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INTRODUCTION 
 

Sepsis is described as an abnormal immune-

inflammatory response that is caused primarily by 

infection. This condition can lead to life-threatening 

multiple organ dysfunction syndrome and death [1]. 

More than 31.5 million people worldwide are threatened 

with sepsis annually; of them, more than 5.3 million die 

[2]. In China, more than 20% of patients in the intensive 

care unit (ICU) develop sepsis, and the mortality rate 

among these patients is as high as 36% [3]. Despite 

tremendous efforts made for decades, there is no 

specific treatment for sepsis [4]. Traditional therapy 

often ignores the immunopathological nature of sepsis, 

making it difficult to improve the survival of patients 

with severe sepsis and septic shock [5]. Vascular 

smooth muscle cells (VSMCs) are present in the media 

layer of blood vessels and regulate the tension and 

contraction of blood vessels [6]. Unlike vascular 

endothelial cells, the role of VSMCs in sepsis is often 

overlooked [7]. The increased permeability of 

endothelial cells in sepsis allows direct contact of 

VSMCs with inflammatory mediators in the blood, 

which could lead to disruption of the autoregulation of 

normal blood vessels [8]. Vascular dysregulation and 

the toxicity of inflammatory mediators may be 
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ABSTRACT 
 

Sepsis is an abnormal immune-inflammatory response that is mainly caused by infection. It can lead to life-
threatening organ dysfunction and death. Severely damaged tissue cells will release intracellular histones into 
the circulation as damage-related molecular patterns (DAMPs) to accelerate the systemic immune response. 
Although various histone-related cytotoxicity mechanisms have been explored, those that affect extracellular 
histones involved in vascular smooth muscle cell (VSMC) dysfunction are yet to be determined. We found that 
extracellular histones induced senescence and inflammatory response in a dose-dependent manner in cultured 
VSMCs. Histone treatment significantly promoted apoptosis-associated speck-like protein containing CARD 
(ASC) as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3) interaction of inflammasomes in 
VSMCs. Forkhead box protein O4 (FOXO4), which is a downstream effector molecule of extracellular histones, 
was found to be involved in histone-regulated VSMC inflammatory response and senescence. Furthermore, the 
5'-AMP-activated protein kinase (AMPK) signaling pathway was confirmed to mediate extracellular histone-
induced FOXO4 expression, and blocking this signaling pathway with an inhibitor can suppress vascular 
inflammation induced by extracellular histones in vivo and in vitro. These results suggest that the AMPK/FOXO4 
pathway is a potential target in treating histone-mediated organ injury. 

mailto:hangyang_gpph@163.com
https://orcid.org/0000-0003-1637-4499
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 2 AGING 

important factors for organ dysfunction [9]. Therefore, 

controlling the dysregulated immune response and 

balancing the function of VSMCs should be considered 

to reduce the incidence of death due to sepsis. 

 

Histones are highly cationic nuclear proteins that are 

mainly present in the nucleus and participate in 

chromatin assembly and regulation of gene expression 

[10]. When cells are exposed to harsh conditions, 

histones are released into the circulation and serve as 

damage-related molecular patterns [11]. Circulating 

histones interact with phospholipids in the cell 

membrane to mediate distant organ damage [12]. 

Histones also mediate inflammation, organ damage, and 

death by activating the Toll-like receptor (TLR) and 

NACHT, LRR and PYD domains-containing protein 3 

(NLRP3) inflammasome pathways [13–15]. Emerging 

research has shown that extracellular histones play a 

role in multiple organ damage and death in sepsis [16]. 

Shi et al. found that lipopolysaccharide (LPS)-induced 

extracellular histones can cause septic pyrolysis via the 

NOD2 and VSIG4/NLRP3 pathways [17]. Extracellular 

histones were found to induce autophagy and apoptosis 

of human endothelial cells via the mTOR signaling 

pathway [13]. Circulating histones can cause 

cerebrovascular damage or brain dysfunction by altering 

the blood–brain barrier [18]. Although VSMCs play a 

key role in sepsis [19, 20], the effect of extracellular 

histones on VSMCs in organ injury remains unclear. 

