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INTRODUCTION 
 

Gastric cancer is the third most common life-threatening 

malignancy. Most patients present with progressive 

disease or metastasis at the time of initial diagnosis [1]. 

The molecular and biological features of gastric cancers 

vary from one genetic subtype to another, thus affecting 

the sensitivity and response of cancers to conventional 

chemotherapy and single-molecule targeted therapy [2, 

3]. Recent studies on immunotherapy have advanced our 

traditional concepts and tumor treatment approaches. 

Immune checkpoint inhibitors (ICIs) targeting the 

PD1/PDL1 axis have shown breakthrough efficacy in a 
variety of solid tumors, including advanced gastric 

cancer resistant to chemotherapy after multi-course 

treatment [3, 4]. Since 2017, anti-PD1 monoclonal 
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ABSTRACT 
 

Programmed cell death 1 (PD1) inhibitors have shown promising treatment effects in advanced gastric cancer, 
the beneficiary population not definite. This study aimed to construct an individualized radiomics model to 
predict the treatment benefits of PD-1 inhibitors in gastric cancer. Patients with advanced gastric cancer 
treated with PD-1 inhibitors were randomly divided into a training set (n = 58) and a validation set (n = 29). CT 
imaging data were extracted from medical records, and an individual radiomics nomogram was generated 
based on the imaging features and clinicopathological risk factors. Discrimination performance was evaluated 
by Harrell’s c-index and receiver operator characteristic (ROC) curve analyses. The areas under the ROC curves 
(AUCs) were analyzed to predict anti-PD-1 efficacy and survival. We found that the radiomics nomogram could 
predict the response of gastric cancer to anti-PD-1 treatment. The AUC was 0.865 with a 95% CI of 0.812-0.828 
in the training set, while the AUC was 0.778 with a 95% CI of 0.732–0.776 in the validation set. The diagnostic 
performance of the radiomics was significantly higher than that of the clinical factors (p < 0.01). Patients with a 
low risk of disease progression discriminated by the radiomics nomogram had longer progression-free survival 
than those with a high risk (6.5 vs. 3.2 months, HR 1.99, 95% CI: 1.19-3.31, p = 0.009). The radiomics nomogram 
based on CT imaging features and clinical risk factors could predict the treatment benefits of PD-1 inhibitors in 
advanced gastric cancer, enabling it to guide decision-making regarding clinical treatment. 
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antibody has been approved for second-line treatment of 

advanced gastric cancer. Now, anti-PD1 agents has been 

approved for first-line treatment of advanced gastric 

cancer in the whole population [5]. 

 

Although PD-1 blockers have revealed inspiring 

effectiveness in the drug-resistant advanced gastric 

cancer, it is not well-known who may benefit from the 

immunotherapy. Accumulated evidence has shown a 

correlation between the microsatellite instability/ 

mismatch repair (MSI/MMR) status of tumors and the 

treatment efficacy of ICIs, and MSI-high (MSI-H) or 

MMR deficiency (dMMR) patients could achieve 

significant survival benefits from immunotherapy [6, 

7], however, this subgroup of patients only accounts 

for 5–10% of advanced gastric cancer [3, 8]. Other 

predictive markers such as the programmed death-

ligand 1 (PD-L1) expression level, the tumor 

mutational burden (TMB), and the Epstein–Barr virus 

(EBV) infection status could be used to guide clinical 

application, the ability of these factors to predict the 

treatment outcomes of immunotherapy is controversial 

due to lack of an optimal efficacy-related cutoff  

value or low detection rates [3, 4]. In addition to 

molecular and pathological predictors, some clinical 

factors such as performance status (PS) and tumor 

metastasis site could be applied to predict the treatment 

outcomes of PD-1 inhibitors [9]. Nevertheless, findings 

from this retrospective study with small sample size 

are need to be validated in a reproducible clinical trial 

study.  

 

Currently, researchers are searching for effective and 

convenient methods to determine tumor heterogeneity 

and predict treatment outcomes. Computed tomography 

(CT) is an optimal noninvasive modality for abdominal 

imaging studies. Nonetheless, conventional CT is not 

suitable for the quantitative analysis of genetic features 

or heterogeneity of the tumor or predicting treatment 

outcomes. Recently, radiomics analysis, a novel 

method, has been introduced into the field of tumor 

imaging. It extracts a large number of imaging features, 

enabling noninvasive quantitative analysis to determine 

tumor heterogeneity, gene expression profiles, and 

prediction of treatment outcomes and disease prognosis. 

