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INTRODUCTION 
 

Esophageal cancer (ESCA) is a common malignancy in 

the digestive system with an extremely aggressive 

nature and poor prognosis [1]. It is estimated that ESCA 

is the 8th most common cancer and the 6th leading cause 

of cancer-specific death [2, 3]. Although 

esophagectomy is still considered the cornerstone of 

curative treatment for locally advanced esophageal 

cancer, it remains associated with considerable 

postoperative morbidity, mortality, and recurrence rates 

[4]. And the eligibility of a patient for surgical resection 

strongly depends on the extent of the disease, as well as 

on the general condition of the patient [5]. Nowadays, 

despite recent improvements in early diagnosis and 

therapeutic strategy, the overall survival (OS) of 

esophageal cancer patients remains lower than most 

solid tumors [6, 7]. 

 

As the novel therapeutic options, immune checkpoint 

inhibitors have been applied and revealed encouraging 

efficacy in ESCA [8]. Additionally, other immunogenic 

approaches such as adoptive T-cell therapy and peptide 

vaccines also exhibited promising curative effects [9, 

10]. Due to the ideal results of targeting the immune 

microenvironment in the treatment of esophageal 

cancer, tumor microenvironment (TME) may play a 

crucial role in the tumorigenesis and progression of 

ESCA. 

 

TME cells often take part in the occurrence and 

development of esophageal cancer. 
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ABSTRACT 
 

Esophageal cancer (ESCA) is a common malignancy in the digestive system with a high mortality rate and poor 
prognosis. Tumor microenvironment (TME) plays an important role in the tumorigenesis, progression and 
therapy resistance of ESCA, whereas its role in predicting clinical outcomes has not been fully elucidated. In this 
study, we comprehensively estimated the TME infiltration patterns of 164 ESCA patients using Gene Set 
Variation Analysis (GSVA) and identified 4 key immune cells (natural killer T cell, immature B cell, natural killer 
cell, and type 1 T helper cell) associated with the prognosis of ESCA patients. Besides, two TME groups were 
defined based on the TME patterns with different clinical outcomes. According to the expression gene set 
between two TME groups, we built a model to calculate TMEscore based on the single-sample gene-set 
enrichment analysis (ssGSEA) algorithm. TMEscore systematically correlated the TME groups with genomic 
characteristics and clinicopathologic features. In conclusion, our data provide a novel TMEscore which can be 
regarded as a reliable index for predicting the clinical outcomes of ESCA. 
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The TME includes a complex collection of components, 

such as stromal cells with immunosuppressive features 

and several anti-tumor components, for example 

cytotoxic T lymphocytes, T helper type1 cells, and 

natural killer cells [11]. And some cells display both 

pro- and anti-tumor effects, during different tumor 

stages or in different interaction with other TME 

components [12]. A dynamic balance exists between the 

pro- and anti-tumor factors within the TME, which 

profoundly influences the prognosis of patients with 

cancer [13]. 

 

In order to identify the TME features of ESCA, RNA 

sequencing data and clinical information of ESCA 

samples were collected from The Cancer Genome Atlas 

(TCGA) databases. Additionally, we also identified the 

TME-associated differentially expressed genes (DEGs) 

which were related to prognosis. Based on them, the 

TME score was explored. Thus, our findings provide 

prognostic TME score and potential biomarkers which 

may assist oncologists in prognosis prediction. 

 

MATERIALS AND METHODS 
 

Collected esophageal cancer dataset 

 

The RNA sequencing data (FPKM value) of gene 

expression in TCGA dataset were downloaded from the 

Genomic Data Commons 

(https://portal.gdc.cancer.gov/) using the R package 

TCGAbiolinks [14]. Then, FPKM values were 

transformed into transcripts per kilobase million (TPM) 

values. Data were analyzed with the R (version 3.6.1) 

and R Bioconductor packages. 