 

Previous research found that extracellular histones are 

cytotoxic to endothelial cells [13]. However, if 

extracellular histones are also cytotoxic to VSMCs, they 

may lead to cell responses that might worsen the 

disease. Thus, elucidating the mechanism underlying 

histone-mediated cytotoxicity could aid in 

understanding the complex pathogenesis of organ 

injury. In this study, we found that extracellular histones 

facilitate VSMC senescence and inflammation in a 

dose-dependent manner. In addition, Forkhead box 

protein O4 (FOXO4), a downstream histone regulator, 

was found to be involved in histone-regulated VSMC 

inflammation and senescence. Mechanically, the AMPK 

signaling pathway mediates extracellular histone-

induced FOXO4 expression. Targeting AMPK/FOXO4 

might be a potential method for treating histone-

mediated organ injury. 

 

RESULTS 
 

Extracellular histones facilitate VSMC senescence 

and inflammation 

 

A previous study reported that extracellular histones 

induce apoptosis of human endothelial cells [13]. 

However, the damage caused by extracellular histones 

in VSMCs remains unclear. In this study, VSMCs were 

treated with various concentrations of extracellular 

histones, and cell viability was examined using flow 

cytometry. As shown in Figure 1A, cell viability was 

hardly reduced at 25 μg/mL; however, the reduction in 

the number of cells was more pronounced when the 

cells were incubated with 50–100 μg/mL histones. 

However, the number of cells incubated with 150 

μg/mL histones did not change significantly compared 

with that incubated with 100 μg/mL histones. After 6 h 

of treatment with 100 μg/mL histones, the number of 

cells began to significantly reduce, which was not 

significantly different from that at 12 and 24 h 

(Figure 1B). To examine whether histones facilitate 

VSMC senescence, we performed SA β-gal staining. 

The results showed that as the concentration of histones 

increased, the number of SA β-gal-positive cells also 

increased (Figure 1C and 1D). Western blotting analysis 

showed similar results through assessment of 

senescence marker genes (Figure 1E and 1F). Next, we 

investigated the expressions of inflammatory cytokines 

after VSMC treatment with varying concentrations of 

extracellular histones. As expected, histone treatment 

significantly increased the mRNA expressions of IL-β, 

TNF-α, and IL-18 in a dose-dependent manner 

(Figure 1G–1I). These data suggest a function of 

extracellular histones in VSMC senescence and 

inflammation in organ injury. 

 

Extracellular histones promote inflammasome 

assembly 

 

To explore how extracellular histones exert their 

functions, the expression of inflammasome molecules in 

VSMCs treated with various concentrations of histones 

were tested. As indicated in Figure 2A and 2B, histone 

treatment markedly elevated NLRP3, apoptosis 

associated speck-like protein containing CARD (ASC), 

and caspase-1 protein levels in VSMCs. RT-qPCR 

showed the same results (Figure 2C). Next, we 

performed double immunofluorescence staining and 

found that as the number of histones increased, ASC 

and NLRP3 expression increased and were co-located 

in the cytoplasm (Figure 2D and 2E). To investigate 

whether histones affect inflammasome assembly, co-

immunoprecipitation (CoIP) assay was performed. The 

results indicated that histone treatment significantly 

increased the interaction of ASC and NLRP3 in VSMCs 

(Figure 2F). Collectively, these data support the role of 

histones in inflammasome assembly regulation. 

 

FOXO4 is a downstream regulator of histone-treated 

VSMC 

 

To investigate how histones regulate inflammation and 

senescence, we partly examined candidate genes 
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reported with abnormal expression in organ injury 

[21, 22]. As indicated in Figure 3A, histone treatment 

significantly increased FOXO4, NR1H4, and HOXA9 

expression and reduced HMGB1 expression in VSMCs. 

Next, FOXO4 expression at different concentrations of 

histone cell treatment was confirmed. The results 

showed that the mRNA and protein levels of FOXO4 

dose-dependently increased (Figure 3B–3D). Consistent 

with this, immunofluorescence staining indicated 

similar results (Figure 3E). Besides, p21 expression 

increased with FOXO4 in histone-treated VSMCs 

(Figure 3E and 3F). These data suggest that FOXO4 is a 

downstream effector molecule of histones and may 

participate in VSMC senescence. 