As a result, radiomics analysis is also known as an 

“imaging biomarker” [10, 11]. Several CT-based 

radiomics studies have shown that radiomics analysis 

can be used to diagnose different tumors, predict 

prognoses, assess a specific genetic status, and predict 

treatment outcomes [12–14]. Hitherto, none of the studies 

have been conducted to predict the treatment outcomes of 

immunotherapy for advanced gastric cancer. 
 

Here, we performed a retrospective study in patients 

with advanced gastric cancer and treated with anti-PD-1 

inhibitors. We integrated major clinicopathological 

factors and imaging features extracted from the 

previous CT images and generated an innovative 

individualized radiomics model, in order to characterize 

responders and non-responder to immunotherapy and 

determine the clinical application of the radiomics 

model in patients with advanced gastric cancer.  

 

MATERIALS AND METHODS 
 

Study design, patient selection and clinical data 

collection 

 

This clinical trial is a retrospective observational  

study that was approved by the Ethics Committee of 

Huazhong University of Science and Technology, and 

the requirement for written consent was waived in this 

study (number UHCT-IEC-SOP-016-02-03).  

 

Patients with advanced gastric cancer receiving  

PD-1 inhibitors from December 2018 to February 2021 

were enrolled. The inclusion criteria were as follows: 

1) Patient age was > 18 years and < 75 years old.  

2) Relapsed or metastatic inoperable gastric 

adenocarcinoma was cytologically or pathologically 

confirmed. 3) Gastric cancer progressed after the first 

line of standard chemotherapy or a targeted molecular 

therapy and a subsequent anti-PD-1 therapy for at least 

4 cycles. 4) The cancer had at least one evaluable 

lesion that met the Response Evaluation Criteria in 

Solid Tumors (RECIST 1.1). 5) CT imaging data 

before and after anti-PD-1 treatments were complete. 

6) Follow-up data were complete. Patients whose 

gastric lesions were not clearly delineated under CT 

images or whose metastatic lesions could not be 

measured or evaluated were excluded from this study. 

Patients whose survival analyses could not be 

performed were also excluded from the study. All 

enrolled cases were further distinguished into a 

training set and validation set according to the enrolled 

time stage [15]. The cases enrolled before September 

2020 were divided into a training set, while enrolled 

cases from October 2020 to February 2021 were 

divided into a validation set. 

 

Clinical features such as age, sex, physical status,  

tumor differentiation, primary tumor site, and treatment 

outcomes were retrieved from medical records. 

Molecular biomarkers including PD-L1, MMR,  

and HER-2 expression levels were detected by 

immunohistochemistry and in situ hybridization and 

collected. Per the combined positive score (CPS) of  

PD-L1, the positive expression of PD-L1 in cancer cells 
was defined as CPS > 1, and the expression of other 

molecular markers was interpreted as previously 

recommended [3].  
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Treatment protocol and study endpoints 

 

All patients enrolled in this study had been treated with 

anti-PD-1 treatment. The outcomes were classified as 

complete remission (CR), partial remission (PR), stable 

disease (SD), or progressive disease (PD) per the 

immune-related RECIST (irRECIST) [16]. Based on the 

immunotherapy evaluation, SD was also considered to 

indicate lack of an effect. Therefore, patients with CR, 

PR, or SD were considered non-PD responders. All 

patients, including PD and non-PD patients, were 

followed up for progression-free survival (PFS) and 

overall survival (OS). PFS was defined as the time from 

study entry to disease progression or death, and OS was 

defined as the time from study entry to death or the last 

follow-up. The primary endpoints were the radiomics 

prediction accuracy and effectiveness of cancer 

response to PD-1 inhibitor treatment. The secondary 

endpoint was survival prediction, including PFS and 

OS, by the radiomics model. 

 

CT imaging data collection 

 

All patients in this study were subjected to contrast-

enhanced CT scans (16-MDCT, Brilliance Big bore 

Philips Health care, Cleveland, OH, USA) at 120 kV. 

The slice intervals were 5 mm. Portal venous phases of 

enhanced abdominal CT images were reviewed to 

determine the tumor location, size, shape, internal 

echoes of lymph nodes, and the spatial correlation 

between the tumor and surrounding normal tissues.  

 

Tumor area segmentation and radiomic feature 

extraction 

 

The primary tumor area on each slice of transverse CT 

images was manually segmented and set as the region 

of interest (ROI) by two independent experienced 

radiologists who were blinded to this study design 

though the commercial software AccuContuor (Manteia 

Medical Technologies Co, XiaMen, China). Both 

radiologists repeated the segmentation procedure twice. 