 

Collection of clinical data of esophageal cancer 

dataset 

 

The clinical data and sample information for TCGA-

ESCA and other TCGA cancer cohorts samples were 

obtained from the Genomic Data Commons 

(https://portal.gdc.cancer.gov/) using the R package 

TCGAbiolinks [14]. Overall survival (OS) information 

of all TCGA dataset was obtained from the 

supplementary data of published research. Somatic 

mutation data for ESCA patients were obtained from 

TCGA database 

(https://portal.gdc.cancer.gov/projects/TCGA-ESCA). 

 

Calculation of infiltrating cells in the TME 

 

We used the Gene Set Variation Analysis (GSVA) [15] 

algorithm to analyze the gene signatures of the 28 TME 

cells based on the supplementary data from Jia, Q, et al. 

[16] .This algorithm allows for calculating the 

enrichment score of 28 human immune cell phenotypes, 

namely, activated B cell, immature B cell, mast cell, 

regulatory T cell, MDSC, effector memory CD8 T cell, 

central memory CD4 T cell, activated dendritic cell, 

macrophage, type 1 T helper cell, natural killer T cell, T 

follicular helper cell, natural killer cell, type 2 T helper 

cell, effector memory CD4 T cell, CD56 bright natural 

killer cell, gamma delta T cell, plasmacytoid dendritic 

cell, activated CD4 T cell, activated CD8 T cell, 

neutrophil, eosinophil, CD56dim natural killer cell, 

immature dendritic cell, central memory CD8 T cell, 

type 17 T helper cell, memory B cell and monocyte. 

 

Unsupervised clustering using TME infiltrating cells 

matrix 

 

Tumors with qualitatively different TME cell 

infiltration patterns were grouped using hierarchical 

agglomerative clustering (based on canberra distance 

and Ward’s linkage (ward.D method)). Unsupervised 

clustering methods for dataset analysis were used to 

identify TME patterns and classify patients for further 

analysis. A consensus clustering algorithm was applied 

to determine the number of clusters to assess the 

stability of the discovered clusters. This procedure was 

performed using the ConsensusClusterPlus R package 

and was repeated 1,000 times to ensure the stability of 

classification [17]. 

 

DEGs calculation and dimension reduction of 

different TME groups 

 

To identify genes associated with TME cell enrichment 

score patterns, we grouped patients into TMEgroups 

based on immune-cell infiltration. DEGs among these 

groups were determined using the R package limma 

[18], which implements an empirical Bayesian approach 

to estimate gene-expression changes using moderated t-
tests. DEGs among TME subgroups were determined by 

significance criteria (adjusted P value <0.05) as 

implemented in the R package limma. The adjusted P 

value for multiple testing was calculated using the 

Benjamini-Hochberg correction. An unsupervised 

clustering method (K-means) for analysis of DEGs was 

used to classify patients into several groups for further 

analysis. Then, the random forest classification 

algorithm was used to perform dimension reduction in 

order to reduce noise. Next, the clusterProfiler R 

package was adopted to annotate gene patterns [19]. 

After that, two TME signature gene sets (TME 

metagene 1 and TME metagene 2) were obtained to 

build the model of TME score. 

 

Calculation of TME score 

 

GSVA was performed to calculate the signature score of 

different TME signature gene sets using the ssGSEA 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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algorithm [15]. TMEscoreA and TMEscoreB 

represented the GSVA score calculated from different 

TME metagene 1 and TME metagene 2. 

 

TMEscoreA = GSVA score of TME metagene 1 

TMEscoreB = GSVA score of TME metagene 2 

 

The prognosis of the patients with higher TMEscoreA 

was poor, and patients with lower TMEscoreB was 

poor. The stratification of prognosis for TMEscoreA 

and TMEscoreB is significant. After obtaining the 

prognostic value of each gene signature score, we 

applied a method to define the TMEscore of each 

patient: 

 

TMEscore = TMEscoreB - TMEscoreA 

 

Functional enrichment analysis 

 