 

FOXO4 is involved in the histone-induced VSMC 

inflammatory response and senescence 

 

To study the function of FOXO4 in VSMCs, FOXO4 

was knocked down with two shRNAs and effect of the 

knockdown was confirmed. As indicated in Figure 4A–

4C, transfection of shFOXO4-1# or shFOXO4-2# 

significantly reduced mRNA and protein levels. Next, 

FOXO4 was knocked down and then treated with 

 

 
 

Figure 1. Extracellular histones promote VSMC senescence and the inflammatory response. VSMCs were treated with various 

concentrations of histones (0, 10, 25, 50, 100 and 150 μg/mL). (A) The CCK-8 assay was performed to determine cell viability. (B) Cells were 
treated with 100 μg/mL histones, and the CCK-8 assay was performed to determine cell viability at different time points. (C) SA β-gal 
staining was used to evaluate cell senescence. (D) Quantitative analysis of SA β-gal-positive VSMCs. (E) Western blotting was performed to 
analyze p16, p21, and p53 protein expression. (F) Quantitative analysis of (E). (G–I) RT-qPCR was performed to determine the expressions 
of inflammatory cytokines IL-β, TNF-α, and IL-18. For (A, B, D, and F–I), data are from three independent experiments; mean ± SEM; 
Student's t-test, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the corresponding control. 
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histones in VSMCs. We found that histone treatment 

markedly promoted an SA β-gal-positive cell number, 

while FOXO4 depletion simultaneously reversed these 

effects (Figure 4D and 4E). In parallel, FOXO4 deletion 

significantly suppressed the histone-induced promotion 

of inflammatory cytokine expression in VSMCs (Figure 

4F and 4G). Collectively, these data establish that 

FOXO4 regulates histone-induced VSMC inflammatory 

response and senescence. 

The AMPK signaling pathway mediates extracellular 

histone-upregulated FOXO4 expression 

 
To identify which signaling pathway may regulate 

FOXO4 expression by extracellular histones, VSMCs 

were treated with and without histones. Western 

blotting was used to examine the molecular expression 

of the signal pathway. The results indicated that 

histones decreased the protein levels of p-AKT, p-Rb1, 

 

 
 

Figure 2. Extracellular histones facilitate NLRP3 inflammasome assembly. VSMCs were treated with various concentrations of 

histones (0, 10, 25, 50, and 100 μg/mL) for 6 h. (A) Western blotting was performed to analyze NLRP3, ASC, and caspase-1 inflammasome 
protein expression. (B) Quantitative analysis of (A). (C) RT-qPCR was performed to determine the mRNA expressions of NLRP3, ASC, and 
caspase-1. (D) Double immunofluorescence staining was performed to explore ASC and NLRP3 expression and colocation (green, ASC; red, 
NLRP3; blue, DAPI). Bar = 25 μm. (E) Quantitative analysis of the fluorescence intensity of ASC and NLRP3 from (D). (F) VSMCs were treated 
with or without histones (100 μg/mL), and CoIP was performed to examine the interaction of NLRP3 and ASC. For (B, C and E), data are from 
three independent experiments; mean ± SEM; Student's t-test, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the corresponding control. 
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and p-mTOR but increased AMPK and p-AMPK 

expression (Figure 5A and 5B). A previous study 

reported that Rb-1 was an upstream inhibitor of 

FOXO4 [23]. Next, an AKT (LY294002) and AMPK 

(BML-275) inhibitor was used to stimulate histone-

treated VSMCs and confirmed that BML-275 could 

inhibit histone-promoted NLRP3, p21, and FOXO4 

expression and increase histone-suppressed p-Rb1 

expression (Figure 5C and 5D). Furthermore, the 

expression of inflammatory cytokines in BML-275-

treated VSMCs has been examined after shFOXO4 

transfection. It was found that FOXO4 depletion 

significantly downregulated IL-β, and TNF-α 

expression in VSMCs, while simultaneous BML-275 

treatment has further enhanced this effect (Figure 5E). 

Together, these data showed that the AMPK signal 

pathway is involved in histone-regulated FOXO4 

expression and could be a vital regulator in histone-

mediated organ injury. 

