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INTRODUCTION 
 

Organism aging is accompanied by cell senescence 

caused by telomere shortening [1], increased reactive 

oxygen species (ROS) [2], oncogene activation [3], 

impaired nervous system functions, and a decline in 

immunity [4, 5]. The occurrence of various diseases is 

closely related to cell senescence [6], such as 

osteoporosis [7] and Parkinson’s disease [5]. Lipid 

profiles are associated with aging. Indeed, increased 

uptake of specific lipids promotes longevity and 

ameliorates disease phenotypes in vivo [8]. Moreover, 

lipid profiles have been invaluable to identify the nine 

denominators of aging: telomere attrition, genome 

instability, epigenetic alterations, mitochondrial dys-

function, deregulated nutrient sensing, altered inter-

cellular communication, loss of proteostasis, cellular 

senescence, and adult stem cell exhaustion [9]. 

Therefore, inhibiting replicative senescence of cells is 

an important consideration to improve health. 

 

Stem cell exhaustion is a critical factor of aging. 

Adipose-derived stem cells (ADSCs), which are 

obtained from adipose tissue, exhibit a high 

proliferative ability, rapidly self-renew, and can be 

directed to differentiate into osteoblasts, fibroblasts, and 

nerve cells [10]. Extensive research has shown that 

ADSCs play major roles in aging, such as increasing the 

superoxide dismutase level and decreasing the malon-

dialdehyde content of aging rats [11]. Additionally, 

ADSCs promote myelin sheath regeneration and reduce 

loss of nerve functions in mice [12]. Furthermore, 

injection of an Alzheimer’s disease mouse model with a 

certain dose of ADSCs promotes microglial cell 

activation and nerve regeneration by ADSCs homing to 

the lesion site and differentiating into nerve cells [13, 
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ABSTRACT 
 

Licochalcone A (LA) is a chalcone flavonoid of Glycyrrhiza inflata, which has anti-cancer, antioxidant, anti-
inflammatory, and neuroprotective effects. However, no anti-aging benefits of LA have been demonstrated in 
vitro or in vivo. In this study, we explored whether LA has an anti-aging effect in adipose-derived stem cells 
(ADSCs). We performed β-galactosidase staining and measured reactive oxygen species, relative telomere 
lengths, and P16ink4a mRNA expression. Osteogenesis was assessed by Alizarin Red staining and adipogenesis by 
was assessed Oil Red O staining. Protein levels of related markers runt-related transcription factor 2 and 
lipoprotein lipase were also examined. RNA sequencing and measurement of glycolysis activities showed that 
LA significantly activated glycolysis in ADSCs. Together, our data strongly suggest that the LA have an anti-aging 
effect through activate the glycolysis pathway. 
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14]. However, the proliferative ability of ADSCs 

decreases in aged animals [15] and young ADSC 

transplants show significantly higher bone regeneration 

for osteoporosis treatment [16]. Regardless, ADSCs 

are a suitable cell source to research aging-related 

problems. 

 

Natural small molecule compounds are widely used in 

clinical studies. Recently, increasing attention has been 

focused on the molecular mechanisms related to  

aging controlled by an epigenetic-modulating diet  

with polyphenols [17]. For example, resveratrol plays 

an important role in anti-aging by activation of 

deacetylases [18], whereas quercetin induces cytochrome 

c expression in the brain [19]. 

 

The potential clinical applications of numerous 

bioactive compounds in licorice were recently 

investigated. Licochalcone A (LA), a characteristic 

chalcone extracted from the root of Glycyrrhiza inflata 

[20], has bioactive functions and exerts anti-tumor [21], 

antioxidant [22], anti-obesity [23], and neuroprotective 

effects [24] and also shows anti-cancer effects by 

inhibiting glioma stem cell proliferation [25]. LA also 

exhibits anti-obesity effects [26], inhibits thrombus 

formation [27], and exerts antioxidant activities by 

regulating nuclear factor-erythroid 2-related factor  

2 (Nrf2) [28]. Another study demonstrated that LA 

shows anti-inflammatory effects in IL-1β-stimulated 

chondrocytes [29]. Furthermore, treatment with LA 

promotes strong osteogenic differentiation and 

mineralized formation of cell aggregates [30]. Thus, LA 

is a component of licorice with various bioactivities. 

Although various pharmacological activities of LA have 

been reported, the value of LA as an adjuvant for anti-

aging remains to be determined.  

