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INTRODUCTION 

The pool of adult stem cells is limited, and they 

undergo cell aging with a consequent loss of 

functionality [1–3]. This limits the application of adult 

stem cells for cell replacement therapy. Induced 

pluripotency (iP), a state where somatic differentiated 

cells become functionally similar to embryonic stem 

cells (ESC), may serve as an alternative solution. The 

breakthrough findings of iP, first discovered by 

Takahashi and Yamanaka in 2006, by ectopic 

overexpression of four stemness-related transcription 

factors (TFs: Oct3/4, Sox2, Klf4, and c-Myc; OSKM 

in short), in mouse fibroblasts [4], and then repeated in 

human fibroblasts [5], proved the plasticity potential 

of differentiated cells to rejuvenate back to the ESC-
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ABSTRACT 
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SMs and their potential gene targets. Data mining and curation lead to the identification of 92 SMs. The SM 
targets fall into three major functional categories: epigenetics, cell signaling, and metabolic “switchers”. All 
these categories appear to be required in each SM cocktail to induce cell reprogramming. Remarkably, many 
enriched pathways of SM targets are related to aging, longevity, and age-related diseases, thus connecting 
them with cell reprogramming. The network analysis indicates that SM targets are highly interconnected 
and form protein-protein networks of a scale-free topology. The extremely high contribution of hubs to 
network connectivity suggests that (i) cell reprogramming may require SM targets to act cooperatively, and 
(ii) their network organization might ensure robustness by resistance to random failures. All in all,
further investigation of SMs and their relationship with longevity regulators will be helpful for
developing optimal SM cocktails for cell reprogramming with a perspective for rejuvenation and life span
extension.
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like state. Since then, various combinations of 

transcription factors for iP have been proposed [6–8]. 

Still, the exogenous introduction of transgenes 

provides a low yield, both in vitro and in vivo, and 

may have undesirable complications, including 

tumorigenicity (reviewed by [3]). 

 

Recently, a number of small molecules (SMs) that are 

able to induce or enhance pluripotency have been 

discovered [9–11]. They have definite advantages and 

could be used for iP as a much safer alternative [12]. 

First of all, cell dedifferentiation activity could be fine-

tuned by varying the concentrations of SM. When 

needed, the application of lineage-alternating SMs 

could induce cell differentiation and inhibit cell 

proliferation. Moreover, SMs are distinguished by non-

immunogenicity, cost-efficiency, minimal residual 

effects on the genome, and feasibility of in vivo 

application [13, 14]. Consequently, this strategy may 

have great potential in clinical practice. With this in 

mind, the major goal of this study was to provide a 

systems biology view of the SMs, thus supporting 

researchers with a potential basis for the optimal 

selection of drugs for cell reprogramming. 

 

In this in silico study we performed: (i) a comprehensive 

data mining of SMs; (ii) the characterization of SMs and 

SM cocktails, including assessing their protein targets and 

possible interactions between them; (iii) the analysis of 

pathways targeted by SMs, (iv) the comparison of targets 

and pathways of SM cocktails with those of the OSKM 

TFs, and (v) screening for SMs as human metabolites. 

RESULTS 
 

General characterization of SMs and SM cocktails 

for cell reprogramming 

 

We first compiled a full list of SMs established thus far, 

based on a keyword meta-analysis of the literature. 

Comprehensive data mining with subsequent curation 

(see Methods) resulted in a total of 92 chemical 

compounds (Supplementary Table 1) that can either 

induce or enhance pluripotency, alone or in combination 

with TFs. These compounds for chemical reprogramming 

were named “Small Molecules” (SMs) because of their 

relatively low molecular weight [9], which ranges from 

42.4 g/mol (LiCl) to 914.2 g/mol (Rapamycin). The vast 

majority of SMs represent organic compounds belonging 

to various chemical classes; however, among SMs were 

also several inorganic compounds (e.g., Lithium salts). 

 

The analysis of the basic biological activities of the 

collected SMs revealed that they fall into three major 

categories (Figure 1 and Supplementary Tables 2–5): (i) 

signaling modifiers, (ii) epigenetic modifiers, and (iii) 

metabolic modifiers. It should also be mentioned that 

some SMs do not fall into definite categories or belong 

to more than one functional category.  

 

The SMs with signaling activity represent the largest 

group (51 out of 92 compounds; 55.4%; Supplementary 

Table 2), followed by epigenetic (n = 26; 28.3%; 

Supplementary Table 3) and metabolic modifiers (n = 7; 

7.6%; Supplementary Table 4). The most “popular” 

 

 
 

Figure 1. Distribution of SMs by functional categories. The basic biological activities of all SMs that induce or enhance pluripotency (n = 92) 

were extracted from the STITCH online tool, PubChem database and scientific literature. Functional categories of SMs were based on Gene 
Ontology Resource. 
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(i.e., most frequently used in SM cocktails) signaling 

modifiers include inhibitors of TGFβ and Hedgehog 

signaling, both involved in cell differentiation [15, 16]. 

In the epigenetic category, most SMs inhibit either 

methyltransferases (HMTs and DNMTs, 9 and 6, 

respectively) or HDACs (n = 4). Other molecules 

possess either dual activity (HDAC inducers and/or 

inhibitors, n = 3) or combined (inhibition of 

HMT+DNMT or DNMT+HDAC) activities. This, 

respectively, shifts the condensed form of chromatin 

(heterochromatin) towards a relaxed state (euchromatin) 

or decreases the level of DNA methylation, thereby 

ensuring more DNA to be available for transcription. 