The clusterProfiler R package was performed to 

demonstrate functional enrichment analysis on TME 

signature genes to. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) terms 

were identified with a strict cutoff of P < 0.05 [20]. We 

also identified functional pathways that were up and 

down regulated among TMEscore high and low by 

running a gene set enrichment analysis (GSEA) of the 

adjusted expression data for all transcripts. Enrichment 

P values were based on 1,000 permutations and 

subsequently adjusted for multiple testing using the 

Benjamini-Hochberg procedure to control the FDR. A 

developing R package enrichplot 

(https://github.com/GuangchuangYu/enrichplot), 

implements several visualization methods to help 

interpreting enrichment results and is adopted to 

visualize GSEA result of TME gene groups. The hub 

genes were analyzed via STRING database 

(https://string-db.org/). 

 

Analysis of relevant biological processes using TME 

signatures 

 

To explore the correlation between the TME signature 

and other relevant biological processes, we used gene 

sets curated by Mariathasan and colleagues, including 

(i) CD8 T-effector signature; (ii) antigen processing 

machinery; (iii) immune-checkpoint; (iv) epithelial-

mesenchymal transition (EMT) markers previously 

reported (EMT1, EMT2, EMT3); (v) pan-fibroblast 

TGFb response signature (Pan-F-TBRS); (vi) 

Angiogenesis signature previously reported; (vii) 

Fanconi anemia; (viii) cell cycle genes (KEGG); (ix) 

DNA replication (KEGG); (x) nucleotide excision 

repair (KEGG); (xi) DNA damage repair (KEGG); 

(xii) Homologous recombination (KEGG); (xiii) 

mismatch repair (KEGG); (xiv) WNT targets; (xv) 

Cell cycle regulators (KEGG); (xvi) DNA damage 

repair (KEGG). 

 

Statistical analysis 

 

Wilcoxon rank-sum test was used for the comparisons 

between two groups. The correlation coefficients were 

computed by Spearman and distance correlation 

analyses. Two-sided Fisher exact tests were used to 

analyze the contingency tables. The cutoff values of 

each dataset were evaluated based on the association 

between the OS of patient and TMEscore in each 

separate dataset using the survminer package. The R 

package MaxStat, which iteratively tests all possible cut 

points to find the one achieving the maximum rank 

statistic, was used to dichotomize TMEscore, and 

patients were then divided into low and high group. R 

package forestplot was used for the presentation of the 

results in the subgroup analysis of TMEscore in TCGA 

esophageal cancer dataset. To identify significant genes 

in the differential gene analysis, we applied the 

Benjamini-Hochberg method to convert the P values to 

FDRs. The Kaplan-Meier method was used to generate 

survival curves for the subgroups in each dataset, and 

the log-rank (Mantel-Cox) test was used to determine 

the statistical significance of differences. The hazard 

ratios for univariate analyses were calculated using a 

univariate Cox proportional hazards regression model. 

A multivariate Cox regression model was used to 

determine independent prognostic factors using the 

survminer package. All heat maps were generated by 

the function of heatmap 

(https://github.com/raivokolde/pheatmap). The P values 

were two-sided. P values of less than 0.05 were 

considered statistically significant. 

 

Data availability statement 

 

The data used to support the findings of this study are 

all public and accessible at TCGA database. 

 

RESULTS 
 

A total of 173 cases with available overall survival data 

were obtained from TCGA database via the association 

number TCGA-ESCA (Supplementary Figure 1). After 

removing the duplicate cases, 164 cases remained for 

further analysis. Based on the GSVA algorithm, 28 

kinds of TME cells were calculated. The ESCA in 

TCGA database was divided into two subtypes, 

esophageal adenocarcinoma (EAC, n = 49) and 

esophageal squamous-cell carcinoma (ESCC, n = 78). 