 

In this study, we investigated whether LA had an effect 

on the proliferative and differentiation abilities of 

hADSCs and examined the underlying anti-aging 

mechanisms. Additionally, we determined whether 

treatment with LA improved cell proliferation by RNA 

sequencing (RNA-seq) analysis and measurement of 

glycolysis activities. 

 

RESULTS 
 

LA ameliorates replicative senescence of hADSCs  

 

Samples of hADSCs were obtained from subcutaneous 

adipose tissues and the cells had been identified by our 

previous work [31], a characterization of the 

multipotency showed that a state of aging after P9 as 

evidenced by a gradual increase in size and irregular 

shape at P9 and P16. Additionally, expression of cell 

senescence-related molecular marker P16ink4a was 

increased significantly, telomeres were shortened, and 

the number of SA-β-gal-positive cells was increased 

significantly at P16. Therefore, we chose aging state 

cells to research the anti-aging effect of LA [31]. 

 

To evaluate LA cytotoxicity, hADSC were treated with 

various concentrations of LA for 24 h and then 

evaluated for cell viability. The results indicated that 

LA (25 µmol) significantly increased hADSC viability 

compared with Ctrl treatment (p<0.05) (Supplementary 

Figure 1A). 

 

Furthermore, growth curves of various passages 

displayed an initial lag phase of 2 days, followed by an 

exponential log phase from 3 to 5 days, and then cells 

entered a plateau phase at 6-7 days (Supplementary 

Figure 1B). The results showed that LA (25 µmol) 

promotes cell proliferation compared with Ctrl 

treatment on the fourth day (p<0.05).  

 

To examine the effect of LA on senescence, we 

performed SA-β-gal assays. SA-β-gal staining revealed 

significantly fewer senescent cells in the LA treatment 

group compared with the Ctrl group (p<0.01)  

(Figure 1A).  

 

 ROS levels are important to regulate cell proliferation 

activity. Increased ROS levels lead to cell senescence 

[32]. As shown in Figure 1B, treatment with LA (25 

µmol) reduced ROS levels in hADSCs compared with 

the Ctrl (P<0.05). The length of telomeres inevitably 

shrinks during the process of aging by telomere 

regulation of cell replication [33] and cell senescence 

[34]. Telomere shortening was suppressed in LA-treated 

hADSCs compared with the Ctrl (P< 0.05) (Figure 1C). 

P16ink4a is a marker of senescence [35] and senescence 

occurs by inactivation of suppressor elements, which 

enhances expression of p16 [36]. Western blotting 

showed that LA (25 µmol) treatment inhibited protein 

expression of P16ink4a in aged hADSCs compared with 

the Ctrl (Figure 1D).  

 

Cell cycle arrest results in genomic instability and 

premature aging [37], and delayed S phase progression 

contributes to genome instability [38]. Cell cycle 

analysis showed that LA (25 µmol) treatment caused a 

decrease in cells in G0/G1 phase and a significant 

increase in S phase cells (p<0.05) compared with Ctrl 

cells (Figure 1E).  

 

In normal cells, the P53 tumor suppressor maintains 

mitochondrial respiration. Overexpression of P53 

drastically reduced mitochondrial Ca2+ transients in 

stimulated cells, causing mitochondrial dysfunction 

[39]. RT-qPCR showed that LA (25 µmol) treatment 

resulted in significantly reduced mRNA expression of 
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Figure 1. Effects of LA on hADSC viability. (A) SA-β-gal staining of hADSCs (Scale bar: 100 µm). The relative intensity of ROS was detected 

by a microplate reader. (B) Effects of LA on ROS. (C) Relative telomere lengths of hADSCs. (D) Relative protein expression of senescence gene 
P16 compared with the control. (E) Effects of LA on cell cycle. (F, G) Relative mRNA expression of senescent genes P21 and P53 compared 
with control. Data are presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01 compared with untreated cells. 
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P53 (p<0.01) compared with Ctrl (Figure 1F). The 

senescence-associated secretory phenotype develops 

because of cellular senescence. P21 is a secretory factor 

that regulates senescence [40]. We found that LA (25 

µmol) treatment also significantly reduced (p<0.05) the 

mRNA expression of P21 compared with the Ctrl 

(Figure 1G). 