 

Blocking the AMPK signal pathway inhibits 

vascular inflammation induced by extracellular 

histones in vitro 

 

To examine the effect of extracellular histones on 

VSMCs in vivo, mice were treated with histones while 

 

 
 

Figure 3. FOXO4 is a downstream target of histone-regulated senescence and inflammation in VSMCs. (A) VSMCs were 

treated with or without histones (100 μg/mL), and RT-qPCR was performed to determine candidate gene expression. (B–D) VSMCs were 
treated with various concentrations of histones, and FOXO4 mRNA expression was determined using RT-qPCR (B) or western blotting (C and 
D). (E) VSMCs were treated with various concentrations of histones, and double immunofluorescence staining was performed to determine 
FOXO4 and p21 expressions. (F) Quantitative analysis of the fluorescence intensity of FOXO4 and p21 from (E). For (A, B, C, and F), data are 
from three independent experiments; mean ± SEM; Student's t-test, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the corresponding control. 
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giving BML-275 treatment or not. The results showed 

that histone treatment markedly upregulated ACS and 

NLRP3 expression in the layer of VSMCs. However, 

the BML-275 treatment significantly reversed these 

 

 
 

Figure 4. FOXO4 is involved in extracellular histone-facilitated VSMC inflammation and senescence. (A–C) VSMCs were 

transfected with shFOXO4-1#, shFOXO4-2#, or shCon vectors; then, RT-qPCR and western blot were performed to determine FOXO4 
expression. (D) VSMCs were treated with histones after being transfected with shFOXO4 or shCon vector, and SA β-gal staining was performed 
to evaluate cell senescence. (E) Quantitative analysis of relative SA β-gal-positive cell numbers from (D). (F and G) RT-qPCR was performed to 
determine the expressions of the inflammatory cytokines IL-β and TNF-α in VSMCs after the indicated treatment. For (A, C, E, F, and G), data 
are from three independent experiments; mean ± SEM; Student's t-test, *P < 0.05 and **P < 0.01 vs. the corresponding control. 
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effects (Figure 6A and 6B). In parallel, extracellular 

histones increased the expression of the inflammatory 

cytokines IL-β, and TNF-α in VSMCs in vitro, while 

BML-275 treatment simultaneously depressed their 

expression (Figure 6C). To study whether BML-275 has 

a beneficial effect on decreasing histone-induced organ 

damage, the levels of cardiac troponin I (cTnI), alanine 

aminotransferase (ALT), and blood urea nitrogen 

(BUN) in the serum of mouse models were tested. As 

indicated in Supplementary Figure 1, histones-treated 

mice significantly increase ALT, BUN and cTnl levels 

in serum. However, BML-275 treatment markedly 

reduces these protein levels in histones-induced mice. 

Additionally, double immunofluorescence staining 

showed that extracellular histones elevated FOXO4 and 

p21 expression in VSMCs in vitro, but blocking the 

AMPK signal pathway with BML-275 reversed the 

expression of these genes (Figure 6D and 6E). 

Additionally, extracellular histones significantly 

promoted senescence relative marker gene p16, p21, 

and p53 expression, while BML-275 treatment 

decreased this promotion of histones (Figure 6F). To 

examine whether histones or histones + BML-275 

treatment in vivo affected the AMPK/FOXO4 pathway, 

we detected these proteins level by Western blotting. As 

indicated in Supplementary Figure 2, the expression of 

p-AMPK and FOXO4 was significantly elevated in 

histones-treated vascular tissue. However, p-AMPK and 

FOXO4 protein levels were depressed while BML-275 

treatment simultaneously. Together, these results 

showed that extracellular histones significantly promote 

inflammation and senescence in VSMCs, and blocking 

the AMPK signaling pathway by BML-275 would 

partly reverse these effects. 
 

DISCUSSION 
 

In this study, we explored the role of extracellular 

histones in regulating the senescence and inflammation 

of VSMCs via the AMPK/FOXO4 axis. We found that 

 

 
 

Figure 5. The AMPK signaling pathway mediates extracellular histone-upregulated FOXO4 expression. (A) VSMCs were 

treated with or without histones; then, western blot was used to examine the protein level of the signal pathway molecule. (B) Quantitative 
analysis of (A). (C) VSMCs were treated with histones and then incubated with the AKT pathway inhibitor (LY94002) or the AMPK pathway 
inhibitor (BML-275) for 6 h. NLRP3, p21, FOXO4, and p-Rb1 protein levels were determined using western blotting. (D) Quantitative analysis 
of (C). (E) IL-β and TNF-α expressions were determined using RT-qPCR in BML-275-treated VSMCs after shFOXO3 transfection. For (B, E, and 
D), data are from three independent experiments; mean ± SEM; Student's t-test, *P < 0.05 and **P < 0.01 vs. the corresponding control. 
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extracellular histones induced senescence and the 

inflammatory response of VSMCs in a dose-dependent 

manner. We also found that FOXO4, which is a 

downstream effector molecule of extracellular histones, 

is involved in histone-regulated VSMC inflammatory 

response and senescence. Furthermore, the AMPK 

signaling pathway was found to mediate extracellular 

histone-induced FOXO4 expression. Disruption of the 

AMPK signaling pathway by inhibitors obstructed 

extracellular histone-induced vascular inflammation in 

vivo and in vitro (Figure 7). 