Lastly, metabolic modifiers switch the metabolism  

from oxidative phosphorylation towards glycolysis, 

mostly through the inhibition of the GSK3 enzyme [17]. 

Other SMs (n = 8; 8.7%; Supplementary Table 5) 

include antioxidants, regulators of calcium transport, 

autophagy, etc. 

 

To date, several combinations of SMs have been tested 

for cell reprogramming activity. Of them, 10 SM 

cocktails have been established. Their compositions, 

which vary from three [10] to ten [18] compounds, are 

presented in Supplementary Table 6. The common 

denominator for all these cocktails is that they are able 

to induce cell reprogramming, either full (pluripotent 

state) or partial (multipotent/progenitor cells), without 

transfection of stemness-related TFs. 

 

A comparison between the cocktails revealed 22 non-

redundant chemicals, presented in Table 1. It should be 

emphasized that each cocktail contains at least one SM 

from each of the epigenetic, signaling or metabolic 

activity categories, which coincide well with the results 

presented above. Of note, TGFβ inhibitors are presented 

in all cocktails. In particular, RepSox, which can replace 

Sox2 [19], is included in 7 of the 10 cocktails, and in the 

other three, the TGFβ inhibitors are replaced by 

SB431542 or Tranilast, both able to replace Sox2 [10, 

19], or by A-83-01 [20]. Another frequently-used 

signaling modifier included Forskolin (found in six 

cocktails) or BrdU (in Cocktail 5). The mentioned 

compounds can replace Oct4 [9, 21] (see Supplementary 

Table 1). The nuclear RARα selective agonist AM 580 

and the synthetic retinoic acid receptor ligand TTNPB 

affecting the retinoic acid signaling pathway are used in 

four cocktails. As seen in Table 1, the GSK3 inhibitors 

(CHIR99021, LiCl or Li2CO3) which promote glycolysis 

are mandatory components of each reprogramming 

cocktail. Finally, all the cocktails include one or more 

epigenetic modifiers: HDAC inhibitors (VPA, NaB, 

Trichostatin A), DNMT inhibitors (5-aza-dC), the 

inhibitor of LSD1 acting on histone H3 (Parnate), and the 

inhibitors of histone methyltransferases (DZNep, 

EPZ004777, SGC0946). The common SMs are presented 

in the reprogramming cocktails in descending order: 

CHIR99021 = RepSox (n = 7), VPA = Forskolin (n = 6), 

Parnate (n = 5), DZNep (n = 4), AM 580 (n = 3), 

EPZ004777 (n = 2); other SMs are found only in one 

cocktail (see Table 1). 

 

KEGG pathways enrichment analysis of SM targets 

 

To get further insight into the mechanisms of 

chemically-induced reprogramming, we carried out an 

enrichment analysis for SM protein targets. For that 

purpose, we first used the STITCH database 

(https://pubmed.ncbi.nlm.nih.gov/26590256/) for 

extracting the chemical-protein interactions. Then, 

using the DAVID bioinformatics tools [22], we 

determined the enriched KEGG pathways of the found 

SM protein targets (in total, 1023). Figure 2 depicts the 

most enriched KEGG categories (p < 0.001 after 

Benjamini correction, with at least two-fold enrichment) 

among SM targets (for a full list of the enriched 

pathways, see Supplementary Table 7).  

 

The most significantly enriched KEGG pathways 

include pathways associated with regulation of 

longevity such as mTOR signaling (p = 9.1E-18), 

AMPK signaling (p = 5.7E-17), Insulin signaling (p = 

2.3E-13), FoxO signaling (p = 4.2E-23), and pathways 

involved in cell-cell and cell-extracellular matrix 

interactions (Focal adhesion, p = 3.7E-13, Adherens 

junction, p = 5.4E-06). Also, SM targets are over-

presented in the signaling pathways associated with 

age-related diseases, including different types of cancer, 

type II diabetes mellitus (p = 7.7E-08), amyotrophic 

lateral sclerosis (p = 2.3E-04), and Alzheimer's disease 

(p = 2.5E-03). Among the enriched pathways are 

numerous growth-promoting pathways, cell survival 

(PI3K-Akt, p = 3.9E-19) or cell death (Apoptosis, p = 

1.7E-18) signaling. Many enriched pathways are related 

to immune and inflammatory responses. Among them 

are the pathways related to innate immunity (Toll-like 

receptor signaling pathway, p = 1.8E-09; NK-cell 

mediated cytotoxicity, p = 2.6E-06), specific immune 

responses (T cell receptor signaling pathway, p = 5.3E-

15; B cell receptor signaling pathway, p = 2.1E-07), and 

inflammatory signaling (Chemokine signaling pathway, 

p = 1.5E-13; Adipocytokine signaling pathway, p = 

2.1E-11), etc. Not surprisingly, the enriched pathways 

include regulation of cell cycle (p = 3.5E-09), cell 

differentiation (Neurotrophins, p = 3.3E-18; TGFβ 

signaling, p = 9.4E-06), and Signaling pathways 

regulating pluripotency of stem cells (p = 2.8E-06). 

 

Network analysis of SM targets 

 

To further evaluate to what extent the SM targets 

interact between themselves, we determined their 

https://pubmed.ncbi.nlm.nih.gov/26590256/
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Table 1. Non-redundant SMs for reprogramming cocktails and their main bioactivities. 

