WormNet accompanied by a one-way ANOVA 
statistical test. In the case of lifespan classification, by-
design interpretation suggested that at 32% the anterior 
part was significantly less pronounced in CAMs 
compared to the mid-body and the posterior part (Figure 
3D, 3E – short lifespan, Figure 3F, 3G – long lifespan). 
This difference was less significant for long lifespan 
than for short lifespan. There was no significant 
difference between the mid-body and the posterior part. 
 
To verify these findings in an independent manner we 
have trained another lifespan classifier using the 
residual InceptionV3 architecture [33] accompanied by 
a manual interpretation (Figure 4). Furthermore, in this 
case to ensure high resolution of the CAMs instead of 

scaling to 96 × 96 pixels, the full resolution 900 × 900 
images cropped to 800 × 800 pixels (516 × 516 μm) 
were used. As a much higher expressive capacity CNN, 
InceptionV3 was prone to overfitting on our relatively 
small dataset (Figure 4C, 4D). To circumvent this, we 
have implemented early stopping during training. 
Additionally, we segmented the worms from their 
background ensuring InceptionV3 is presented only 
with the relevant part of the image. InceptionV3 
performed similarly to WormNet with the accuracy 
reaching 70% on the test dataset for lifespan 
classification (Figure 4A). Consistently with the tandem 
HydraNet4-WormNet approach to interpretation, in the 
case of the manual interpretation, the anterior part of the 
worm was highlighted by the InceptionV3 CAM less 
frequently. Importantly, however, due to the higher 
resolution of the input images, the CAMs now localized 
the body parts much better, allowing to assign a body 
part as a possible discriminator in each case (Figure 
4B). Interestingly, the distribution of the body parts 
highlighted by CAM’s analysis demonstrates that the 
posterior part is more important for long-living worms’ 
classification, suggesting that the features predicting 
longevity could be located in the posterior part of the 
worm body. 
 
DISCUSSION 
 
Despite C. elegans being a classical model in aging 
research with more than 4000 papers published up to 
date, and the progress in robotics, the process of 
measuring C. elegans lifespan is still manual and 
laborious. However, new approaches are emerging like 
lifespan machine utilizing flatbed scanners to 
simultaneously assess the viability of a large population 
of worms on plates [34]. Another approach is Worm 
corals – an automated vermiculture method allowing to 
track worms throughout their lifespan with much better 
detailed measurements [8]. The detailed physiological 
data produced on Worm corals showed that movement, 
autofluorescence and textural degradation are the best 
predictors of lifespan. However, it remains unclear what 
exact morphological features reflect pathologies and 
determine the lifespan length. It was also found that 
physiological measurements before day 3 or 4 of 
adulthood as well as single GFP labelled biomarkers are 
not able to distinguish short and long-lived worms 
[8, 15]. Nucleolar-based predictions made on day 1 
adults are performed using 100× magnification on fixed 
worms, which is not achievable for any automated 
screening platform. 
 
Here we worked with the dataset generated in Pincus 
lab [8, 15], and showed that the application of newly 
designed WormNet was able to successfully 
discriminate between short and long-lived worms even 
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for images taken at day 1 or day 2; importantly, for day 
3 the CNN demonstrated the best performance (Figure 
2A–2C). WormNet was even better at classifying 

worms with high and low total movement, achieving 
88% accuracy for day 1 adults (Figure 3). We expect 
that generating more data and developing the CNN 

 

 
 