 

Endothelial cells play an important role in vascular 

dysfunction associated with sepsis [24, 25]. However, 

increasing evidence has demonstrated that VSMCs are 

involved in sepsis in a manner that is independent of 

endothelial cells [26, 27]. Because VSMCs are not in 

direct contact with the bloodstream, it appears that 

 

 
 

Figure 6. Blocking the AMPK signaling pathway can inhibit vascular inflammation induced by extracellular histones. (A) Mice 

were treated with saline (n = 18), histones (n = 18), or histones + BML-275 (n = 18) for 24 h. Double immunofluorescence staining was used to 
measure the expression of ASC and NLRP3 in the blood vessels (green, ASC; red, NLRP3; blue, DAPI). Bar = 100 μm. (B) Quantitative analysis 
of the fluorescence intensity of ASC and NLRP3 from (A). (C) RT-qPCR was performed to determine IL-β and TNF-α expressions in the mice 
treated as stated above. (D) Double immunofluorescence staining was performed to measure the expression of FOXO4 and p21 in the blood 
vessels (green, FOXO4; red, p21; blue, DAPI). Bar = 100 μm. (E) Quantitative analysis of the fluorescence intensity of FOXO4 and p21 from (A). 
(F) RT-qPCR was performed to determine p16, p21, and p53 expressions in the mice treated as stated above. For (B, D, E and F), data are 
from three independent experiments; mean ± SEM; Student's t-test, *P < 0.05, **P < 0.01, and ***P < 0.001 vs. the corresponding control. 
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sepsis damages VSMCs after the improvement of 

acute illness. In the early and late stages of sepsis, the 

contractile function of VSMCs is impaired [28]. This 

shows that VSMCs might be involved in the entire 

sepsis process. Macrophages treated with LPS release 

a large number of extracellular histones that interact 

with target cell receptors (especially TLR4) to promote 

inflammation [29]. In sepsis, alterations in the normal 

autoregulation of perfusion and the toxic effects of the 

media can lead to severe organ dysfunction [7]. 

Although VSMCs have been shown to play a key role 

in sepsis [19, 20], the effect of extracellular histones 

on VSMCs in sepsis is unclear. In this study, we found 

that extracellular histones induced the senescence and 

inflammatory response of VSMCs in a dose-dependent 

manner. FOXO4 is involved in histone-regulated 

VSMC inflammatory response and senescence. 

Blocking of the AMPK signaling pathway by 

inhibitors altered extracellular histones-induced 

vascular inflammation. We found that histones 

significantly activated the inflammatory response of 

VSMCs. Previous studies reported that extracellular 

histones target TLR2, 4, and 9 in various cell types 

and activate cellular inflammation and cell damage 

[30–32]. For example, histones cause glomerular cell 

damage by activating TLR2 and 4 [33] and hepatic 

reperfusion injury by activating TLR9 [34]. TLRs are 

a vital inflammatory response pathway. Additionally, 

several studies have indicated that TLRs are closely 

related to AMPK signaling pathways [35–38]. 

Therefore, we speculated that TLRs are potential 

receptors for histones and activate the AMPK 

signaling pathway. 

 

The FOXO family of proteins comprise a series of 

transcription factors, including FOXO1, FOXO3a, 

FOXO4, and FOXO6 [39]. According to upstream and 

downstream gene regulation, FOXO4 can be used as a 

transcriptional activator and repressor [40, 41]. Several 

studies have shown that FOXO4 is involved in the 

regulation of various processes, including cell 

proliferation, apoptosis, autophagy, cell senescence, 

inflammation, and energy production [42–46]. Zhang et 

al. found that GUARDIN serves as a scaffold to 

stabilize the LRP130/PGC1α heterodimer to promote 

FOXO4 expression and upregulate the expression of the 

target gene p21, causing cell senescence [47]. The 

activation of FOXO4 in melanoma promotes the 

transcription of p21 and subsequently accelerates cell 

senescence [48]. Using FOXO4-knockout mice, Zhu et 

al. found that FoxO4 promotes early inflammatory 

response in myocardial infarction by regulating Arg1 

expression [45]. Blocking the interaction between 

XBP1u and FoxO4 promoted the nuclear translocation 

of FoxO4, promoted in vitro proinflammatory activity, 

and stimulated the formation of aortic aneurysms [49]. 