SM Main bioactivity 
Cocktail 

1 2 3 4 5 6 7 8 9 10 

CHIR99021 GSK3 inhibitor           

RepSox 
TGFβ inhibitor 

[can replace Sox2] 
          

VPA HDAC inhibitor           

Forskolin 
cAMP activator 

[can replace Oct4] 
          

Parnate Inhibitor of LSD1 acting on histone H3           

DZNep 
Inhibitor of HMT EZH 

and SAH synthesis 
          

AM 580 
Nuclear RARα 

selective agonist 
          

EPZ004777 
DOT1L histone (H3K79) 

methyltransferase inhibitor 
          

NaB HDAC inhibitor           

TTNPB 
Synthetic retinoic acid 

receptor ligand 
          

BrdU 
Synthetic analog of thymidine [can 

replace Oct4] 
          

LiCl GSK3 inhibitor           

SB431542 
TGFβ inhibitor 

[can replace RepSox] 
          

Tranilast 
TGFβ inhibitor 

[can replace RepSox] 
          

Trichostatin A HDAC inhibitor           

Li2CO3 GSK3 inhibitor           

5'-aza-dC DNMT inhibitor           

SGC0946 
DOT1L histone (H3K79) 

methyltransferase inhibitor 
          

Cyclic 

pifithrin-a 
p53 inhibitor           

A-83-01 
TGF-beta receptor 

inhibitor 
          

Thiazovivin Rho Kinase (ROCK) inhibitor           

PD0325901 
Potent MKK1 (MEK1) and MKK2 

(MEK2) inhibitor 
          

 

protein-protein interactions (PPIs), annotated in the 

BioGRID database [23]. These data are currently 

available for 991 out of 1023 SM target proteins. The 

analysis revealed that many of these targets interact 

with each other and exhibit multiple PPIs (in total, 6072 

interactions). Remarkably, a significant fraction of the 

interacting SM targets (851 out of 991 proteins; 85.8%) 

forms a continuous network between themselves 
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(Figure 3A). This fraction is significantly higher than 

expected by chance, i.e., higher than for the same 

number of randomly selected proteins with annotated 

PPIs (Figure 3B) (random sampling, mean ± SD: 52.8 ± 

3.5%; z-score for observed value: 9.37). 

Next, we aimed to understand the topology of the 

constructed network. To address this point, we 

calculated the distribution of node connectivity. The 

regression equation in Figure 3C (P(k) = 221 x k -1.16) 

follows a power-law distribution of connectivity and 

 

 
 

Figure 2. Top enriched KEGG pathways of SM protein targets. Enriched pathways at high confidence (p < 0.001 after Benjamini 

correction, with at least two-fold enrichment) are presented. Because of visualization limitations, only the top-most enriched 50 pathways 
are included in the figure. For a full list of the enriched pathways, see Supplementary Table 7, and for the enriched pathways for each SM 
cocktail, see Supplementary Table 8. 
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Figure 3. (A) Graphical output of the PPI network of the entire set of SMs' targets. (B) Simulation of expected interconnectivity given the size 
of a random sample. The observed interconnectivity of SMs' gene targets in the interactome, depicted by the red dot in the scatter plot and 
the observed interconnectivity of cocktails' gene targets, depicted by the orange dots, can be compared to the percentage of interconnected 
nodes (on the Y-axis), found in the largest continuous component of the network, for randomly sampled node sets. The plot shows the 
sampling of subsets of random interactome nodes, of various sizes (represented in a log10 scale on the X-axis, from 50 to 17,600 nodes). For 
each step, the interconnectivity was computed 100 times. Simulations were performed only for samples larger than 50 nodes, because of the 
increased variability of very small node sets. (C) The log-log plot of P(k) against k, illustrating scale-free topology of the network (for details, 
see the text and Methods). For all the nodes and edges in the network see Supplementary Table 9. (A, C) The construction and display of the 
network and the degree distribution regression were performed using Cytoscape, which pulls physical PPIs data determined in vitro and in 
vivo from the BioGRID database. 
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indicates that the PPI network of SM targets has a scale-

free topology, with an extremely high contribution of 

hubs to the average network connectivity.  

 

Using the same approach, we built the chemical-protein 

interaction and PPI networks for the ten SM cocktails 

used thus far for chemical reprogramming (see 

Supplementary Table 6). As seen in Figure 4 and 

Supplementary Figures 1–9, the total number of 

annotated protein targets in SM cocktails varied from 6 

(Cocktail 10) to 174 (Cocktail 7), mostly falling around 

50. In all cases, the fraction of proteins forming a 

continuous PPI network was extremely high (from 25% 

to 75.9%) for such small sizes of protein sets (Figure 

3B), z-scores computed after random sampling being 

between 5.33 and 30. Collectively, the results obtained 

indicate that the SM targets are highly interconnected. 

 

Comparison of targets and pathways of SM cocktails 

with Yamanaka’s factors 

 

It seems plausible that the cocktails for chemical cell 

reprogramming and TFs for iP, specifically Yamanaka’s 

factors (OSKM), have common targets (Figure 5A). 

However, their comparison showed that only the gene 

targets of Cocktail #7 (15 targets; p = 0.0033) overlap 

significantly with the targets of a “classical” 

combination of iP transcription factors (Figure 5A). 

Other cocktails overlap insignificantly (p > 0.05) with 

OSKM. Of note, Cocktail #7 has much more targets 

than any other cocktail for chemical reprogramming. In 

contrast to specific targets, several cocktails (#2, 3, 4 

and 7) have significantly overlapped pathways with 

OSKM (Figure 5B). As seen in Table 2, most common 

pathways are cancer-related. Though not reaching the 

level of significance, the common pathways of other 

cocktails (#1, 5, 6, 8, 9 and 10) are also cancer-related. 