The ROI segmented images were resampled with an 

isotropic voxel size (2×2×2 mm3) and interpolated with 

the Bspline algorithm. Filters including wavelet and 

Laplacian of Gaussian (LOG) with different sigma 

values (0.5–5 with steps 0.5) were applied to all the 

segmented images. Subsequently, the images were 

discretized into fixed bin widths. A total of 103 

radiomics features were extracted from the original 

segmented images including 13 shape-based features,17 

first-order based features, 22 texture features consisting 

of gray level cooccurrence matrix (GLCM) features, 16 
gray level run length matrix (GLRLM) features, 16 gray 

level size zone matrix (GLSZM) features, 14 gray  

level dependence matrix (GLDM) features, and 5 

neighboring gray-tone difference matrix (NGTDM) 

features, through the ontology-guided radiomics 

analysis workflow (O-RAW) package [17]. For filtered 

images, the same radiomics features were extracted 

except the shape-based features. Therefore, a total of 

1723 radiomics features were extracted and analyzed in 

each patient.  

 

Feature selection and radiomics score calculation 

 

All extracted radiomic features were normalized with z 

scores. Intra- and interobserver reproducibility were 

evaluated by intraclass correlation coefficients (ICCs), 

and features with ICCs less than 0.75 were excluded. To 

avoid collinearity, redundant features (correlation 

coefficients > 0.9) were excluded by Pearson’s 

correlation analysis, and zero importance features were 

removed by a gradient boosting method (LightGBM) 

using the feature-selector python package 

(https://github.com/WillKoehrsen/feature-selector). An 

all-relevant feature selection method was applied to 

determine the final significant features [18]. A support 

vector machine (SVM) model and logistic regression 

model were constructed and compared using 5-fold 

cross validation and 10 repeats [19]. A radiomics score 

(rad-score) was built based on the linear combination of 

the features weighted by the selected model. 

 

Nomogram model building and verification 

 

In order to determine the contributing factors to 

immunotherapy response, Multivariate logistic 

regression was used to analyze the relationship of the 

clinical risk factors including age, sex, primary tumor 

site, and molecular biomarkers as PD-L1, MMR, HER-

2 expression levels, etc., as well as the radiomics score 

with the immunotherapy response. Radiomics and 

clinical models were established based on the high-risk 

clinical factors combined with or without the rad-score, 

respectively. The discrimination performance of the two 

models was evaluated by Harrell’s c-index and receiver 

operator characteristic (ROC) curves in both the 

training and validation sets. The ROC curves between 

the two models were compared by the Delong test. The 

calibration curve and Hosmer–Lemeshow test were 

used to identify the predictive accuracy of the radiomics 

model in both sets. 

 

Clinical application evaluation 

 

A decision curve analysis was performed to compare 

the net benefit difference of the two models and 

determine the corresponding clinical application value. 
Based on the total points of the radiomics nomogram, a 

high or a low-risk probability of disease progression 

after PD-1 inhibitor treatment was determined. Finally, 

https://github.com/WillKoehrsen/feature-selector
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the impact on survival, such as PFS and OS, was 

analyzed through survival analysis. 

 

Statistical analysis 

 

Statistical analyses were performed with SPSS (version 

26, Chicago, IL, USA) and R software (version 3.6.2, 

http://www.Rproject.org). Categorical variables were 

analyzed using the chi-square test or Fisher’s exact test, 

and continuous variables were analyzed using Student’s 

t test or Mann–Whitney U test. Correlation analysis was 

assessed by the Pearson correlation test. Nomograms 

and calibration curves were plotted by the R package 

‘RMS’. The decision curves were plotted by the R 

package ‘RMDA’. All of the R packages can be 

installed directly in the R console by commands. The 

ROC curves were plotted by the python package ‘Scikit-

learn’ (https://github.com/scikit-learn/scikit-learn). The 

Kaplan–Meier method was used for survival analysis, 

and the log-rank test was used to analyze survival data. 

Cox regression analysis was performed to identify 

survival-related factors. For all tests, two-sided p< 0.05 

was considered statistically significant. 