The activated B cell was differentially expressed in the 

TME cell components between EAC and ESCC 

samples (Supplementary Figure 2). We next analyzed 

the clinical correlation of different TME cells in EAC 

https://github.com/GuangchuangYu/enrichplot
https://string-db.org/
https://github.com/raivokolde/pheatmap
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and ESCC subtypes. In EAC, immature B cell and type 

2 T helper cell played the main roles (Figure 1A). While 

in ESCC, natural killer T cells might be crucial (Figure 

1A). Patients with higher enrichment score in immature 

B cell or type 2 T helper cell might have better clinical 

outcomes in EAC (P < 0.05, Figure 1B). In ESCC, the 

clinical outcome of patients with higher natural killer T 

cell was favorable (P < 0.05, Figure 1B). In the 

comprehensive analysis of all patients with ESCA, four 

kinds of TME cells, i.e. natural killer T cell, immature B 

cell, natural killer cell, and type 1 T helper cell, were 

significantly correlated with prognosis (Supplementary 

Figure 3). 

 

Due to little difference between TME cells in ESC and 

EACC, unsupervised clustering was applied in the 164 

patients and two TME groups were identified 

(TMEgroup1 and TMEgroup2, Figure 2A). 

Subsequently, we tested four cluster number parameters 

in the analysis from k = 2 to k = 5 and the results of 

Consensus Cluster Plus revealed that 2 was the best 

cluster number (Supplementary Figure 4). By comparing 

the two TME groups, we found the higher enrichment 

score of 25 kinds of TME cells in TMEgroup1 (Figure 

2A and Supplementary Figure 5). Additionally, the 

clinical outcome of TMEgroup1 was relatively favorable 

(P = 0.03, Figure 2B). The prognostic stratification 

based on TME cluster was not affected with esophageal 

cancer subtypes (P = 0.078, Figure 2C). 

 

In order to analyze the difference between TMEgroup1 

and TMEgroup2, we identified the DEGs between the 

two TME groups. Then, the correlation between the 

DEGs and clinical prognosis were explored and a total 

 

 
 

Figure 1. Correlations between immune cell populations and the prognosis of two subtypes of esophageal cancer, EAC and 
ESCC. (A) Forest plot showing the Risk Ratio and Hazard Ratio (HR) with the 95% CI of 28 kinds of TME cells in EAC and ESCC subtypes. 
Statistical significance is marked with asterisk at the right side. (B) Kaplan-Meier plots showing the survival curves of patients with high- and 
low- enrichment score of immature B cell and type 2 T helper cell in EAC and natural killer T cell in ESCC subtypes. 
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of 62 genes were finally identified (Figure 3A). Based 

on the expressions of these 62 genes, the patients could 

be divided into two groups (TMEgeneGroup1 and 

TMEgeneGroup2) (Figure 3B). The gene patterns 

between two TME gene group could also be divided 

into two different parts, SS18L2, RPL14, ALG13, 

CRBN, CMC1, PIGT, TNNC2, TMEM74B, RBP2, 

PCK1, NOX1, MARVELD3, EMC10, LRRC45, RBBP7, 

TMEM106C, NDUFAF5, TASP1, CRNKL1, BCCIP, 
SNRPB, MRPS26, POLR2K, COX6C, CRIPT, TPRKB, 

ABRACL, CDKL1, HEBP2, MGST2, FNGR1, ARMT1, 

TXNL4B, DHODH, POLR2C, NVL, HIST1H1E, 

PUS10, CHTOP, EFNA1 belonged to the gene signature 

of TMEgeneGroup1 (TME metagene 1), and were 

highly expressed in TMEgeneGroup1, while WBP1L, 

CORO2B, SLIT2, ST6GALNAC6, ERAP2, FOS, CLN8, 

FAM189A2, RELL1, SEMA5A, XCR1, LSM10, NCDN, 

INTS5, GRB2, NUDT18, YAP1, MAP4K4, RNF144B, 

CDH24, PPIL2, BCR belonged to the gene signature of 

TMEgeneGroup2 (TME metagene 2), and were highly 

expressed in TMEgeneGroup2 (Figure 3B). The clinical 

outcomes were also found between the two groups and 

TMEgeneGroup2 had a poor prognosis (P = 0.00016, 

Figure 3C). Most patients in TMEgroup1 were clustered 

into TMEgeneGroup1, and the prognostic difference 

between TMEgeneGroup were more obvious in that 

between TMEgroups (Figure 3D). The 

TMEgeneGroups were significantly correlated with 

 