 

SMs as human metabolites 

 

Most SMs are artificially synthesized chemicals. Of 

special interest is whether among the SMs are 

compounds that are natural (human) metabolites or their 

analogs. Overlapping the 92 SMs with the molecules 

found in the Human Metabolome Database - HMDB [24] 

gives a positive answer to this question: 28 compounds 

from the SM list are also found in HMDB (Table 3).  

The overlap is statistically extremely significant 

 

 
 

Figure 4. The network with the highest interconnectivity (corresponding to the TLT cocktail). In total, 58 protein targets are in the 
network. Continuous network without taking into account drug connectivity (chemical-protein interactions) includes 44 genes/proteins 
(75.9%; values for random sampling (mean ± SD): 4.5 ± 2.4; z-score for observed value: 30.03). 
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(p = 9.7E-83). For example, among SMs are essential 

natural metabolites (n = 8) including several vitamins 

(A, C, D), molecules belonging to fatty acids and their 

derivatives (NaB, PGE2), organooxygen (Fru-2,6-P2) 

and organonitrogen (Spermidine) compounds, and 

prenol lipids (Retinoic acid). Other “natural” SMs 

represent nutrients that integrate into the human body 

when consuming products of plant metabolism (n = 

11). Interestingly, several of these compounds (e.g. 

EGCG, 7-hydroxyflavone, apigenin, curcumin, 

quercetin, resveratrol) are components of plant extracts 

that have been already shown to improve healthspan, 

in particular stress resistance and cognitive abilities 

[25]. Several SMs are medications, which under 

specific conditions can be found in the human body. 

Although they are not the products of human 

metabolism or essential nutrients, most of them are 

analogs of natural metabolites. For example, 5'-azaC 

or 5'-Aza-2'-deoxycytidine are analogs of the 

nucleoside cytidine; N-acetyl-cysteine is metabolized 

into L-cysteine, a precursor to the biologic antioxidant 

glutathione; Valproic acid (VPA) is a branched short-

chain fatty acid derived from the naturally occurring 

Valeric acid [26]. 

Furthermore, using STITCH tools [27], we found 

another 963 molecules that are similar (based on the 

STITCH drug similarity score) to the SMs that induce 

or enhance pluripotency, of them, 210 compounds (data 

not shown) are present in the Human Metabolome 

Database [24]. Among these compounds are neuro-

transmitters (serotonin, dopamine and GABA), fatty 

acids, and their derivatives involved in energy 

metabolism, such as citric acid, succinate and lactate. 

We determined the targets of these 210 chemicals, of 

the abovementioned eight human essential natural 

metabolites, and then compared them with the targets of 

all collected SMs (n = 1,023) and SM cocktails (n = 

204) (Supplementary Table 10). As seen in the 

Supplementary Table 10, there is an extremely 

significant (p < E-25, Fisher test) overlap between the 

targets of the 210 SM-like chemicals (n = 4,614) and 

the targets of all SMs or the targets of SM cocktails. 

The common targets cover more than 76% (782 of 1023 

targets) and 65% (132 out of 204 targets), respectively. 

Also, an extremely significant overlap was found for the 

targets of the abovementioned 8 human natural 

metabolites (n = 318) and the targets of SM cocktails 

(21%, 43 of 204). 

 

 
 

Figure 5. (A) Venn diagram of the gene targets of OSKM significantly overlapping with gene targets of cocktails. (B) Venn diagram of 
significantly overlapping enriched pathways for gene targets of SM cocktails and of OSKM. In order to simplify the figure, only statistically 
significant overlaps between OSKM and cocktails are displayed. Overlaps between pairs of cocktails are not shown. 
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Table 2. Overlapping pathways for targets of SM cocktails and OSKM.  

Pathways 
Cocktails 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Pathways in cancer  * * *   *    

Chronic myeloid leukemia  * * *   *    

Prostate cancer  *  *   *    

Bladder cancer       *    

Small cell lung cancer    *       

Viral carcinogenesis   * *   *    

HTLV-I infection  *  *   *    

Hepatitis B   * *   *    

Epstein-Barr virus infection    *       

p53 signaling pathway       *    

Dark gray color with (*) depicts overlaps with p < 0.05. Light gray depicts the pathways with insignificant overlaps (p > 0.05). 

 

DISCUSSION 
 

Until now, the selection of SMs for chemically-induced 

pluripotency or cell reprogramming was done mainly on 

an empirical basis, and no analysis of SMs and their 

targets has been undertaken. Several reviews published in 

the past [28–32] focused on specific aspects of SMs  

but none of them provided a “systemic” view. Our 

comprehensive data mining with subsequent data 

curation revealed 92 SMs that have been reported in 

connection to cell reprogramming. Most of the SMs were 

primarily used as enhancers of iP, i.e., for increasing the 

efficiency of cocktails containing TFs (e.g., Yamanaka’s 

factors) [30, 33, 34]. Of note, to a lesser degree, SMs 

were also used as enhancers of cell reprogramming in 

SM cocktails without TFs. Apart from cell 

dedifferentiation, in the last years, SMs have also been 

used for cell transdifferentiation (for a review see Xie et 

al., 2017 [13]). Still, we found among the studied SMs 

many that could be classified as stand-alone inducers of 

cell reprogramming. These SMs were able to induce 

cellular reprogramming by themselves, thus either fully 

replacing the essential TFs [9, 10] or by increasing their 

expression [35, 36]. For example, Forskolin can replace 

Oct4, while RepSox can substitute Sox2 (see 

Supplementary Table 1). Besides the classical iP by 

means of the combinations of overexpressed TFs (e.g., 

Yamanaka’s factors, OSKM), a total of ten cocktails that 

contain SMs only with cell reprogramming activity have 

been established and tested thus far.  