 

RESULTS 
 

Baseline features 

 

A total of 87 patients with advanced gastric cancer were 

included in this study. All enrolled patients were treated 

with PD-1 inhibitors (toripalimab) after first-line 

standard chemotherapy, and enrolled patients were 

divided into a training set (n = 58) and a validation set 

(n = 29) (Figure 1). Every patient in the cohort was 

classified as a PD responder or non-PD responder 

according to the treatment efficacy. The baseline 

features are listed in Table 1. The median age of the 

participants was 55 (range: 28–76) years old, and 59.7% 

 

 
 

Figure 1. A flow chart of patient enrollment. 

http://www.rproject.org/
https://github.com/scikit-learn/scikit-learn
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Table 1. Baseline characteristics of enrolled advanced gastric cancer patients in the training group and 
validation group. 

Clinical characteristics 

Training cohort (n= 58) Validation cohort (n= 29) 

Non-PD  

responder  

(n=30, %) 

PD 

responder 

(n=28, %) 

P value 

Non-PD 

responder 

(n=15, %) 

PD responder 

(n=14, %) 
P value 

Age 0.380   0.315 

≤60y 17 (56.7) 19 (67.9)  8 (53.3) 10 (71.4)  

>60y 13 (43.3) 9 (32.1)  7 (46.7) 4 (28.6)  

Gender  0.457   0.572 

Male  21 (70.0) 17 (60.7)  8 (53.3) 6 (42.9)  

female 9 (30.0) 11 (39.3)  7 (46.7) 8 (57.1)  

Tumor differentiation  0.825   0.280 

Well or moderate 12 (40.0) 12 (42.9)  6 (40.0) 3 (21.4)  

Poor  18 (60.0) 16 (57.1)  9 (60.0) 11 (78.6)  

Primary tumor location      

Cardia  4 (13.3) 7 (25.0) 0.257 1 (6.7) 2 (14.3) 0.464 

Body  7 (23.3) 9 (32.1) 0.453 3 (20.0) 3 (21.4) 0.924 

Antrum  9 (30.0) 7 (25.0) 0.670 5 (33.3) 3 (21.4) 0.543 

Whole  10 (33.3) 5 (17.9) 0.178 6 (40.0) 6 (42.9) 0.765 

Metastasis status 0.002*   0.017* 

Peritoneal metastasis 13(43.3) 23(82.1)  10 (66.7) 14 (100.0)  

Non-Peritoneal metastasis 17(56.7) 5(17.9)  5 (33.3) 0 (0.0)  

Pretreatment CEA level (ng/ml) 0.003*    0.035* 

Elevated  21 (70.0) 9 (32.1)  9 (60.0) 3 (21.4)  

Normal 9 (30.0) 19 (67.9)  6 (40.0) 11 (78.6)  

Pretreatment CA199 level (ng/ml) 0.585   0.355 

Elevated  15 (50.0) 12 (42.9)  6 (40.0) 8 (57.1) 
 

Normal 15 (50.0) 16 (57.1)  9 (60.0) 6 (42.9) 

MMR/MSI status 0.955   0.707 

pMMR/MSS 18 (60.0) 17 (60.7)  11 (68.8) 9 (69.2)  

Not available 12 (40.0) 11 (39.3)  5 (31.2) 4 (30.8)  

PD-L1 expression   0.677   0.431 

High expression 3 (10.0) 2 (7.2)  8 (53.3) 6 (42.9)  

Low expression 16 (53.3) 16 (57.1)  5 (33.3) 7 (50.0)  

Not available 11 (36.7) 10 (35.7)  2 (13.4) 1 (7.1)  

Her-2 Expression   0.142   0.236 

0 14 (46.7) 2 (7.2)  6 (40.0) 4 (28.6)  

1-2 10 (33.3) 16 (57.1)  1 (6.7) 3 (21.4)  

Not available 6 (20.0) 10 (35.7)  8 (53.3) 7 (50.0)  

anti-PD1 treatment 0.191   0.949 

With chemotherapy  28 (93.3) 23 (82.1)  14 (93.3) 12 (85.7)  

Without chemotherapy 2 (6.7) 5 (17.9)  1 (6.7) 2 (14.3)  

Abbreviation: CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 19-9; MSI / MMR, microsatellite instability / 
mismatch repair; pMMR, MMR proficient; HER-2, human epidermal growth factor receptor 2; PD1, programmed cell death 1; 
PD-L1, programmed death-ligand 1. 
P value means the difference between responder and non-responder group, *p <0.05 statistically significant. 
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of the patients were males. No significant difference 

was observed in any of these factors, including age, sex, 

primary tumor site, tumor differentiation, and genetic 

status (MMR, PD-L1), between the two responders in 

either the training or validation cohort. However, a 

significant difference was observed in the level of 

serum carcinoembryonic antigen (CEA) and the 

metastatic tumor site between the responder and non-

responder groups. Patients with elevated CEA levels 

exhibited a significantly higher response rate to PD-1 

inhibitors than those with normal CEA levels before 

treatment. In addition, the response rate to PD-1 

inhibitors was significantly higher in patients without 

peritoneal metastasis (Table 1). 