 

Effect of LA on the differentiation capabilities of 

hADSCs 

 

To assess the anti-aging effect of LA (25 µmol), we 

examined cell differentiation abilities. Osteogenic and 

adipogenic differentiation indicates the differentiation 

potentials of stem cells [41] and osteogenesis of aged 

MSCs is compromised significantly [42]. Unbalanced 

adipogenic and osteogenic differentiation of  

human mesenchymal stem cells promotes senescence 

[43].  

 

We next examined osteogenic differentiation in 

hADSCs treated with LA (25 µmol) by evaluating 

mRNA levels of the marker genes alkaline phosphatase 

(ALP), alkaline osteocalcin (OCN), and runt-related 

transcription factor 2 (RUNX2) [44]. Compared with the 

Ctrl, LA (25 µmol) treatment increased the mRNA 

expressions of ALP (p<0.05), OCN (p<0.01), and 

RUNX2 (p<0.01) (Figure 2A). Alizarin Red staining 

revealed that LA (25 µmol) promoted the formation of 

mineralized nodules compared with the Ctrl (Figure 

2B). Western blot analysis showed that LA (25 µmol) 

upregulated the protein expression of RUNX2 (p<0.05) 

compared with the Ctrl (Figure 2C).  

 

We also evaluated adipogenic differentiation by 

evaluating the mRNA levels of the marker genes 

peroxisome proliferator-activated receptors γ (PPARγ) 
and lipoprotein lipase (LPL) [45]. LA (25 µmol) 

treatment decreased the mRNA expression of PPARγ 

(p<0.01) and LPL (p<0.05) compared with the Ctrl 

(Figure 2D). Oil Red O staining showed that LA (25 

µmol) treatment resulted in fewer fat droplets 

compared with the Ctrl (Figure 2E). Western blot 

analysis showed that LA (25 µmol) downregulated the 

protein expression of LPL (p<0.01) compared with 

the Ctrl (Figure 2F). These results demonstrated that 

LA (25 µmol) promotes hADSC differentiation 

toward osteogenesis and attenuates adipogenic 

differentiation.  

 

Effect of LA on glycolysis/gluconeogenesis pathways 

in hADSCs 

 

On the basis of RNA-seq to analyze the specific 

mechanism, a classification map of KEGG pathway 

analysis revealed that 4 signaling pathways related to 

cell growth and death were regulated by LA (25 

µmol) (Figure 3A). Furthermore, a bubble diagram 

showed that glycolysis/gluconeogenesis signaling 

pathways were regulated by LA (Figure 3B) and a 

heatmap showed differentially expressed genes related 

to glycolysis/gluconeogenesis signaling pathways 

(Figure 3C). Heatmap analysis showed that the 

expressions of GAPDH, MMP14, PKM, MMP17, and 

PFKP genes, which are related to the glycolysis/ 

gluconeogenesis signaling pathway, were upregulated 

in the LA group compared with the Ctrl group. 

Examination of differentially expressed genes 

revealed 21 upregulated genes and 51 downregulated 

genes in the LA -treated group compared with the Ctrl 

group (Figure 3D). Furthermore, gene set enrichment 

analysis (GSEA) of the differentially expressed  

genes revealed that LA treatment activated the 

glycolysis/gluconeogenesis signaling pathways 

(Figure 3E).  

 

To verify the RNA-seq results, we examined the 

mRNA levels of PKM, PFKP, and GAPDH in 

hADSCs treated with LA (25 µmol). Treatment with 

LA significantly increased the mRNA expressions  

of PKM (p<0.05), PFKP (p<0.05), and GAPDH 

(p<0.01) in hADSCs compared with the Ctrl group 

(Figure 3F). Western blot analysis also showed that 

LA upregulated the protein expression of MMP14 

(p<0.01), PFKP (p<0.01) compared with the Ctrl and 

LA cannot regulate the protein expression of PKM 

(Supplementary Figure 2).  

 

LA promotes hADSC proliferation by activating the 

glycolysis pathway 

 

To evaluate the effect of LA on glycolysis/ 

gluconeogenesis pathways in hADSCs, we used 

extracellular flux analyzes to monitor the extracellular 

acidification rate (ECAR) and oxygen consumption  

rate (OCR) [46, 47], which indicated glycolysis 

pathway activity and mitochondrial respiration, 

respectively.  
 