In the present study, extracellular histones promoted 

FOXO4 expression, which is then involved in the 

histone-regulated VSMC inflammatory response and 

senescence. Deletion of FOXO4 suppressed the 

promoting effect of histones on inflammatory cytokine 

expression and SA β-gal-positive cells in VSMCs. 

 

 
 

Figure 7. Proposed model for extracellular histone-mediated inflammation and senescence in VSMCs. Extracellular histones 

activate the AMPK pathway, which then promotes FOXO4 phosphorylation and entry into the nucleus. FOXO4 subsequently promotes p21 
and NLRP3 expression. 
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In conclusion, extracellular histones damaged VSMCs 

in vivo and in vitro. Extracellular histones induced an 

inflammatory response and senescence of VSMCs. 

FOXO4 expression was mediated by the AMPK 

signaling pathway in histone-treated VSMCs. Deleting 

FOXO4 or blocking the AMPK signaling pathway 

could relieve the extracellular histone-induced 

inflammatory response and senescence of VSMCs. 

AMPK/FOXO4 might be potential targets in the 

treatment of histone-mediated organ injury. 

 

MATERIALS AND METHODS 
 

Cell culture and treatment 

 

Mouse aortic vascular smooth muscle cells (ATCC, 

No.CRL-2797TM) were routinely cultured in low-

glucose Dulbecco’s modified Eagle’s medium (Gibco 

Life Technologies, Rockville, MD) containing 100 

units/ml of penicillin, 100 μg/ml of streptomycin, and 

10% fetal bovine serum (Gibco) in a humidified 

incubator at 37°C with 5% CO2. The cells from 

passages 3 to 6 were used in all studies. The cells were 

maintained in 5% CO2 at 37°C within a humidified 

atmosphere, and their morphology and α-SMA 

expression were evaluated. When the cells attained 80% 

confluence, the media was replaced, and the cells were 

exposed for 6 h to various concentrations of calf thymus 

histone (10, 25, 50, or 100 μg/mL prepared in PBS; pH 

7.4 [Gibco]) [50]. LY294002 (Selleck) was used as a 

PI3K/AKT inhibitor, as previously described [51]. The 

AMPK inhibitor BML-275 (4 μM; Selleck) was used in 

this study [52]. 

 

Western blotting 

 

According to a previous description [4], 

radioimmunoprecipitation assay lysis buffer was used to 

extract proteins from cultured VSMCs. The proteins 

were then separated using 8% or 10% SDS-PAGE and 

electrotransferred to PVDF membrane (Millipore). After 

blocking in 5% milk in TBS for 2 h, the membrane was 

incubated overnight at 4°C with the primary antibody. 

The signal was detected using ECL (enhanced 

chemiluminescence) Fuazon Fx (Vilber Lourmat). The 

following antibodies were used: anti-p16 (1:1000), anti-

p21 (1:1000), anti-p53 (1:1000), anti-NLRP3 (1:1000), 

anti-ASC (1:500), anti-caspase-1 (1:1000), anti-FOXO4 

(1:1000), anti-AKT (1:500), anti-p-AKT (1:1000), anti-

ERK (1:1000), anti-p-ERK (1:1000), anti-AMPK 

(1:1000), anti-p-AMPK (1:1000), anti-Rb1 (1:1000), 

anti-p-Rb1 (1:1000), anti-mTOR (1:1000), anti-p-mTOR 

(1:1000), and anti-β-actin (1:1000). The images were 

captured and processed using FusionCapt Advance Fx5 

software (Vilber Lourmat). All experiments were 

conducted in triplicate independently. 

RNA extraction and RT-qPCR 

 

The VSMCs were lysed, and total RNA was extracted 

according to the instructions of the E.Z.N.A.®Total 

RNA Kit I (R6834-01) manual. A NanoDrop 2000 

(Thermo Fisher) spectrophotometer was used to 

determine the concentration and purity of the RNA. 