 

Radiomics feature selection  

 

The radiomics feature selection and relevant workflow 

are illustrated in Figure 2. The primary tumor area was 

manually segmented and set as the ROI. After extracting 

important radiomics features and excluding the features 

with ICCs less than 0.75, 1244 radiomics features were 

used for further analyses. Colinear feature analysis 

resulted in 329 features being relevant, and final zero-

importance feature analysis revealed that 18 features 

were important. Of them, 7 features showed significant 

differences between the response and nonresponse 

groups. Among these 7 radiomics features, 3 were 

identified as most relevant at the end of selections. 

Logistic regression and SVM models were built based 

on the 3 selected radiomic features to classify the PD 

responders and non-PD responders. The AUCs of the 

logistic regression and SVM models were 0.702 (95% 

CI: 0.694-0.711) and 0.695 (95% CI: 0.685-0.706) in  

the training set, respectively. More comparison results 

can be found in Supplementary Table 1. The logistic 

regression model was chosen for calculating rad-scores 

for each patient, and the rad-score formulas are listed in 

the Supplementary Text. Our analyses found that the 

patients with PD after immunotherapy had obviously 

higher rad-scores than those without PD in the training 

set (0.11 ± 1.10 vs. - 0.90 ± 0.68, p < 0.001) and in the 

validation set (0.64 ± 1.18 vs.-0.88 ± 1.62, p = 0.001) 

(Figure 3A, 3B).  

 

The radiomics model predicts immunotherapy 

efficacy better than the clinical model 

 

To identify the clinical risk factors attributing to the 

therapeutic effect, we performed multi-factor regression 

analysis. The results manifested that the serum CEA 

level and the sites of metastasis were two major clinical 

risk factors contributing to the immunotherapy response 

(Table 2). Thus, we developed a clinical model consists 

of two major clinical risk factors and a radiomics model 

that integrated two clinical risk factors and rad-scores 

 

 
 

Figure 2. A flow chart of the radiomics analysis. Based on CT images, important imaging features were screened and combined with 

important clinical risk factors to generate radiomics nomograms. The performance and clinical utility of the radiomics model to predict anti-
PD-1 treatment efficacy were evaluated through receiver operator characteristic (ROC), calibration and decision curve analyses. Survival 
prediction was also explored. 
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(Figure 4). Our study revealed that the AUCs of the 

radiomics model were 0.865 (95% CI: 0.812-0.828) and 

0.778 (95% CI: 0.732–0.776) in the training and 

validation datasets. While the AUCs of the clinical 

model were 0.750 (95% CI: 0.718–0.734) and 0.667 

(95% CI: 0.665–0.724), respectively (Table 3 and 

Figure 5A, 5B). The nomogram calibration curve 

showed good agreement between the predicted and 

observed outcomes. Compared with the clinical model, 

the radiomics model not only performed a more 

accurate diagnosis than the clinical model (p < 0.01) 

(Figure 5A, 5B) but also better predicted probabilities 

of anti-PD-1 efficacy that were consistent with the 

actual probability in both the training and validation 

cohorts (Figure 6A, 6B). The decision curve showed 

that the radiomics model has a better net benefit rate 

than the clinical model in further (Figure 7). 

 

The radiomics model accurately predicts the 

progression-free survival 

 

All enrolled patients were followed up to monitor PFS 

and OS. Two patients’ follow up data were lost, and 85 

patients had completed survival data. Among them, 61 

patients had PD, and 35 patients died. The median 

follow-up time was 10 (range: 3–23) months. Based on 

the radiomics nomogram, we identified the cutoff value 

for total points as 54 for classifying patients into high 

risk of disease progression and low-risk disease 

progression groups after PD-1 inhibitor treatment. 