 
 

Figure 2. Unsupervised clustering and prognostic analysis of immune cell populations in TCGA-ESCA dataset. (A) Patients 

were divided into TMEgroup1 and TMEgroup2 by unsupervised clustering of 28 kinds of TME cells. TMEgroups and tumor stage of each 
patient are marked on the top of the heatmap. The color bar corresponds to the normalized enrichment score of TME cells. (B) Kaplan-
Meier plot showing the overall survival of patients in TMEgroup1 (line in blue) and TMEgroup2 (line in red). (C) Kaplan-Meier plot showing 
the overall survival of patients in TMEgroup1 and TMEgroup2 between EAC and ESCC subtypes. 
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TMEgroup (p-value = 0.01, Pearson’s Chi-squared 

Test). The individual information for both TMEgroup, 

TMEgeneGroup and all clinical traits was presented in 

the Supplementary Table 1. The prognostic 

stratification revealed that in TMEgeneGroup2, the 

prognosis of patients with either EAC or ESCC was 

poor (Supplementary Figure 6). 

 

The DEGs between TMEgeneGroup1 and 

TMEgeneGroup2 was also calculated with down-

regulated 546 genes in TMEgeneGroup and up-

regulated 1028 genes in TMEgeneGroup2 (Figure 4A). 

The results form Gene Set Enrichment Analysis 

(GSEA) showed that epithelial mesenchymal transition, 

TNFA signaling via NFKB, inflammatory response, 

NOTCH signaling pathway were significantly up-

regulated in TMEgeneGroup1, indicating that patients 

in TMEgeneGroup1 were active in immune response 

and the function of immune system were more efficient 

(Figure 4B). And to TMEgeneGroup2, G2M 

checkpoint, MYC targets v2 and oxidative 

phosphorylation were significantly up-regulated, 

indicating that cell cycle and tumor progression were 

activated in this group (Figure 4B). Moreover, EGFR 

was significantly up-regulated in TMEgeneGroup1 by 

the hub gene analysis, and it might be a therapeutic 

target in ESCA (Figure 4C). Other three hub genes, 

HNF4A, CDH17 and EPCAM were up-regulated in 

 

 
 

Figure 3. Identification and clustering of TMEgroup and prognosis correlated genes. (A) Venn diagram shows the number of 

genes significantly affect prognosis and DEGs between predefined TMEgroups. (B) Unsupervised clustering of 62 genes shows the 2 clusters 
of patients. TMEgeneGroups, TMEgroups and tumor stage of each patient are marked on the top of the heatmap. The color bar 
corresponds to the normalized expression value of signature genes. (C) Kaplan-Meier plot showing the overall survival of TMEgeneGroup1 
(line in blue) and TMEgeneGroup2 (line in red). (D) Sankey diagram showing the proportional relationship in TMEgroup substyles, 
TMEgenegroup substyles and the patient survival states. 
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TMEgeneGroup2, and might serve as the biomarkers of 

TMEgeneGroup2 (Figure 4C). 

 

Based on the 62 genes calculated from TMEgeneGroup, 

we built a model to increase the prediction efficiency. In 

addition, we also calculated TMEscoreA using TME 

metagene 1, and TMEscoreB using TME metagene 2 

according to ssGSEA algorithm. Through the 

comprehensive analysis, we found that the clinical (P < 

0.0001, Supplementary Figure 7A) and the clinical 

outcome of patients with higher TMEscoreB was 

favorable (P < 0.0001, Supplementary Figure 7B). 