Reverse RNA transcription was then performed using 

the M-MLV first-strand kit (Life Technologies) for 

mRNA expression analysis. Then, the Platinum SYBR 

Green qPCR SuperMix-UDG kit (Invitrogen) was used 

for mRNA RT-qPCR. RT-qPCR was performed on a 

CFX96™ real-time system (Bio-Rad). The primers 

used are listed in Supplementary Table 1. The 2−ΔΔCt 

method was used to normalize the gene expression of 

GAPDH. 

 

SA β-gal staining and quantitative analysis 

 

The cells were stained with SA β-gal to detect cell 

senescence, as previously described [53]. Briefly, 

VSMCs were seeded on a 12-well plate and incubated 

at 37°C with 5% CO2 for 48 h. Then, the cells were 

fixed for 15 min, washed with PBS, and incubated with 

the staining mixture at 37°C for 18 h. The staining 

mixture of the SA-β-gal staining kit (Abcam, Inc.) was 

used. Quantification of the SA β-gal-stained cells was 

performed using Image-Pro Plus 6.0 (Media 

Cybernetics, Rockville, MD, USA). 

 

Immunofluorescence staining 

 

The cells were placed on a slide, fixed with 4% 

formaldehyde for 15 min, and washed with PBS. The 

slide was incubated with 10% normal goat serum (710 

027, KPL) at room temperature for 30 min and later 

incubated overnight with the corresponding primary 

antibody at 4°C. After washing with PBS, the slide was 

incubated for 2 h with a fluorescent-labeled IgG 

antibody (021815 or 031506, KPL, SeraCare Life 

Sciences, Inc., USA). Finally, the cell smear was treated 

with DAPI for 15 min for nuclear counterstaining. The 

images were acquired using a confocal microscope 

(DM6000CFS, Leica) and digitized using LAS AF 

software. 

 

CoIP assay 

 

CoIP was performed as previously described [4]. In 

brief, the cell lysates were immunoprecipitated with 

the indicated antibody at 4°C overnight and then 

incubated with protein A-agarose at 4°C for 1 h. 

Protein A-agarose–antigen–antibody complexes were 

then collected by centrifugation at 12,000 g for 2 min 

at 4°C and washed five times with 1 ml 

immunoprecipitation-HAT buffer for 20 min at 4°C. 
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The bound proteins were resolved using SDS-PAGE, 

followed by western blotting with the corresponding 

antibody. 

 

Animal experiments 

 

Male C57BL/6 mice (12–16-week old) were reared 

under a 12-h light cycle with drinking water and a 

standard laboratory diet provided ad libitum [4]. The 

mice were anesthetized with isoflurane (2.5%); a 

single intravenous injection of histone 45 mg/kg 

(consisting of 7.5% H1, 20.8% H2A, 32.5% H2B, 

10.2% H3, and 28.9% H4) [18] and BML-275 (0.5 

mg/kg) + histone 45 mg/Kg intravenously. We 

injected 0.05 mg/kg/ buprenorphine for pain control 

and saline (50 ml/kg) for liquid supply 

subcutaneously at 1 and 12 h, and blood samples were 

collected from the tail veins before and 8 h after 

injection. The mice were euthanized 24 h after the 

histone or saline injection, and blood vessels and 

other tissues were collected and stored. All procedures 

were performed in accordance with the Research 

Ethics Committee of Guangdong Provincial People’s 

Hospital (No.KY-D-2021-018-01). 

 

Cell counting Kit-8 assay 

 

VSMCs were seeded in 96-well plates (2 × 104 

cells/well) and cultured for 24 h, as previously 

described [4]. Then, 5, 10, 20, and 40 μM MC were 

added to the media for 24 h. The viability of VSMCs 

was determined using Cell Counting Kit-8 (CCK-8) 

assays. After culture, 10 μl of CCK-8 reagent (Beibo, 

China) was added to each well, and the plates were 

incubated at 37°C in a humidified atmosphere 

containing 5% CO2 for 2.5 h. The absorbance was read 

at 450 nm on a microplate reader (Thermo Fisher 

Scientific). 