Patients with more than 54 total points were grouped in 

the high-risk group, and the others were grouped in the 

low-risk group. We found that there was no difference in 

OS between the high- and low-risk groups (12.0 vs. 10.8 

months, p = 0.94). However, the median PFS in the low-

risk group was 6.5 months, which was significantly 

longer than the 3.2 months in the high-risk group (hazard 

ratio (HR): 1.99, 95% CI: 1.19-3.31, p = 0.009) (Figure 

8A, 8B). These data indicated that patients with low-risk 

values discriminated by the radiomics model had better 

survival outcomes after immunotherapy. Our univariate 

and multivariate regression analyses confirmed that the 

risk value determined by the radiomics model well 

reflected the prognosis of PFS (Table 4). 

 

DISCUSSION 
 

ICIs mainly target a tumor’s immune microenvironment 

and function by reactivating the host’s immune cells. 

These biological agents have distinct effects from other 

conventional antitumor drugs. They were either effective 

or ineffective at all (all or none) and as such they may 

substantially benefit some but not all patients [3, 4]. 

Therefore, it is essential to identify the biomarkers in 

tumors that can be used to predict the tumor response to 

immunotherapy and the treatment outcomes of cancer 

patients. In this study, we developed a noninvasive CT-

based radiomics model to predict the outcomes of anti-

PD-1 therapy in patients with advanced gastric cancer, 

distinguish the responders from non-responders to  

PD-1 inhibitor treatment and predict patient survivals 

before therapy. Our study found that both serum 

carcinoembryonic antigen levels and tumor metastasis 

sites were correlated with the cancer response to PD-1 

 

 
 

Figure 3. Differences in rad-scores between anti-PD1 treatment responders were detected. Scatter plot of the rad-score in the 
training set (A) and in the validation set (B). The blue dots represent the rad-score of patients with PD, and red dots represent the rad-score 
of patients without PD. Our analyses revealed that the patients with PD after immunotherapy had obviously higher rad-scores than those 
without PD in the training and validation set. 
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Table 2. Risk factors for anti-PD1 response in advanced gastric cancer. 

Variable 
Clinical model Radiomics model 

HR 95%CI P value HR 95%CI P value 

CEA level 0.268 0.103-0.696 0.007* 0.120 0.033-0.439 0.001* 

Peritoneal metastasis 5.787 1.931-17.343 0.002* 4.628 1.225-17.489 0.024* 

Rad-score NA NA NA 6.167 2.356-16.144 <0.001* 

Abbreviation: programmed cell death 1, PD1; CEA, carcinoembryonic antigen; HR, Hazard Ratio, 95%CI, 95% confidence 
intervals; NA, not available. 
P value means the difference between clinical and radiomics model, *p <0.05 statistically significant. 

 

Table 3. Performance evaluation of the clinical and radiomic model. 

Index 
Training cohort Validation cohort 

Clinical model Radiomic model Clinical model Radiomic model 

Sensitivity 0.752 0.836 0.738 0.775 

Specificity 0.696 0.801 0.674 0.742 

AUC 0.750 0.865* 0.667 0.778* 

95%CI 0.718-0.734 0.812-0.828 0.665-0.724 0.732-0.776 

Abbreviation: AUC, area under curve; CI, confidence interval. 
*means statistically significant difference existed between clinical model and radiomic model in AUC value (p < 0.05). 

 

inhibitor treatment and could be integrated with  

imaging features to generate a radiomics model, and  

the radiomics model exhibited a good diagnostic 

performance and clinical application. Moreover, patients 

with a low risk of disease progression discriminated by 

the radiomics nomogram were demonstrated to have a 

better survival benefit. Thus, our study reveals that the 

CT-based radiomics nomogram could be applied to 

predict the response and outcomes to PD-1 inhibitor 

immunotherapy in patients with advanced gastric cancer. 

The validated radiomic model could be used to guide the 

decision-making for gastric cancer treatment. 

 

The MSI/MMR status, PD-L1 expression, tumor 

mutation burden, and EBV infection are known to be 

crucial factors contributing to the efficacy of 

immunosuppressive agents [3, 4]. In this study, we 

examined the correlation between the molecular status of 

these clinical factors and the efficacy of PD-1 inhibitor 

treatment and found that none of the enrolled cases had 

 

 
 

Figure 4. The radiomics nomogram for predicting anti-PD-1 efficacy in patients with advanced gastric cancer based on the 
rad-score with clinicopathological risk factors for CEA level and tumor metastasis site. 
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MSI-H/dMMR status. However, more than 50% of them 

responded to anti-PD-1 treatment and showed 

effectiveness. Our study indicates that the incidence of 

MSI-H tumors is low in patients with advanced gastric 

cancer in our community. In agreement with the findings 

from other studies, we observed that some of patients 

with MSI-low (MSI-L)/MMR proficiency (pMMR) still 

had beneficial responses to PD-1 inhibitor treatment [20, 

21]. We did not detect a significant correlation between 

the anti-PD-1 treatment response and any factors of the 

Her-2/Neu expression level, or the PD-L1 expression 

level, indicating that information provided from current 

molecular detections is not sufficient to predict the 

efficacy of immunotherapy. 