 

 
 

Figure 4. Unsupervised clustering enrichment analysis of DEGs. (A) DEGs between TMEgeneGroup1 and TMEgeneGroup2. The x 

axis corresponds to log2 transformed fold change value, and the y axis corresponds to –log10 transformed adjusted P value. Up- and down- 
regulated genes in TMEgeneGroup1 are shown as red and blue dots. (B) GSEA analysis shows the top enriched pathways between 
TMEgeneGroup1 and TMEgeneGroup2. Pathways were ordered by NES and all pathways had P values less than 0.05. (C) PPI network of the 
DEGs between TMEgeneGroup1 and TMEgeneGroup2. Up- and down- regulated genes in TMEgeneGroup1 are colored in red and blue. Size 
of nodes and gene labels correspond to the hub score of genes. 
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Based on the TMEscoreA and TMEscoreB, we 

calculated the final TMEscore and we identified that the 

clinical outcome of patients with higher TMEscore was 

favorable (P < 0.0001, Figure 5A). Also, the tumor 

mutation burden (TMB) in low TME score group was 

higher than that in high TME score group (Figure 5B). 

The correlation analysis revealed a significant 

correlation between TMEscore and TMB (Figure 5C). 

After filtration of gene mutation profile between low 

TMEscore and high TMEscore, we found that the 

mutation frequency of SYNE1 was higher in low TME 

score (Supplementary Figure 8). Gene expression level 

of 17 pathways were also analyzed to identify the 

correlation between pathways and TMEscore, and the 

results revealed the positive correlation with EMT2, 

immune checkpoint, and Pan-F-TBRS, and negative 

correlation with DNA damage repair, homologous 

recombination, Fanconi anemia, nucleotide excision 

repair, mismatch repair, DNA replication and cell cycle 

(Figure 5D). Multifactor analysis showed TMEscore 

was an independent prognostic factor for the prognosis 

of patients with ESCA (Figure 5E). 

 

To validate the prognostic impact of TMEscore model 

in cancer cohorts, we use 32 TCGA cancer cohorts 

(TCGA-ESCA was not included) and calculated 

 

 
 

Figure 5. Correlations between TMEscore and patient prognosis. (A) Kaplan-Meier plot shows significant difference of the overall 

survival between the two groups with high and low level of TME scores. (B) Box plot shows TMB between the two groups with high and low 
level of TME scores. (C) Line regression shows the correlation between TMEscore and TMB. R value and P values are also labelled. (D) The 
correlation between cancer related pathways and TMEscore. The size and color correspond to the correlation values. (E) The multivariate 
Cox regression model shows the correlations between TMEscore and clinical phenotypes. 
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TMEscoreA and TMEscoreB of each patient. Generally, 

11 (34.3%) cohorts (TCGA-PRAD, TCGA-UCS, 

TCGA-KIRP, TCGA-UCEC, TARGET-AML, TCGA-

LIHC, TCGA-SARC, TCGA-KIRC, TCGA-LUAD, 

TCGA-HNSC, TCGA-BRCA) revealed the TMEscore 

as a good prognostic indicator, whereas 5 (15.6%) 

cohorts (TCGA-OV, TCGA-BLCA, TCGA-COAD, 

TCGA-STAD, TCGA-READ) revealed as a poor 

prognostic indicator (Figure 6). By validating in other 

TCGA cancer cohorts, we found most cohorts (21/32 of 

TCGA cohorts had HR less than 1 and 11/32 were 

significant) had a similar prognostic trend using 

TMEscore, revealing TMEscore as a helpful indicator 

for tumorigenic microenvironment and prognosis. 

 

DISCUSSION 
 

ESCA has a high mortality rate and poor prognosis, with 

an estimated 18,440 new cases and 16,170 deaths 

projected in 2020 in the United States [2]. TME plays an 

important role in the tumorigenesis, progression and 

therapy resistance of ESCA [21, 22]. Thus, there is a 

pressing need to explore the TME features which may 

assist oncologists in prognosis prediction. In this study, we 

 

 
 

Figure 6. Validation of TMEscore on TCGA cancer cohorts. Forest plot showing the prognosis of TMEscore in 32 tumor cohorts of 

TCGA. The HR of tumor types marked in blue represent the prognosis of high-TMEscore group is significantly good than that in the low 
TMEscore group, while those marked in red are opposite.  
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identified the key immune cells (natural killer T cell, 

immature B cell, natural killer cell, and type 1 T helper 

cell) associated with the prognosis and found that the TME 

features was significantly related to the OS of patients with 

ESCA. Based on the key TME genes, we explored a 

TMEscore which was demonstrated to be a reliable index 

for predicting the clinical outcome for ESCA patients. 