Following LA treatment of hADSCs, glucose 

consumption was increased (Figure 4A). ECAR in 

hADSCs at each phase in the glycolysis pathway 

showed that basal, glucose, oligomycin, and 2-DG (2-

Deoxy-D-glucose, one of the glycolysis inhibitors) 

phases were significantly higher in LA1 and LA2  

groups than in the Ctrl (P<0.01) (Figure 4B). 

Additionally, when treated with LA (25 µmol), the 

relationship between ECAR and OCR showed a positive 

correlation and was higher than in the Ctrl (Figure 4C). 

Glycolysis levels showed that LA activated the 

glycolysis pathway by significantly improving ECAR 

and OCR in aged hADSCs compared with the Ctrl. 
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Figure 2. Effects of LA on hADSC differentiation ability. (A) qRT-PCR of mRNA levels of the osteogenic differentiation markers ALP, 

OCN, and RUNX2. (B) Alizarin Red staining of hADSCs. (C) Western blot in hADSCs treated as indicated. (D) qRT-PCR of mRNA levels of the 
adipogenic differentiation markers PPARr and LPL. (E) Oil Red O staining of hADSCs. (F) Western blot in hADSCs treated as indicated. Data are 
presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with untreated cells. 
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Previous RNA-seq data suggested that LA can increases 

the expression of GAPDH, a critical regulation enzyme 

in the glycolysis pathway, and the upregulation of 

GAPDH expression can activate glycolysis progression 

[48]. Western blot analysis showed that GAPDH protein 

level was increased in hADSCs treated with LA 

(p<0.05) compared with the Ctrl (Figure 4D).  

 

Other research found that AMPK (AMP-activated 

protein kinase) has been shown to regulate the 

senescence [49], which have reduced the expression of 

the epigenetic factor p-AMPK (phospho-AMP-activated 

protein kinase) in aged mice [50]. AMPK can mediate 

increase of glycolysis in human cells [51]. Western blot 

analysis also showed that LA (25 µmol) upregulated the 

protein expression of p-AMPK (p<0.01) compared with 

the Ctrl and cannot regulate the protein expression of 

AMPK (Supplementary Figure 3). 

 

DISCUSSIONS 
 

Young hADSCs are an ideal source of adult stem cells 

in clinical applications. However, the continuous culture 

of mesenchymal stem cells results in cell senescence. In 

this study, we examined the potential anti-aging effects 

of LA (25 µmol) on senescent hADSCs. Related 

evaluations confirm the regulation of LA on aging. The 

expression of P16INK4A, which regulates senescence, was 

downregulated by LA [52]. ROS levels are increased in 

aging cells, and increased ROS levels inhibit cell 

proliferation [53]. Our results showed that LA decreased 

the ROS level in hADSCs. Telomeres become shorter in 

senescent cells [54]. LA can protect telomeres from 

shortening in hADSCs during proliferation. Osteogenic 

and adipogenic differentiation is also a critical aging 

indicator [55]. During mesenchymal stem cell aging, 

bone mass decreases and bone marrow adiposity 

increases [56].  

 

We performed osteogenic and adipogenic differen-

tiation assays and found that LA (25 µmol) promoted 

osteogenesis differentiation and attenuated adipogenic 

differentiation of hADSCs. Although the four signaling 

pathways regulated by LA through RNA-seq analysis 

mainly involved cell growth and death but not 

osteogenic and adipogenic differentiation. This may 

 

 
 

Figure 3. Mechanism of LA in regulation of hADSC proliferation determined by RNA-seq. (A) Classification map of KEGG pathway 
analysis. (B) Bubble diagram of glycolysis/gluconeogenesis signaling pathways regulated by LA. (C) Heatmap of differentially expressed genes 
related to glycolysis/gluconeogenesis signaling pathways. (D) The differentially expressed genes. (E) Enrichment plots of gene expression 
signatures for the glycolysis/gluconeogenesis signaling pathway. (F) qRT-PCR of the relative mRNA expression of PKM, PFKP, and GAPDH in 
LA-treated hADSCs. Data are presented as the mean ± SD of three independent experiments. Statistical significance was determined by the 
unpaired t-test. *p < 0.05, **p < 0.01 compared with the Ctrl. 
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be that the increase of osteogenic differentiation and 

the decrease of adipogenic differentiation in hADSCs 

caused by LA treatment is only a phenotype in cellular 

senescence. 