 

 
 

Figure 5. Evaluation of the performance of the radiomics model. The operating characteristic curve analysis of the clinical and 
radiomics models was plotted in the training set (A) and in the validation set (B). The AUCs of the radiomics model were 0.865 (95% CI: 0.812-
0.828) and 0.778 (95% CI: 0.732–0.776) in the training and validation datasets. While the AUCs of the clinical model were 0.750 (95% CI: 
0.718–0.734) and 0.667 (95% CI: 0.665–0.724), respectively. 
 

 
 

Figure 6. The calibration curve showed the consistency between the predicted and observed probabilities. Calibration curves 
were plotted in the training set (A) and in the validation set (B). The 45-degree reference line represents an ideal standard calibration line. 
The solid line represents the prediction performance of the radiomics model without overfitting correction. The dotted line is the 
performance of the nomogram after bootstrap correction, which is used as the prediction of future accuracy. The closer the prediction curve 
is to the standard curve, the better the prediction ability of the nomogram. 
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In this study, we found that pretreatment serum CEA 

levels and tumor metastasis status were two major 

predictors of anti-PD-1 treatment outcomes. Serum 

CEA has been the most common tumor marker of 

gastrointestinal tumors, and an elevated level of serum 

CEA indicates the presence of tumor progression and 

relapse [22, 23]. A change in the CEA level after 

treatment is an indicator of treatment response, although 

 

 
 

Figure 7. A decision curve was applied to compare the difference in net benefit of the clinical model and radiomics model in 
the validation cohort. X-axis means threshold probability, Y-axis means net benefit. The decision curve showed that when the threshold 

probability exceeds 10%, and the net benefit of clinical application in radiomics model would exceed the clinical model. 
 

 
 

Figure 8. Survival analyses in different groups of disease progression risk classified by the radiomics model. (A) Progression-
free survival (PFS) in different groups of disease progression risk. (B) Overall survival (OS) in different groups of disease progression risk. 
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Table 4. Uni- and multivariable cox regression analysis of predictors for progression-free survival. 

 

Progression-free survival 

Univariable analysis Multivariable analysis 

HR 95%CI P value HR 95%CI P value 

Age 

≤60y vs. >60y 
0.731 0.396-1.349 0.316    

Gender  

male vs. female 
1.158 0.397-3.371 0.788    

Tumor Differentiation 

Well or moderate vs. poor 
0.534 0.245-1.163 0.114    

Tumor location 

Whole vs. no-whole 
1.523 0.550-4.218 0.419    

cT stage 1.941 0.795-4.741 0.145    

cT1-2 vs. cT3-4       

cN stage 1.066 0.485-2.344 0.874    

N+ vs. N0       

Peritoneal metastasis  

Yes vs. No 
1.726 0.880-3.387 0.112    

Pre-treatment CEA level 

Normal vs. Elevated 
0.492 0.273-0.886 0.018* 0.755 0.392-1.452 0.400 

Pre-treatment CA199 level  

Normal vs. Elevated 
1.388 0.758-2.544 0.288    

Anti-PD1+chemotherapy 

Yes vs. No 
0.807 0.111-5.891 0.833    

High vs Low risk value 2.992 1.648-5.435 <0.001* 2.647 1.367-5.128 0.004* 

Abbreviation: CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 19-9; HR, Hazard Ratio; 95%CI, 95% confidence 
intervals. *p < 0.05 statistically significant. 

 

the accuracy and clinical relevance are low [23, 24]. 

Consistent with previous reports, we demonstrated that 

patients with elevated CEA levels were more likely to 

benefit from anti-PD-1 treatment than those with 

normal CEA levels before treatment. In addition, tumor 

metastasis status has also been regarded as a vital factor 

in the efficacy of anti-PD-1 therapy [8]. Our study 

showed that patients without peritoneal metastasis were 

more likely to respond to immunotherapy than those 

with peritoneal metastasis. When we combined the CEA 

level with peritoneal metastasis status and generated a 

clinical model, we could increase the prediction 

accuracy. Above data indicated that clinical factors 

associated with tumoral heterogeneity and burden could 

be integrated into our radiomics model to predict the 

immunotherapy response. 