Figure 3. Classification of lifespan from end-point C. elegans micrographs accompanied by by-design-interpretation based 
on segmentation and saliency union. (A–C) End-point day 1, 2 and 3 (respectively) micrographs classification loss (cost function), 
accuracy, receiver operating characteristic (ROC) curve, and confusion matrix. Training and test (validation) holdouts are depicted as black 
and light-grey lines respectively. (D) Short lifespan test micrograph example. (E) Upper quartile of saliency through class activation map 
(CAM) from image in D accompanied by the quantified by-design-interpretation using HydraNet 4 and CAM union (% saliency overlap). 
One-way ANOVA with Tukey’s HSD correction. Mean ± SEM, ***p-value <0.001, ****p-value <0.0001. (F) Long lifespan test micrograph 
example. (G) Upper quartile of saliency through class activation map (CAM) from image in F accompanied by the quantified by-design-
interpretation using HydraNet 4 and CAM union (% saliency overlap). One-way ANOVA with Tukey’s HSD correction. Mean ± SEM, *p-value 
<0.05, **p-value <0.01. Here, the reference size of the field-of-view is 580.5 µm by 580.5 µm. 
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architecture could further improve the performance of 
WormNet by decreasing overfitting and bias. 
 
CNN were used before for regressing and classifying C. 
elegans lifespan [31]. The authors manually classified 
curvy and straight postures of nematodes which allowed 
them to improve their accuracy, which still remained 
relatively low due to small sample size (913 images). 
Pincus' dataset was also used to assess CNN ability to 

predict lifespan [32]. As mentioned earlier, the authors 
segmented the worms and created straightened worm 
representations, which were used for CNN training [32]. 
Increased number of samples improved the regression-
based prediction of worm age. Interestingly, the authors 
found that worm silhouette alone has limited 
information for age estimation, whereas the information 
from background can significantly improve the 
accuracy, though the predictive value of background is 

 

 
 

Figure 4. Class activation maps  (CAMs) of the  InceptionV3 network overfitted on high resolution  images allow  localizing 
lifespan‐related regions.  (A) Examples of the class activation maps pointing to anterior (left) or posterior (right) parts of a worm. Here 
516 by 516 µm area was represented by the 800 × 800 px input image for higher resolution input. (B) C. elegans body parts importance for 
class prediction measured as the percent of occurrence of body parts highlighted on the CAMs. (C–D) Loss and accuracy training statistics 
for InceptionV3 network. 



www.aging-us.com 1673 AGING 

an artefact of experimental conditions. Therefore, it 
might be possible that the predictive accuracy of 
WormNet in our simulations can be partly explained by 
the background information. However, as our 
experiments suggest (Supplementary Figure 1), 
WormNet performance mostly depend on the C. elegans 
morphology rather than the background of the images. 
Importantly, pretraining on the body-coordinate 
representations in [32] improved accuracy on raw 
images which suggests that worm organs and texture are 
useful for age prediction. 
 
In addition to lifespan or movement classification based 
on young adults’ images, we also aimed to find features 
important for the prediction. As a prototype task we 
decided to determine which body part – anterior, mid-
body or posterior part contains features influencing 
lifespan length the most. We designed HydraNet 3  
and 4, new architectures based on U-Net and showed 
that they can successfully segment worm body parts 
achieving perfect Jaccard index values. Importantly, to 
develop a by-design interpretation approach we 
employed a tandem of biologically meaningful 
classification (lifespan and movement) yielding saliency 
through class activation maps [30, 35] and 
morphological segmentation (anterior, mid-body and 
posterior regions) to find which body part is useful for 
the classifications. Furthermore, although less resolved, 
findings obtained from the tandem approach were 
consistent with an independently trained classifier. This 
binary classifier was based on the InveptionV3 CNN. It 
was trained on 800 × 800 pixels full optical resolution 
images with worms segmented from their background 
and achieved results comparable to WormNet, though 
the model is less generalizable due to more overfitting 
(Figure 4). However, in the case of InceptionV3, 
distinct body parts could be localized on the CAMs, and 
the analyses suggest that features located in the 
posterior part of the worm might be more important for 
classifying long-lived worms. 
 