 

Functional analysis of SMs and their targets revealed that 

they are distributed between three major categories: 

epigenetics, intra- and inter-cellular signaling, and 

metabolic “switchers”. All these categories appear to be 

mandatorily presented in each SM cocktail to induce cell 

reprogramming. Specifically, it seems that sufficient 

components for a “minimal reprogramming” cocktail 

have to include an inhibitor of HDAC (e.g. VPA or 

NaB), an inhibitor of TGFβ signaling (e.g. RepSox), and 

GSK3-inhibiting SMs (e.g. CHIR99021 or LiCl). This 

assumption was further confirmed by the KEGG 

pathways enrichment analysis. The unusually significant 

enrichment of epigenetic and signaling pathways 

highlights their importance in chemical iP. Remarkably, 

many enriched pathways were related to aging, longevity 

and age-related diseases, thus presumably connecting 

them with the processes of cell reprogramming. This 

notion has recently been supported experimentally by 

demonstrating induction of cellular senescence by 

activation of OSKM, in vitro [37] and also in vivo on i4F 

reprogrammable mice [38–40]. Yet, this does not 

minimize the potential importance of pathways that are 

only slightly enriched or are not enriched at all. For 

example, Glycolysis/Gluconeogenesis pathway appears 

in our analysis as a marginally significantly enriched 

pathway (p = 0.051), although it is a well-recognized 

metabolic pathway for cell reprogramming; moreover, it 

is well known that the pluripotent stem cells rely on 

glycolysis rather than OXPHOS (reviewed by [3]). The 

possible explanation for this result is most likely related 

to the small number of glycolytic enzymes among the 

SM targets, relative to the total number of targets. Further 

strengthening the importance of metabolic components of 

iP is the observation that the HIF-1 signaling pathway is 

among the most significantly enriched pathways (fold 
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Table 3. SMs as human metabolites. 

Name 
Role in induced cell reprogramming 

(inducer/enhancer) 
Chemical class 

5'-Azacytidine (5'-azaC) Enhancer Nucleotides and nucleotide derivatives 

5'-Aza-2'-deoxycytidine Enhancer Nucleotides and nucleotide derivatives 

7-hydroxyflavone Enhancer Flavonoids 

90-D3 (Vitamin D3) Enhancer Steroids and steroid derivatives 

Apigenin Enhancer Flavonoids 

Caffeic acid Putative enhancer or inducer Cinnamic acids and derivatives 

Chlorogenic acid Putative enhancer or inducer Fatty acids and derivatives 

Curcumin Enhancer Diarylheptanoids 

Dasatinib Inducer Benzene and derivatives 

Dexamethasone Enhancer Steroids and steroid derivatives 

EGCG Enhancer Flavonoids 

Fisetin Enhancer Flavonoids 

Forskolin Inducer Benzofurans 

Fru-2,6-P2 Enhancer Organooxygen compounds 

Luteolin Enhancer Flavonoids 

N-acetyl-cysteine Enhancer Amino acids and derivatives 

Sodium Butyrate (NaB) Inducer and enhancer Fatty acids and derivatives 

Prostaglandin E2 Enhancer Fatty acids and derivatives 

Quercetin Enhancer Flavonoids 

Rapamycin Enhancer Macrolide lactams 

Resveratrol Enhancer Stilbenes 

Retinoic acid Enhancer Prenol lipids 

SAHA Enhancer Benzene and derivatives 

Spermidine Enhancer Organonitrogen compounds 

Valproic acid Inducer Fatty acids and derivatives 

Vitamin A (Retinol acetate) Enhancer Prenol lipids 

Vitamin C (Ascorbic acid; Ascorbate) Enhancer Dihydrofurans 

Zolpidem Enhancer Azoles 

 

enrichment = 5, p < 2.0E-20). Indeed, the hypoxia-

inducible factor 1 alpha (Hif1alpha) activates glycolysis 

and concomitantly promotes telomerase expression and 

enhances self-renewal of stem cells [41]. Another 

important observation is that the main transcription 

factors of pluripotency, Oct4 and Nanog, can directly 

induce expression of the key glycolytic enzymes 

hexokinase 2 and pyruvate kinase M2, thus delaying 

differentiation and preserving pluripotency of ESCs [42]. 

In turn, the genes involved in the control of glucose 

uptake (GLUT3) and metabolism (PKM2) are also 

involved in the regulation of Oct4 expression [43]. For 

unclear reasons, some promising SMs have not been used 

in reprogramming cocktails developed thus far. For 

example, vitamin C (see Table 3 and Supplementary 

Tables 1, 5) was shown to modulate the TET enzymes, 

which promotes demethylation of histones and DNA, 

with subsequent enhancing cell reprogramming induced 
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by OSKM [44–46], however it was not yet evaluated in 

combination with any SM cocktail. 

 

It is still a matter of debate whether SMs act 

independently of each other in triggering cell 

reprogramming, or if they act in a cooperative, epistatic 

manner. The latter suggests the interactions between 

their targets, including direct (physical) interactions. 