 

The antitumor mechanism of immunotherapy differs 

from that of other drugs, and some specific imaging 

responses might be observed after immunotherapy, such 

as persistent SD, pseudoprogression, or superprogression 
[25], thus complicating the interpretation of imaging data 

and clinical decision-making. As a novel diagnostic tool, 

radiomics could identify tumor heterogeneity and predict 

antitumor efficacy through screening and quantitative 

analysis of key imaging features. Gastric cancer has 

been characterized by high genetic and immunological 

heterogeneity [26], and tumor feature identification in a 

noninvasive and convenient manner pretreatment would 

help clinicians develop an efficient treatment plan. Wang 

et al. conducted a retrospective analysis and found that 

preoperative CT-based radiomics analysis is an effective 

tool for screening progressive gastric cancer and 

deducing the status of human epidermal growth factor 

receptor 2 (HER-2) [12, 13]. Huang et al. and Sun et al. 

successfully applied radiomics analysis before surgery to 

predict the peritoneal metastasis of gastric cancer and the 

response to neoadjuvant therapy [27, 28]. However, 

studies on the prediction and analysis of the treatment 

outcomes of immunotherapy for gastric cancer are 

lacking. Here, we demonstrated that radiomics features 

based on pretreatment CT image could effectively 

predict the efficiency of anti-PD1 treatment when these 

radiomics features were combined with CEA level and 

tumor metastasis status to construct a radiomics model. 
The validated radiomics model possesses superior 

discrimination power to the model generated from 

clinical factors alone. 
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There are a few limitations in our study. First, this is a 

single-center retrospective study with a limited sample 

size. The sample size could have been larger if multiple 

centers were involved in the study and more patients 

with advanced gastric cancer had participated in the 

screening. Second, because the imaging features were 

extracted from a sample of limited size and might not be 

stable, there is still room for improvement to increase 

the prediction efficiency (e.g., AUC) and accuracy of 

the radiomics model with a larger sample size. Third, 

PD-1 inhibitors (toripalimab) were selected for analysis 

in the study, although they are not an indication for 

gastric cancer. Existing clinical studies have confirmed 

its applicability in advanced gastric cancer [29, 30]. In 

our research, we fixed the type of PD1 inhibitor to 

reduce the interference of confounding factors and 

obtained ethical support. Finally, we did not screen out 

the molecular markers related to efficacy because MSI-

H was not found in the enrolled patients, and only 

21.8% of enrolled patients showed a high level of PD-

L1 expression. The molecular markers identified as 

related to the efficacy of immunotherapy have a low 

positive clinical probability and limited predictive 

ability. Therefore, a multicenter prospective study with 

a large sample size is needed to validate our findings. 

 

In summary, we developed and validated a CT-based 

radiomics model that could be used to predict the 

treatment benefits of PD-1 inhibitors in patients with 

advanced gastric cancer. Our study indicates that the 

radiomics model is a promising tool for prognosis and 

clinical decision-making. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Text 

 

 

 

Radiomics score (Rad-score) calculation formula: 

 

Logistic regression rad-score = -0.26449-

1.02159*elongation–0.61826* 

log.sigma.0.5.mm.3D_firstorder_Kurtosis +0.58379* 

wavelet.HHL_firstorder_Mean 

SVM rad-score = -0.04062-0.95159* elongation–

0.56740* 

log.sigma.0.5.mm.3D_firstorder_Kurtosis +0.53031* 

wavelet.HHL_firstorder_Mean 
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Supplementary Table 
 

Supplementary Table 1. Performances of logistic regression and SVM classifiers. 

Index 
Training set  

(median, 95% CI) 

Validation set  

(median, 95% CI) 

Logistic Regression   

AUC 0.702 (0.694 - 0.711) 0.653 (0.623 - 0.684) 

Sensitivity 0.694 (0.679 - 0.709) 0.659 (0.598 - 0.721) 

Specificity 0.705 (0.687 - 0.724) 0.668 (0.613 - 0.724) 

SVM   

AUC 0.695 (0.685 - 0.706) 0.636 (0.605 - 0.668) 

Sensitivity 0.694 (0.674 - 0.715) 0.650 (0.587 - 0.714) 

Specificity 0.690 (0.663 - 0.718) 0.650 (0.594 - 0.706) 

Abbreviation: AUC, area under curve; CI, confidence interval; SVM: Support vector machines. 