This approach provides an avenue to the discovery of 
new important age biomarkers in C. elegans in an 
automated setting, given a significant increase in image 
resolution and usage of body-coordinate representation. 
Non-labelled organs like pharynx or GFP-labelled 
entities could be segmented using HydraNets and 
assessed for their lifespan predictive ability using CAM 
approach and WormNet. It is tempting to speculate that 
akin to generative adversarial networks [36], future 
implementations of the by-design interpretability 
through a tandem of segmentation and classification 
may be trained end-to-end and employed for routine 
scientific discovery. The proof-of-principle automated 
analytical platform will be useful for non-invasive aging 
biomarkers discovery, particularly in young day 1–3 

adult C. elegans. This has a great potential to accelerate 
the pharmaceutical screening for anti-aging drugs. The 
development of the methodology will also be helpful to 
find and characterize new pathologies in C. elegans 
important for basic aging research. To make the code 
available to the research community we have deposited 
it on GitHub (https://github.com/ails-
institute/DeepLongevity). 
 
MATERIALS AND METHODS 
 
Code implementation 
 
All the source code for this work was implemented in 
Python version 3.6, Tensorflow versions 1.9.0 or 2.3.0 
[37] and Keras version 2.2.2 [38]. Tensors pre-processing 
and manipulation was implemented in Numpy 1.15.0 
[39]. Python environment was maintained using anaconda 
distribution. Source code is available on GitHub 
(https://github.com/ails-institute/DeepLongevity). 
 
Model training 
 
Training of WormNet, and fine-tuning of InceptionV3 
were performed on a desktop PC equipped with Intel 
Core i7-8700K CPU at 3.7 GHz and 32 GB of RAM as 
well as GeForce 1080 Ti GPU. Training of U-Net and 
HydraNet were performed using Google Collaboratory 
cloud GPU (e.g., NVIDIA Tesla V100). Inference and 
analysis were performed using Google Collaboratory. 
 
Hyperparameters 
 
WormNet used binary cross-entropy as a loss function 
and was trained using Adam optimizer with a starting 
learning rate of 0.005, beta 1 of 0.9, beta 2 of 0.999, 
epsilon of 1e-08, and decay of 0. A 30-fold data 
augmentation was performed for each epoch. U-Net and 
HydraNet were trained using Adam optimizer with a 
starting learning rate of 0.001 and default parameters. 
Dice loss function was used for the semantic 
segmentation task (see https://github.com/ails-
institute/DeepLongevity). 
 
Statistical analysis 
 
Statistical significance was evaluated using one-way 
ANOVA with Tukey’s HSD correction employing 
GraphPad Prism software. 
 
Architecture design and hyperparameters tuning 
 
To ensure optimal performance of U-Net, WormNet, 
HydraNet and InceptionV3 architectures 
hyperparameters including, but not limited to the rate of 
learning, regularization through dropout coefficient 

https://github.com/ails-institute/DeepLongevity
https://github.com/ails-institute/DeepLongevity
https://github.com/ails-institute/DeepLongevity
https://github.com/ails-institute/DeepLongevity
https://github.com/ails-institute/DeepLongevity
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were heuristically optimized. For the baseline 
comparison, all hyperparameters across similar 
architectures were kept comparable. In case of novel 
architectures, during the design process the expressive 
capacity or depth of the architecture was started at 
lowest applicable size and gradually increased until the 
point of performance convergence. 
 
The dataset 
 
Raw images were deposited to BioImage Archive (EMBL): 
https://www.ebi.ac.uk/biostudies/studies/S-BIAD300. 
 
Abbreviations 
 
AUC ROC: area under the curve receiver operating 
characteristic; CAM: class activation map; CNN: 
convolutional neural network; MAE: mean absolute 
error; ReLU: rectified linear unit. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 
Supplementary Figure 1. Background contribution investigation. (A) Example of a raw (unsegmented) C. elegans micrograph. (B) 
Example of a micrograph with segmented C. elegans removed and substituted by a random noise – i.e., synthetic background. (C) 
Comparison of WormNet performance on an unseen validation dataset of unsegmented images (black) and synthetic background (grey). 
 