 

Generally, TME cells include inflammatory cells, such 

as T cells, B cells, dendritic cells, natural killer cells, 

neutrophils, macrophages, etc. The tumorigenesis of 

ESCA are etiologically related to the exposure of the 

refluxed gastric and bile acids, which trigger chronic 

inflammation and the occurrence of Barrett’s esophagus 

[23]. Other risk factors for ESCA, such as smoking and 

alcohol, also induce the toxic effects to increase the 

inflammation in the esophageal epithelium and 

subsequent play carcinogenic roles [24]. Thus, the 

ability of inflammatory responses may take part in the 

regulation of ESCA initiation and development. In 

addition, tumor cells can also recruit different immune 

cell populations or express immune checkpoints to 

suppress the anti-tumor immune response [21, 22]. 

Targeting immune checkpoints or supplement of the 

antitumor immune cells have been candidate options for 

anti-cancer therapy [8]. In this study, we found that 

natural killer T cell, immature B cell, natural killer cell 

and type 1 T helper cell were favorable for the 

prognosis of patients with ESCA. 

 

Immune response related to the helper T cells is often 

impaired in ESCC patients and further damage the anti-

tumor immunity [25]. Therapeutically, the double 

radiofrequency hyperthermia could regulate the 

conversion from Th2 to Th1 cells and work in the 

treatment of ESCA [26]. Impairment of natural killer 

cell activity also promotes tumor immunoevasion. T cell 

immunoglobulin domain and mucin domain-3 (Tim-3) 

was closely related to tumor invasion and distant 

metastasis in ESCC [27]. The mechanism was supposed 

to be associated with NK cell dysfunction in tumor 

microenvironment [28]. Besides, invariant natural killer 

T (iNKT) based immunotherapies showed promise for 

cancer patients and may benefit ESCA patients [29]. 

 

In view of the important roles of TMB in the 

tumorigenesis, progression and treatment, we explored a 

TMEscore based on the key TME genes and verified it 

as a reliable index for the clinical outcome and TMB. 

Evaluation of prognostic factors is important for 

oncologists in clinical decision-marking; thus many 

previous studies have focused on the identification of 

predictors for patients with ESCA. Clinical information 

(such as age, sex, tumor stage and grade), blood 

examination (such as C-reactive protein, albumin ratio), 

tumor characteristics (such as metabolic tumor volume 

and total lesion glycolysis) and treatment methods (such 

as chemoradiotherapy, chemotherapy and surgery) have 

been regarded as prognostic factors and proved to be 

associated with the prognosis of patients with ESCA 

[30–33]. However, these prognostic factors were most 

clinical and did not include the molecular biomarkers. 

With the well-application of TCGA dataset, regulatory 

network of microRNA, lncRNA, mRNA and has been 

identified and prognosis-associated biomarkers have 

also been evaluated for patients with ESCA [34–36]. 

Unfortunately, the tumor microenvironment scores have 

not been explored comprehensively. Thus, this study is 

a good supplement to the existing research about the 

prognosis evaluation of patients with ESCA. 

 

In the TMEgeneGroup1 with favorable prognosis, 

inflammatory response and NOTCH signaling pathway 

were enriched. Notch is a key modulator in regulating 

T-cell development, maintenance, activation and takes 

part in T cell-mediated immune responses [37, 38]. In 

addition, EGFR was significantly up-regulated in 

TMEgeneGroup1 by the hub gene analysis. As a 

therapeutic target, EGFR amplifications can be found in 

ESCA and the application of EGFR inhibitors may 

improve the prognosis of these ESCA patients [39, 40]. 