With this in mind, we analyzed the connectivity and 

interconnectivity of targets of SMs and SM cocktails. 

The network analysis indicates that their targets are 

highly interconnected and form PPI networks with a 

scale-free topology that confers robustness and 

persistent connectivity. This means that: (i) the SM 

targets probably act in a cooperative manner to induce 

cell reprogramming; (ii) a scale-free topology of SM 

targets ensures higher integrity of the network and its 

resistance to random attacks [47, 48], thus making the 

cell reprogramming process highly reliable.  

 

Recently, we hypothesized that cell reprogramming is  

a natural process that is triggered and regulated via  

two major networks – a genetic one (triggered by 

transcription factors, e.g. OSKM) and a chemical one 

(controlled by metabolites, e.g. similar to SMs) [3, 49]. 

In line with this hypothesis are our data demonstrating 

that: (i) a large number of SMs (28 of 92; Table 3) used 

for cell reprogramming are found in the human 

metabolome (derivatives of nucleotides, fatty acids, 

etc.), and (ii) many more metabolites (over 200) are 

functionally similar to SMs, thus offering the potential 

of being cell reprogramming agents. In addition to the 

chemical factors, environmental factors such as hypoxia 

and/or hypercapnia (which eventually act as chemical 

factors, namely through low concentrations of oxygen 

and high concentrations of carbon dioxide) may greatly 

influence the cell dedifferentiation process [3, 50]. It 

should be mentioned again (see above) that 

hypoxic/hypercapnic microenvironment associated with 

a low reactive oxygen species (ROS) generation and 

activation of glycolysis, is essential for maintenance and 

proper functioning of dedifferentiated cells.  

 

Further supporting our hypothesis are the data on the 

common targets of SM cocktails and Yamanaka’s factors. 

This comparison revealed an insignificant overlap 

between the SM cocktails’ targets and OSKM, except for 

Cocktail #7. The lack of common targets between the 

cocktails and Yamanaka factors was quite a surprising 

observation. More prominent overlap was however 

observed between pathways, meaning that despite 

different targets, both SM cocktails and Yamanaka’s 

factors “use” more or less the same pathways.  

 

Altogether, this suggests that the two systems, chemical 

(SMs) and genetic (TFs), might cooperate to increase 

the efficiency of cell reprogramming. Interestingly, the 

overlapping pathways for SM cocktails and OSKM 

targets are mainly cancer- or virus-related but not 

related to key reprogramming processes, such as 

demethylation and chromatin decondensation or 

pluripotency pathways, as it might be expected. One of 

the reasons could be rooted in statistical issues. In Table 

2, only the pathways significantly overlapping with at 

least one SM cocktail, are presented. Another important 

point is that cancer-related pathways are not “purely" 

cancer pathways, but include many components related 

to cell division and reprogramming. For example, 

Wnt/β-catenin and MAPK signaling pathways are 

known for their role in cell dedifferentiation [51, 52]. 

These pathways are also well known for their 

involvement in carcinogenesis [53]. 

 

Although beyond the scope of the present study, it is 

worth mentioning that there is a significant overlap 

between the collected 92 SMs and the compounds found 

in the DrugAge database [54] (n = 20 drugs; p = 4.95E-

15). Among the common drugs are Rapamycin, Valproic 

acid, Caffeic acid, and Lithium chloride. Similarly, there 

is a large overlap between the SM targets and the 

longevity-associated genes (LAGs) hosted in the GenAge 

database [55] (n = 132, p = 3E-88 for human LAGs and n 

= 136, p = 5E-24 for human orthologs of model organism 

LAGs). Lastly, SM targets also overlap with the list of 

genes related to cellular senescence (CS) from the 

CellAge database [2] (n = 85, p = 1E-42). As a point for 

further investigation is testing the established or newly 

constructed SM cocktails in vivo. In this regard, testing 

SM cocktails in the naked mole-rat model could be of 

particular interest as induction of pluripotency in the cells 

of this animal requires special conditions and is not 

always achievable [56–58]. 

 

All in all, SMs and their relationship with TFs definitely 

warrants further investigation which could probably 

shed more light on the mechanisms of cell 

reprogramming and will be helpful for developing the 

most optimal SM cocktails with effects on CS, aging 

and longevity. 

 

MATERIALS AND METHODS 
 

Data sources 

 

Data on SMs for cell reprogramming were gathered 

from publicly available literature, using PubMed NCBI 

(http://www.ncbi.nlm.nih.gov/pubmed/) and Google 

Scholar (https://scholar.google.com/). Additional data 

about the chemical and biological properties of SMs 

were obtained from PubChem [59], https://pubchem. 

ncbi.nlm.nih.gov/ and from the Human Metabolome 

Database (HMDB) [24], http://www.hmdb.ca/. Briefly, 

http://www.ncbi.nlm.nih.gov/pubmed/
https://scholar.google.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.hmdb.ca/
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HMDB contains the collection of small molecules 

found in the human body, including nucleic acids, 

carbohydrates, lipids, peptides, amino acids, organic 

acids, biogenic amines, vitamins, minerals,  

food additives, drugs, cosmetics, contaminants, 

pollutants, and other chemicals that enter the human 

body [24].  