 

Our RNA-seq results suggest that LA (25 µmol) 

activates the glycolysis signaling pathway by promoting 

GAPDH, PKM, MMP14, and PFKP gene expression. 

The glycolysis pathway is linked to cell growth and 

proliferation [57], so activation of the glycolysis 

pathway promotes cell viability and ameliorates aging 

[58]. GAPDH, PKM, MMP14, and PFKP are important 

factors in the glycolysis signaling pathway. For 

example, GAPDH activates the glycolysis pathway 

[59]. Increased expression of the glycolysis enzyme 

PKM facilitates a metabolic shift to glycolysis [60], and 

PFKP plays important roles in cellular glucose 

metabolism [61]. The results showed that LA activates 

the p-AMPK, which also involved in the senescence. 

Glycolysis inhibitor blocked LA-induced AMPK 

phosphorylation (Supplementary Figure 4A), and 

inhibition of Glycolysis blocked LA- attenuate fewer 

senescent cells (Supplementary Figure 4B) and 

expression of p16 gene from hADSCs (Supplementary 

Figure 4C). 

 

In conclusion, our results suggest that the anti-aging 

effects of LA (25 µmol) are associated with induction of 

the glycolysis pathway. As is known to all, glycolysis is 

a critical pathway in glucose metabolism that provides 

intermediates for energy generation [62]. Such as 

upregulation of glycolysis is a major characteristic of 

provides energy to support rapid proliferation [63]. 

Glycolysis also regulates the activation of fibrogenesis 

in the aged lung in vivo and in vitro [57]. So, glycolysis 

is linked to cell growth and the findings showed the 

anti-aging property of LA by activating the glycolysis 

pathway. These findings may have broad implications 

for therapeutic that LA has an anti-aging effect on 

human adipose stem cells. 

 

 
 

Figure 4. Measurements of glycolysis activities in hADSCs. (A) ECAR in hADSCs at each phase of the glycolysis pathway. (B) Statistical 
analysis of ECAR at each phase. (C) Relationship between ECAR and OCR in the glycolysis pathway of hADSCs. GM: Metformin. (D) Western 
blotting of GAPDH protein expression. Data are presented as the mean ± SD of three independent experiments. Statistical significance was 
determined by the unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001 compared with the Ctrl. 



 

www.aging-us.com 25187 AGING 

MATERIALS AND METHODS 
 

Cell culture and viability assay 

 

LA (C21H22O4; MW: 338; ≥98% pure, HPLC grade) 

was purchased from Chengdu Push Biotechnology Co. 

Ltd. (Sichuan, China) and stored at 2–8° C in a dark, 

dry place. The stock solution concentration was 100 

mmol in dimethyl sulfoxide (DMSO). The final DMSO 

concentration did not exceed 0.1% in the culture 

medium. hADSCs at passage (P) 22 (late passage) were 

cultured in a humidified atmosphere with 5% CO2 at 

37° C in DMEM/F12 (Thermo Fisher Scientific, 

Waltham, MA, USA) supplemented with 10% FBS and 

100 U/mL penicillin and streptomycin.  

 

Cell viability and growth kinetics were measured by 

CCK-8 assays. Briefly, cells were seeded in 96-well 

culture plates and treated for 24 h with various 

concentrations of LA (0, 25, 50, and 100 µmol for the 

cell viability assay; 25 µmol for the growth kinetics 

assay). Next, 10 µL CCK-8 solution was added to each 

well, followed by incubation at 37° C for 2 h. Cell 

viability was measured using a microplate reader by 

recording the absorbance of each well at 450 nm.  

 

SA-β-gal assay 

 

hADSCs were cultured in 24-well plates overnight and 

then treated with 25 µmol LA or the vehicle control for 

24 h. Next, the cells were fixed and treated with SA-β-

gal kit solution. Cell staining was examined by 

fluorescence microscopy. 

 

ROS assay 

 

hADSCs were treated with 25 µmol LA or the vehicle 

control for 24 h and then incubated with ROS reagent in 

the dark at room temperature for 30 minutes (min). ROS 

levels were determined using a multi-mode microplate 

reader.  

 

qRT-PCR analysis 

 

Telomere lengths in hADSCs were measured by qRT-

PCR. hADSCs were seeded in six-well plates and treated 

with 25 µmol LA and the vehicle control (Ctrl) for 24 h. 