Thus, the favorable prognosis of patients in the 

TMEgeneGroup1 may be due to the good immune 

response and the application of EGFR inhibitors. 

 

This study inevitably has some limitations that should 

be declared. Firstly, due to limited published data and 

fewer cases of ESCA, the amount of data analyzed in 

this study is limited, which may lead to potential errors 

or deviations. We used TCGA cohorts to validate the 

prognosis impact of TMEscore. And in future work, 

more esophageal cancer patients would be enrolled and 

studied to deeply explore the tumor microenvironment 

and help to improve the prognosis. Secondly, as a 

bioinformatics analysis, the roles of identified immune 

cells is not verified by cell and molecular experiments 

or clinical tissue microarray. Thirdly, all data series 

downloaded in this study are from America, and we are 

not quite sure about its applicability in European and 

Asian. 

 

CONCLUSIONS 
 

Our data provided key immune cells (natural killer T 

cell, immature B cell, natural killer cell, and type 1 T 

helper cell) associated with the prognosis of patients 

with ESCA and constructed a novel prognostic model, 

termed TMEscore, as a reliable index for predicting the 

clinical outcomes of ESCA patients. And by validation 

of other TCGA cancer cohorts, it revealed TMEscore 

could be applied to predict the prognosis of other 

tumors. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The overall workflow of the study. Important analysis steps and datasets are highlighted in squares and 

the arrows indicates the direction of the pipeline. 

 

 

 
 

Supplementary Figure 2. Difference of TME cells between EAC and ESCC samples. Box plot shows the GSVA score of 28 kinds of 

TME cells. EAC and ESCC patients are colored in light grey and black. The statistical significance are also labelled. ns for not significant. ** for 
p < 0.01. 
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Supplementary Figure 3. Correlations between TME cells and clinical outcomes. Forest plot shows the Risk Ratio and Hazard 
Ratio with the 95% CI of 28 kinds of TME cells in all patients with ESCA. Statistical significance are marked with asterisk. 
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Supplementary Figure 4. Identification of consensus clusters by TME cells. Consensus clustering matrix for K = 2 (A), K = 3 (B), K = 
4 (C), and K = 5 (D) are shown. 

 

 
 

Supplementary Figure 5. Difference of TME cells between TMEgroup1 and TMEgroup1. Box plot shows the GSVA score of 28 

kinds of TME cells. TMEgroup1 and ESCC TMEgroup1 are colored in light grey and black. The statistical significance are also labelled. ns for 
not significant, * for p < 0.05, ** for p < 0.01, *** for p < 0.001 and **** for p < 0.0001. 
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Supplementary Figure 6. Survival analysis of patients between different TMEgeneGroups and ESCA subtypes. Kaplan-Meier 
plot shows the overall survival among the patients within four groups of different TMEgeneGroups and ESCA subtypes. Survival curves are 
marked in different colors and the number of cases at risk and censored at different time points are also labelled. 
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Supplementary Figure 7. Survival analysis of patients between different levels of TMEscore. Kaplan-Meier plot shows the 
overall survival among the patients within high and low levels of TMEscoreA (A) and TMEscoreB (B). Survival curves with high and low levels 
of TMEscore are colored in blue and red. The number of cases at risk and censored at different time points are also labelled. 

 

 
 

Supplementary Figure 8. Gene mutation profiles of patients with high and low TMEscore. CoMut plot shows the mutation 

profiles of top ranked mutated genes in TMEscoreGroup Low (A) and TMEscoreGroup High (B). The column corresponds to a patient, and 
the row corresponds to a gene. The bar plot on the top shows the number of total mutations within each patient, and the bar plot on the 
right panel shows the number of different mutations with a gene among all patients. The mutation frequencies of genes are also labelled. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Information of each individual in TCGA-ESCA dataset. 

 