 

Data mining and organization 

 

The papers were searched using the following 

keywords: “induced pluripotency”, “chemically 

induced pluripotency”, “chemical reprogramming”, 

“chemically induced dedifferentiation”, “induction of 

pluripotency by small molecules”. In order to be 

included in the analysis, each article had to contain 

data: (i) on SM(s) or their cocktail(s) that either 

induced or enhanced cellular reprogramming; (ii) on 

the bioactivity of the SMs; and (iii) on the SM dosage 

and cell type. According to their role in cell 

reprogramming, the compounds found were divided 

into two major groups of molecules: iP inducers and 

iP enhancers. Since it was not always possible to 

definitely link the compounds to one of the groups, as 

in some cases a given compound was considered an 

inducer and in other cases an enhancer, these entities 

were marked as “inducer and/or enhancer”. From each 

paper the following data were collected and manually 

curated: (i) the name(s) of SM(s) that either induce or 

enhance pluripotency, with or without TFs; (ii) the 

effect of SM(s) on the iP efficiency; and (iii) whether 

a given SM can substitute the pluripotency-associated 

TFs. The collected SMs were organized in a  

table as shown in Supplementary Tables 1, 6.  

The data regarding each compound included:  

common name, formula, molecular weight (MW), 

main bioactivity/target(s), comments relevant to 

cellular reprogramming, link to PubChem  

references, PMID. Only the SM cocktails which 

induced cell reprogramming (not necessary to the  

stage of iPSCs) without TFs were included in the 

analysis. 

 

Drug-protein interaction network 

 

To determine the protein targets of the collected SMs, 

we used the STITCH database (version 5.0), 

http://stitch.embl.de/, one of the largest repositories of 

chemical-protein interactions [27], which include direct 

(physical) and indirect (functional) interactions. For the 

scope of the analyses in this study, text-mining and 

predicted interactions were excluded. If not indicated 

otherwise, a confidence score of medium stringency 

(0.4) was used for including interaction in the analysis. 

Drug similarity analysis was performed using the 

STITCH tool as described by Kuhn et al. [60]. 

Gene targets overlap 

 

To obtain the list of OSKM transcription factors the 

TRRUST database [61], https://www.grnpedia.org/tr 

rust/, was used. The overlaps between gene targets of 

drug cocktails and OSKM transcription factors were 

calculated using only the genes that are present in both 

STITCH and TRRUST databases. In order to compute 

the overlap between gene targets of SMs and GenAge 

[55], https://genomics.senescence.info/genes/index.html, 

two lists of longevity-associated genes (LAGs) were 

used: i) the manually curated list of human LAGs from 

GenAge, build 20 and ii) the human orthologs of model 

organisms LAGs from GenAge, build 20. Orthologs of 

genes were computed using a script developed in our lab, 

that queries the database InParanoid 8 [62], https://in 

paranoid.sbc.su.se/cgi-bin/index.cgi. For stringency, we 

selected for each gene only inparalogs with scores of 1.0. 

The significance of the overlaps with GenAge [55] and 

CellAge [2] - https://genomics.senescence.info/cells/, 

was computed using Fisher’s exact test.  

 

SMs overlap with chemical databases 

 

The overlaps between: i) the list of SMs and HMDB, 

and ii) the list of SMs and DrugAge [54] were 

calculated using the PubChem IDs of the compounds as 

identifiers. The significance of the overlap was 

computed using Fisher’s exact test and considering all 

PubChem and all DrugBank compounds, respectively, 

as background. 

 

KEGG pathways and gene ontology enrichment 

analysis 

 

Functional and pathway enrichment analyses were 

performed with the DAVID Bioinformatics Resources 

tool, version 6.8 [22], https://david.ncifcrf.gov. 

Statistical significance of enrichment was evaluated 

using default parameters set in DAVID. A threshold of 

0.001 was used for the adjusted P-value. 

 

Protein-protein interaction networks 

 

Protein-protein interaction (PPI) data were taken from 

the BioGRID database [23], http://thebiogrid.org, 

human interactome, Build 3.5.177. The PPI network 

construction and analyses were performed using 

Cytoscape [63], http://www.cytoscape.org, version 

3.7.1. Prior to any network analyses, genetic 

interactions, self-loops, duplicate edges and interactions 

with proteins from other species were removed from the 

interactome, and the remaining network was used as a 

control. The interconnectivity was computed as the 

fraction of nodes in the largest connected component 

out of the input gene set, by using the breadth-first 

http://stitch.embl.de/
https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/
https://genomics.senescence.info/genes/index.html
https://inparanoid.sbc.su.se/cgi-bin/index.cgi
https://inparanoid.sbc.su.se/cgi-bin/index.cgi
https://genomics.senescence.info/cells/
https://david.ncifcrf.gov/
http://thebiogrid.org/
http://www.cytoscape.org/
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search algorithm. Modeling the relationship between 

node subset size and interconnectivity in the human 

interactome was carried out by randomly sampling 

subsets of nodes in the interactome, with a sample size 

varying from 50 to 17,600 nodes (step of 50). In this 

case, sampling was performed 100 times for each subset 

size. In order to evaluate the statistical significance of 

the observed network interconnectivity for cocktails and 

SMs gene targets, random sampling from the BioGRID 

network was performed 1000 times, for a subset of 

nodes of equal size to each evaluated network. For each 

set of random samplings, average interconnectivity, 

standard deviation and z-score of the observed 

interconnectivity were computed. 

 

For a joint protein-drug network, the protein targets of 

the collected SMs, determined from the STITCH 

database, were used together with PPIs from BioGRID. 