Briefly, total mRNA was extracted using Trizol (Thermo 

Fisher Scientific) and then reverse transcribed into cDNA 

using a reverse transcription kit. Total DNA was 

extracted using a DNA extraction kit. The PCR protocol 

was as follows: predenaturation at 95° C for 3 min 

followed by 43 cycles of denaturation at 95° C for 10 s, 

annealing at 55° C for 30 s, and extension at 72° C for 30 

s. 36B4 was used as a Ctrl. qRT-PCR was performed 

using the Taq-Man real-time PCR system (Thermo 

Fisher Scientific) and SYB-Green real-time PCR system 

(TaKaRa). Relative gene expression levels were 

normalized to ACTB and calculated by the 2-ΔΔCT method. 

Primer sequences are listed in Table 1. 

 

Osteogenic and adipogenic differentiations assays 

 

Briefly, cells were cultured in DMEM/F12 containing 

25 µmol LA or Ctrl. At 70% confluence, cells were 

treated with OriCell™ differentiation media with 25 

µmol LA maintained throughout the differentiation 

period. Alizarin Red staining was performed on day 25 

for osteogenesis and Oil Red O staining on day 14 for 

adipogenesis. Images were obtained by microscopy. 

 

RNA-seq analysis 

 

RNA-seq was performed independently and uniformly on 

hADSCs treated with LA (25 µmol) or Ctrl in duplicate 

and cultured for 6 days in a humidified atmosphere with 

5% CO2 at 37° C in DMEM/F12 supplemented with 

10% FBS and 100 U/mL penicillin and streptomycin. 

Clean reads were aligned to the reference gene sequence 

using bowtie-2 and the gene expression levels of each 

sample were calculated. Differentially expressed gene 

(DEG) detection was conducted by the DEG seq method 

[62]. The statistical results were based on the ma-plot 

method. The number of reads of specific genes obtained 

from the sample was randomly sampled, and then p-

values were calculated in accordance with the normal 

distribution and corrected to q-values. To improve the 

accuracy of DEGs, genes with a different multiple of 

more than double and a q-value of ≤0.001 were defined 

and screened as significant DEGs. RNA sequencing 

data generated from this study have been deposited in 

NCBI GEO (https://www.ncbi.nlm.nih.gov/geo) under 

the accession number GSE144105. 

 

Western blot analysis 

 

Briefly, hADSC were treated with 25 µmol LA or Ctrl 

for 24 h and 48 h (or 80 h) then lysed using RIPA buffer 

containing protease and phosphatase inhibitors at 4° C, 

followed by centrifugation for 10 min. The supernatant 

was collected and sample buffer (5×) was added  

at a ratio of 5:1. Samples were mixed well and boiled 

for 10 min, followed by storage at −40° C. Proteins 

were separated by 10% SDS polyacrylamide gel 

electrophoresis and transferred to PVDF membranes 

that were blocked by incubation with 2.5% dry skim 

milk, followed by overnight incubation with primary 

antibodies diluted in 2.5% dry skim milk at 4° C. 

 

The following antibodies were used: monoclonal rabbit 

anti-RUNX2, anti-LPL, anti-P16ink4a, anti-GAPDH, anti-

MMP14, anti-PKM, anti-PFKP, anti-AMPK, anti-p-

https://www.ncbi.nlm.nih.gov/geo
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Table 1. The primer of qRT-PCR.  

Gene F (5’-3’) R (5’-3’) 

h-P21 TTAGCAGCGGAACAAGGA AAGACAACTACTCCCAGCCC 

h-P53 TGCATTTTCACCCCACCCTT ACACAGGTGGCAGCAAAGTT 

h-ALP GATGGCCTGAACCTCATCGA AGTTCGGTCCGGTTCCAGAT 

h-RUNX2 TGGCCGGGAATGATGAGA TGAAACTCTTGCCTCGTCCG 

h-OCN GGACTGTGACGAGTTGGCTGAC TGCCTGGAGAGGAGCAGAACTG 

h-LPL TGTATGAGAGTTGGGTGCCAAA GCCAGTCCACCACAATGACAT 

h-PPARr TGCAAGGGTTTCTTCCGGA GCAAGGCATTTCTGAAACCG 

h-PFKP CGGAAGTTCCTGGAGCACCTCTC AAGTACACCTTGGCCCCCACGTA 

h-GAPDH ATCAGCAATGCCTCCTGCAC TGGTCATGAGTCCTTCCACG 

h-PKM ATGTCGAAGCCCCATAGTGAA TGGGTGGTGAATCAAGTCCA 

h-actin ACCCACACTGTGCCCATCT ATGTCACGCACGATTTCCC 

h-telomere 
GGTTTTTGAGGGTGAGGGTGAGGGTG

AGGGTGAGGGT 

TCCCGACTATCCCTATCCCTATCCCTATC

CCTATCCCTA 

h-36B4 CAGCAAGTGGGAAGGTGTAATCC CCCATTCTATCATCAACGGGTACAA 

 