 

Statistical analysis 

 

All data are presented as means ± standard error of the 

mean. Between-group differences were analyzed using 

Student’s t-test. Analysis of variance was performed for 

statistical analysis of multiple groups. Spearman’s 

correlation was used to determine the correlation 

between two genes. P-values of <0.05 were considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. ELISA detected the mount of organ injury markers in blood of mice. Changes of organ injury 

markers are presented as percentage by setting that without treatment as 100%. Means ± SD are presented; Student's t-test, *P < 0.05 vs. 
the corresponding control. 

 

 
 

Supplementary Figure 2. Western blotting detected the AMPK/FOXO4 pathway proteins level vascular tissues of mice after 
histones or histones + BML-275 treatment. 
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Supplementary Table 
 

Supplementary Table 1. Oligos used in the study. 

Name Sequcence 5′ to 3′ 
NCBI Reference 

Sequence 
Posision in the mRNA (nt) 

IL1β-F: GCTCGCCAGTGAAATGATGG NM_000576.3 
 

From 105 to 434 
IL1β-R TCGTGCACATAAGCCTCGTT 

TNF-α-F CACCACTTCGAAACCTGGGA 
NM_000594.4 From 1030 to 1253 

TNF-α-R AGGAAGGCCTAAGGTCCACT 

IL-18-F ATCGCTTCCTCTCGCAACAA 
NM_001243211.2 From 156 to 378 

IL-18-R GAGGCCGATTTCCTTGGTCA 

NLRP3-F CTGGCATCTGGGGAAACCT 
NM_001079821.3 From 11 to 101 

NLRP3-R CTTAGGCTTCGGTCCACACA 

ASC-F ATCCAGGCCCCTCCTCAG 
NM_013258.5 From 368 to 557 

ASC-R AGAGCTTCCGCATCTTGCTT 

Caspase-1-F ACATCCCACAATGGGCTCTG 
NM_001223.5 From 991 to 1223 

Caspase-1-R TTCACTTCCTGCCCACAGAC 

ZBTB16-F CCCTCCTCGGCTCTCGG 
NM_001018011.3 From 12 to 209 

ZBTB16-R GGGTTCTGCAGCTGGATCAT 

HDAC1-F ACTGCTAAAGTATCACCAGAGGG 
NM_004964.3 From 573 to 940 

HDAC1-R CACACTTGGCGTGTCCTTTG 

FOXO4-F GGGAAAAGGCCATTGAAAGCG 
NM_001170931.2 From 842 to 982 

FOXO4-R TGTGGCGGATCGAGTTCTTC 

NFκB1-F GGGCAGGAAGAGGAGGTTTC 
NM_001165412.2 From 20 to 447 

NFκB1-R CTTCTGCCATTCTGAAGCCG 

NUPR1-F ATGCCCACTTCACCTCTGAC 
NM_001042483.2 From 197 to 272 

NUPR1-R CAGCTTCTCTCTTGGTGCGA 

NR1H4-F GCAAAGAGATGGGAATGTTGGC 
NM_001206977.2 From 1110 to 1598 

NR1H4-R CAGAATGCCCAGACGGAAGT 

TRIM25-F CGCAAATGTTCCCAGCACAA 
NM_005082.5 From 524 to 1382 

TRIM25-R GCACCTTGGCCTTGAGAGAT 

MYC-F GCAATGCGTTGCTGGGTTAT 
NM_001354870.1 From 37 to 330 

MYC-R CGCATCCTTGTCCTGTGAGT 

RNF4-F GTTAGGAGGTCTGCGTCTGG 
NM_001185009.3 From 5 to 190 

RNF4-R GTCAGCGGGGAACAAAAACC 

SUZ12-F ACAAACATCAAAAGCTTGTCAGC 
NM_001321207.2 From 613 to 827 

SUZ12-R AGGTCAGGATTCAAAGGCACC 

p16-F CCGAATAGTTACGGTCGGAGG 
NM_000077.5 From 151 to 499 

p16-R AATCGGGGATGTCTGAGGGA 

p21Cip1-F AAGTCAGTTCCTTGTGGAGCC 
NM_000389.5 From 20 to 129 

p21Cip1-R GCATGGGTTCTGACGGACAT 

p53-F AATCTACTGGGACGGAACAGCTTTGAGG 
NM_000546.6 From 929 to 1089 

p53-R GGAGAGGAGCTGGTGTTGTTGGG 

GAPDH-F AATGGGCAGCCGTTAGGAAA 
NM_001256799.3 From 58 to 225 

GAPDH-R GCGCCCAATACGACCAAATC 

 
 

 

 