 

Abbreviations 
 

2-Me-5HT: 2-methyl-5-hydroxytryptamine; 8-Br-cAMP: 

Bromoadenosine 3′, 5′-cyclic monophosphate; BrdU: 

Bromodeoxyuridine; CS: Cellular senescence; D2–5-

HT2A: Dopamine D2 and serotonin 5-HT2A receptors; 

DARPP-32: Dopamine- and cAMP-regulated 

phosphoprotein; DNMT: DNA methyltransferase; 

DZNep: 3-Deazaneplanocin A; EGCG: Epigallocatechin-

3-Gallate; ESCs: Embryonic stem cells; EZH: Enhancer 

of Zeste Homologue; Fru-2,6-P2: Fructose 2,6-

bisphosphate; GSK3: Glycogen synthase kinase 3; 

HDAC: Histone deacetylase; HIF: Hypoxia-inducible 

factor-1; Hif1alpha: Hypoxia-inducible factor 1 alpha; 

HMDB: Human Metabolome Database; HMT: Histone 

methyltransferase; IBMX: 3-Isobutyl-1-Methylxanthine; 

iP: Induced pluripotency; LAGs: Longevity-associated 

genes; MW: Molecular weight; O4I3: OCT4-inducing 

compound 3; OSKM: Oct3/4, Sox2, Klf4, and c-Myc 

(Yamanaka's factors); PDK1: 3′-phosphoinositide-

dependent kinase-1; PFK-1: Phosphofructokinase 1; 

PI3K: Phosphoinositide 3-kinase; PPIs: Protein-protein 

interactions; ROS: Reactive oxygen species; SAH:  

S-Adenosyl-l-homocysteine; SAHA: Suberoylanilide 

hydroxamic acid; SMs: Small molecules; TFs: 

Transcription factors. 

 

Abbreviations for SM cocktails 
 

Cocktail 1 (VC6TF + TTNPB + DZNep)  

 

Valproic acid (V, VPA) 

CHIR99021 (C) 

RepSox (6) 

Parnate (T) 

Forskolin (F) 

DZNep 

TTNPB 

 

Cocktail 2 (NLS) 

 

NaB 

LiCl 

SB431542 

 

Cocktail 3 (VCR) 

 

Valproic acid  

CHIR99021 

RepSox 

 

Cocktail 4 (TLT) 

 

Trichostatin A (TSA) 

Li2CO3 

Tranilast 

 

Cocktail 5 (BrdUC6F) 

 

BrdU 

CHIR99021 

RepSox 

Forskolin  

 

Cocktail 6 (VC6TF + AM 580 + EPZ004777)  

 

VPA 

CHIR99021 

RepSox 

Parnate 

Forskolin 

AM 580 

EPZ004777 

 

Cocktail 7 (VC6TF + AM580 + DZNep + 5-aza-dC + 

SGC0946 + EPZ004777) SMs and their protein 

targets.  

 

VPA 

CHIR99021 

RepSox 

Parnate 

Forskolin 

AM 580 

DZNep 

5-aza-dC 

SGC0946 

EPZ004777 

 

Cocktail 8 (VC6TF + DZNep)  

 

VPA 

CHIR99021 
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RepSOX 

Parnate 

Forskolin 

DZNep 
 

Cocktail 9 (VC6TF + AM 580 + DZNep) 
 

VPA 

CHIR99021 

RepSox 

Parnate 

Forskolin 

AM 580 

DZNep 
 

Cocktail 10 (CNɑATP)  
 

CHIR99021 

NaB 

cyclic pifithrin-a (ɑ) 

A-83-01 

Thiazovivin 

PD0325901 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The network of cocktail 1 (VC6TF + TTNPB + DZNep) SMs and their protein targets. 

 

 
 

Supplementary Figure 2. The network of cocktail 2 (NLS) SMs and their protein targets.  



 

www.aging-us.com 25758 AGING 

 
 

Supplementary Figure 3. The network of cocktail 3 (VCR) SMs and their protein targets.  

 

 
 

Supplementary Figure 4. The network of cocktail 5 (BrdUC6F) SMs and their protein targets. 
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Supplementary Figure 5. The network of cocktail 6 (VC6TF + AM 580 + EPZ004777) SMs and their protein targets. 

 

 
 

Supplementary Figure 6. The network of cocktail 7 (VC6TFA + DZNep + 5-aza-dC + SGC0946 + EPZ004777) SMs and their 
protein targets. 
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Supplementary Figure 7. The network of cocktail 8 (VC6TF + DZNep) SMs and their protein targets. 

 

 
 

Supplementary Figure 8. The network of cocktail 9 (VC6TF + AM 580 + DZNep) SMs and their protein targets. 
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Supplementary Figure 9. The network of cocktail 10 (CNɑATP) SMs and their protein targets. 

 
  



 

www.aging-us.com 25762 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–10.  

 

Supplementary Table 1. 92 chemical compounds.  

 

Supplementary Table 2. SMs- signaling modifiers.  

 

Supplementary Table 3. SMs - epigenetic modifiers.  

 

Supplementary Table 4. SMs - metabolic modifiers.  

 

Supplementary Table 5. SMs - other categories. 

 

Supplementary Table 6. SM cocktails for chemical reprogramming.  

 

Supplementary Table 7. The full list of enriched KEGG pathways of SM protein targets.  

 

Supplementary Table 8. KEGG pathways enrichment for each SM cocktail.  
 

Supplementary Table 9. Gene targets of all curated SMs - PPI network nodes.  

 

Supplementary Table 10. Common targets of different SM/metabolite sets.  