AMPK (Abcam) at 1:1000 dilutions. The blots were 

then incubated with the secondary mouse or rabbit 

antibodies at room temperature for 1 h. Proteins  

were detected using the BioSpectrum 600 system.  

The western blots repeated 3 independent 

experiments. 

 

Measurement of glycolysis activities 

 

The oxygen consumption rate (OCR; pmoles/min) and 

extracellular acidification rate (ECAR; mpH/min) 

were measured using Seahorse XF96 extracellular 

flux analyzers (Seahorse Bioscience, Billerica, MA, 

USA) in accordance with the manufacturer’s 

instructions [63]. hADSCs were seeded in an XF96 

cell culture microplate. Twenty-four hours (h) later, 

DMEM/F12 medium was changed to Agilent 

Seahorse XF base medium (Agilent Technologies) 

supplemented with GlutaMAX™ (Thermo Fisher 

Scientific). The cells were cultured for 1 h in a CO2-

free 37° C incubator and then subjected to a Seahorse 

XF Cell Mito Stress Test or Seahorse XF Glycolysis 

Stress Test. LA concentrations were 6.25 µmol (LA1) 

and 25 µmol (LA2) for the glycolysis test. 

Measurements were recorded at the intervals indicated 

in the test protocols. 

 

Statistical analysis 

 

Statistical analysis was performed using GraphPad Prism 

5.0. Data are expressed as the mean ± standard deviation 

(SD). Statistical comparisons of two groups were made by 

the unpaired t-test. Statistical comparisons of more than 

two groups were made by analysis of variance (ANOVA). 

A two-tailed P-value of P<0.05 was considered 

statistically significant and P<0.01 was considered 

extremely statistically significant. 

Abbreviations 
 

LA: Licochalcone A; ADSC: Adipose-derived stem 

cells; DEGs: Differentially expressed genes; ECAR: 

Extracellular acidification rate; OCR: Oxygen 

consumption rate; GAPDH: Glyceraldehyde-3-

phosphate dehydrogenase; H: Hour; Min: Minutes 

(min); hADSC: Human adipose-derived stem cells; 

RUNX2: Runt-related transcription factor 2; LPL: 

Lipoprotein lipase; PPARγ: peroxisome proliferator-

activated receptors γ; ALP: Alkaline phosphatase; OCN: 

Alkaline osteocalcin; PKM: Pyruvate kinase muscle 

type; MMP14: Matrix metalloproteinase 14; PFKP: 

Platelet isoform of phosphofructokinase; RNA-seq: 

RNA sequencing; ROS: Reactive oxygen species; SA-

β-gal: Senescence-associated β-galactosidase.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Cell viability assay and survival curve analysis to monitor the effect of LA on aged hADSC. (A) Cell 
viability assay. (B) Survival curve. The data are presented as mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01 compared 
to untreated cells. 
 

 
 

Supplementary Figure 2. Western blot analysis of glycolysis/gluconeogenesis signaling pathway related proteins in hADSCs 
treated as indicated. Data are presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 

compared with untreated cells. 
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Supplementary Figure 3. Western blot analysis of AMPK protein in hADSCs treated as indicated (LA 24 h treatment). Data are 
presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with untreated 
cells. 

 

 
 

Supplementary Figure 4. Influences of LA on senescence of hADSCs can be reversed by glycolysis inhibitor 2-DG. (A) Western 
blot analysis of AMPK protein in hADSCs treated as indicated (LA treatment 80 h). (B) SA-β-gal staining of hADSCs (Scale bar: 100 µm) (LA 
treatment 48 h). The relative intensity of ROS was detected by a microplate reader. (C) qRT-PCR of mRNA levels of p16 gene (LA treatment 48 
h). Data are presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control cells. 


